

Precision Combustion, Inc. New Haven, Connecticut

- Privately-held small business ~50 FTE employees. Est 1986.
- High performance engineering team:
 - 12 PhDs, 38 engineers/technicians/admin., large/small co backgrounds
 - \$35 MM SBIR awards, 75+ U.S. patents
- Focus on Innovation and product development
- Catalytic reactors/systems for Energy sector
 - Novel architectures, enhanced performances, systems implications
 - Ultra-compact, efficient
 - Resolves heat / mass transport issues
 - Fuel reformers/Processors/Fuel cells
 - Combustors/Burners
 - Air Cleaners
 - CO2 Capture / Processing
- Customers/partners: U.S. Govt., large & small companies, universities

PCI company vision and strategy

- Create, develop, commercialize novel high value added component/system solutions
- Innovative, close-knit and highly skilled engineering and development team
- Current product focus: catalytic reactor/system solutions to Energy sector challenges
- Customer focus: DoD, NASA, Energy industry
- Product-specific market entry plans.
 - PCI core catalytic component manufacture and sale, with potential system level license
 - PCI system sale and manufacture (supply chain for most of manufacture beyond core component)
 - License
- Bootstrapped financing:
 - SBIR for early stage tech and product development
 - Government and corporate partner/customer funding for later stage development
 - Commercial entry targeted to the product
- Leverage/risk strategies: Tech/product diversity. Defensible IP. Strategic relationships.
- Commercialization returns support stakeholders and further development

Commercialization Principles

- Committed customer with secured funding seeking a solution
 - Typically DoD, NASA or industrial companies
- Focusing on opportunities where weight, volume, efficiency or economics matter
- Vertically integrating to the level that makes "sense"
- Partnering with appropriate technology solution providers and system integrators
- Manufacturing what we can, buying what we can't make, licensing to supply volumes we cannot provide
- Keeping PCI as a core R&D small business
- Spinning out product specific and manufacturing companies when they are required

Multiple Military and Commercial Applications

Power & 0 Propulsion

Precision Combustion, Inc.

PCI

- Fuel Cell Systems
- IC Engine Systems
- Soldier Power Gensets

0000

- Vehicle APU's
- UXV Power/ Propulsion

Combustion

- Catalytic Burners
 Stirling, TPV, TEG
- Catalytic Combustors
 - Gas Turbines
 - Steam Generators
- Catalytic Glow Plugs

Purification

Carbon Capture

- Oxidizers
- Adsorbers
- Desulfurization
- Catalytic Conversion

& Sensors

Reactors

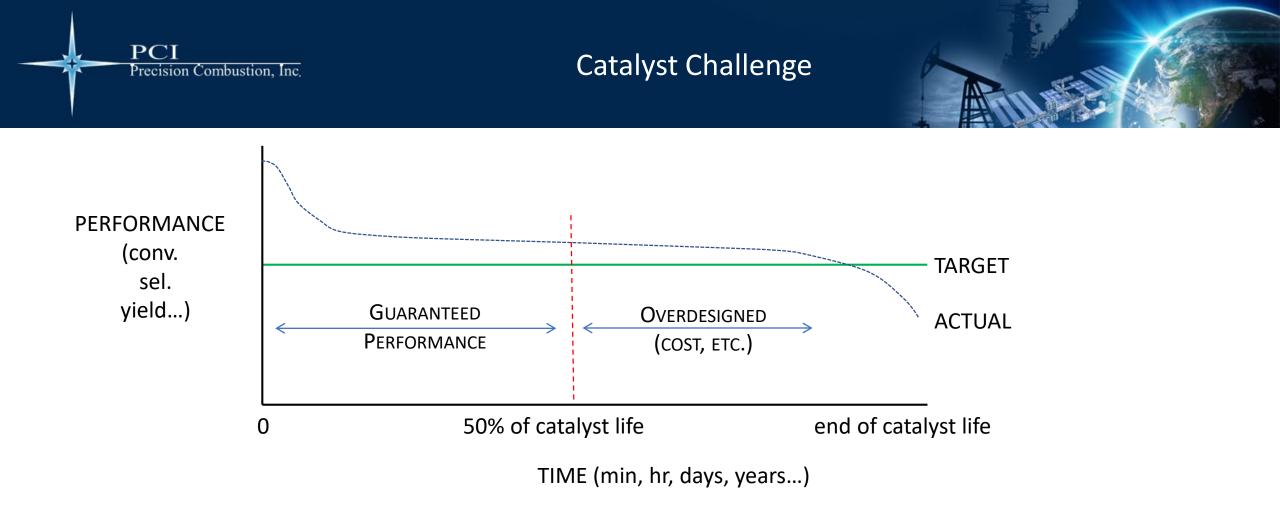
- CO2 Upgrading
- Hydrogen Generation
- Sabatier Reactors
- Gas Conversion
- Cetane Sensor

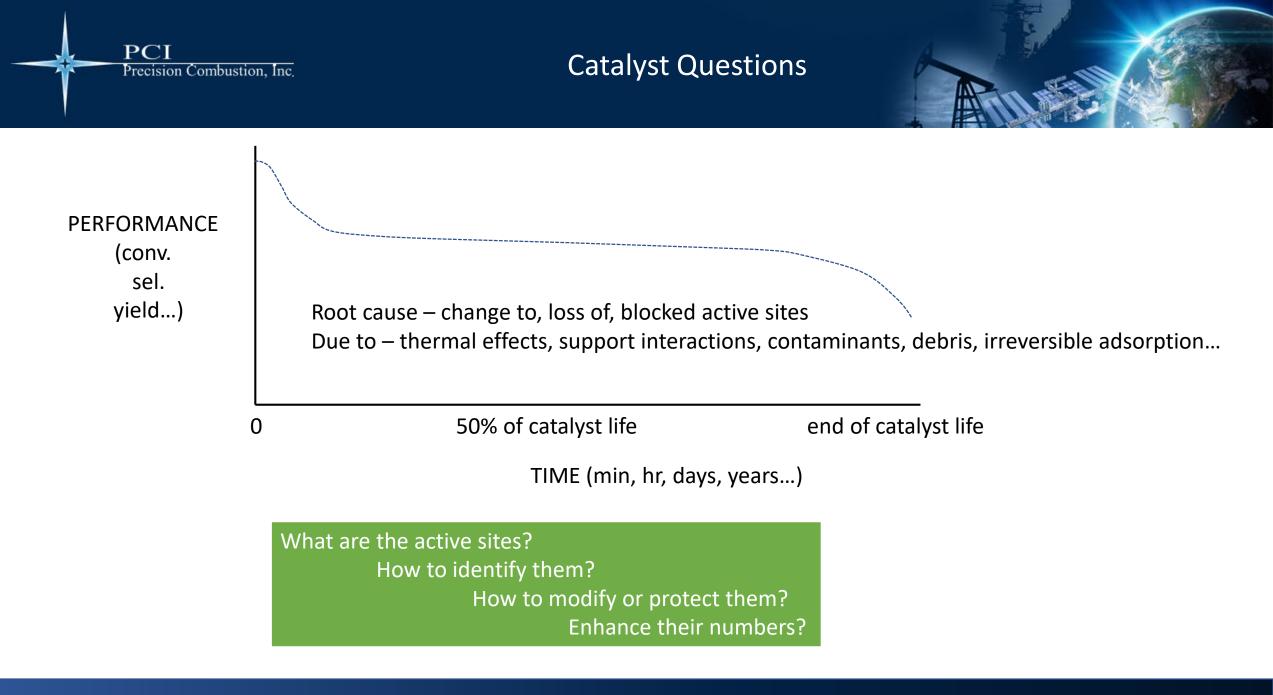
PCI Core Competencies

Low volume manufacturing Prototype/product manufacture Established supply chain Automated catalyst manufacture

Catalytic reactor/system design/testing New applications/reactor designs Advanced system/reactor modeling Product development

<u>Catalyst design and coating</u> Materials analysis & processing Substrate design & specification Catalyst formulation, prep, coating





Innovative design

Systems approach

• C-O bond breaking (electrolysis)

Precision Combustion, Inc.

- application CO2 utilization
 - product CO
- C-H bond formation

PCI

- application CO2 utilization
 - also, H2 generation (HT/LT electrolysis)
- product CH4 mostly
- C-C bond formation
 - application CH4 utilization (and CO2 valorization)
 - rational Petroleum/crude oil replacements
 - FT high pressure, challenging to scale
 - alcohol synthesis high pressure, low yields
 - Desired low pressure high yield process

Shale / Natural Gas to Liquids Currently No Good Options

- Indirect processes (w/intermediate product separations) large, energy intensive
 - Methane-steam reforming WGS Fischer Tropsch
 - Methane-steam reforming WGS methanol synthesis methanolto-gasoline
- Direct processes low efficiency, not viable
- Oxidative Coupling of Methane $(2CH_4 + O_2 \rightarrow C_2H_4 + 2H_2O)$
 - Heat of reaction drives combustion
 - Trade-offs between CH₄ conv. and C₂H₄ selectivity limits C₂H₄ yield to < 28 %
 - At current and projected NG and $\rm C_2H_4$ wholesale values, 28 % is not economic
 - est. 35-40% C2⁺ yield for commercially viable process
 - similar Oxidative Dehydrogenation of Ethane
 DOE SBIR Phase I/II/IIA + I/II

$$CH_4 \rightarrow SelOx \rightarrow CH_3OH \rightarrow MTG \rightarrow gasoline$$

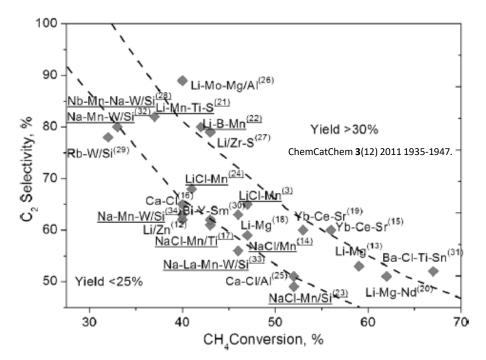
air / $O_2 \rightarrow H_2O$

$$CH_4 \rightarrow direct SelOx \rightarrow gasoline$$

air / $O_2 \rightarrow H_2O$

$$CH_4 \rightarrow ODH - C_2H_4 \rightarrow MOG \rightarrow gasoline$$

air / $O_2 \rightarrow H_2O$

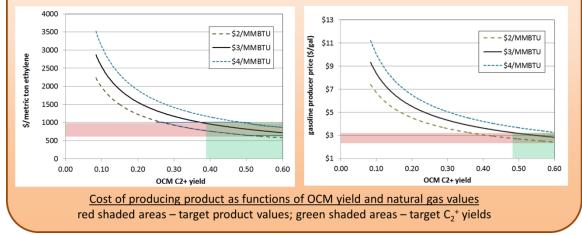

- Multi-step reaction proceeding through CH₃ radical intermediate
 - elementary steps may be both gas- or surface-phase
 - basic (non-acidic) catalysts work best
 - Overall: $CH_4 + \frac{1}{2}O_2 \rightarrow \frac{1}{2}C_2H_4 + H_2O (\Delta H^{\circ}_{rxn} = -141 \text{ kJ/mol})$
 - $CH_4 \rightarrow CH_3 + H \cdot (surface reaction rate limiting step)$
 - $2CH_3 \rightarrow C_2H_6$ (gas-phase)

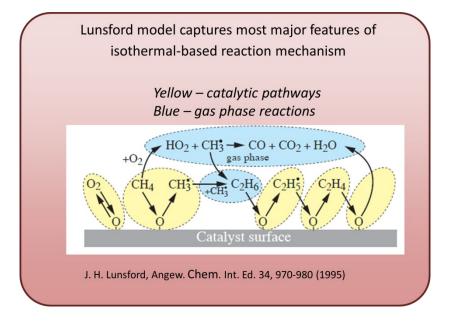
Precision Combustion, Inc.

- $C_2H_6 \rightarrow C_2H_5^* + H \cdot (surface)$
- $C_2H_5^* \rightarrow C_2H_4 + H \cdot (gas-phase)$
- $2H + \frac{1}{2}O_2 \rightarrow H_2O$ (gas phase)
- Major side reactions

PCI

- C_2H_4 combustion to $CO_2 + H_2O$ ($\Delta H^{\circ}_{rxn} = -1323$ kJ/mol)
- CH_4 combustion to $CO_2 + H_2O$ ($\Delta H^{\circ}_{rxn} = -803$ kJ/mol)
- CH_4 partial oxidation to CO + H_2 (ΔH°_{rxn} = -36 kJ/mol)
- Side reactions catalyzed by:
 - metals including catalytic metals and materials of construction
 - acidic ceramics including catalyst supports, substrates, and materials


Plot represents synthesis of data over wide range of reactor types and operating conditions



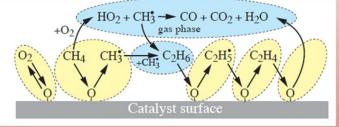
Perspectives on OCM (and ODH)

Process Economics

- Value of products depends on C₂H₄ yield and natural gas cost
- Cost model accounts for all major process steps:
 - OCM, cracking, separation, olefin processing, etc.

 $\begin{array}{l} \mathsf{OCM}:\mathsf{2CH}_4+\mathsf{O}_2 \rightarrow \mathsf{C}_2\mathsf{H}_4+\mathsf{2H}_2\mathsf{O} \\ \mathsf{ODH}:\mathsf{C}_2\mathsf{H}_6+{}^{\prime}\!{}_2\mathsf{O}_2 \rightarrow \mathsf{C}_2\mathsf{H}_4+\mathsf{H}_2\mathsf{O} \end{array}$

MUTIPLE SURFACE REACTIONS UNKNOWN: TOF's ACTIVE SITE(S) ID



Reaction Mechanism / Implications

GAS-PHASE REACTIONS				
1.	$CH_4 + O_2 \leftrightarrow CH_3^* + HO_2^*$	21.	$C_2H_5^* + M \leftrightarrow C_2H_4 + H^* + M$	
2.	$CH_4 + H^* \leftrightarrow CH_3^* + H_2$	22.	$C_2H_5^* + O_2 \leftrightarrow C_2H_4 + HO_2^*$	
3.	$CH_4 + O^* \leftrightarrow CH_3^* + OH^*$	23.	$C_2H_4 + O_2 + M \leftrightarrow C_2H_3^* + HO_2^* + M$	
4.	$CH_4 + OH^* \leftrightarrow CH_3^* + H_2O$	24.	$C_2H_4 + H^* \leftrightarrow C_2H_3^* + H_2$	
5.	$CH_4 + HO_2^* \leftrightarrow CH_3^* + H_2O_2$	25.	$C_2H_4 + OH^* \leftrightarrow C_2H_3^* + H_2O$	
6.	$CH_3^* + O_2 \leftrightarrow CH_3O^* + O^*$	26.	$C_2H_4 + CH_3^* \leftrightarrow C_2H_3^* + CH_4$	
7.	$CH_3^* + O_2 \leftrightarrow CH_2O + OH^*$	27.	$C_2H_4 + OH^* \leftrightarrow CH_3^* + CH_2O$	
8.	$CH_3^* + HO_2^* \leftrightarrow CH_3O^* + OH^*$	28.	$C_2H_3^* + M \leftrightarrow C_2H_2 + H^* + M$	
9.	$CH_3^* + CH_3^* + M \leftrightarrow C_2H_6 + M$	29.	$C_2H_3^* + O_2 \leftrightarrow C_2H_2 + HO_2^*$	
10.	$CH_3O^* + M \leftrightarrow CH_2O + H^* + M$	30.	$C_2H_3^* + O_2 \leftrightarrow CH_2O + HCO^*$	
11.	$CH_2O + OH^* \leftrightarrow HCO^* + H_2O$	31.	$C_2H_5^* + CH_3^* \leftrightarrow C_3H_8$	
12.	$CH_2O + HO_2^* \leftrightarrow HCO^* + H_2O_2$	32.	$C_3H_8 + H^* \leftrightarrow C_3H_7 + H_2$	
13.	$CH_2O + CH_3^* \leftrightarrow HCO^* + CH_4$	33.	$C_2H_4 + CH_3^* \leftrightarrow C_3H_7^*$	
14.	$HCO^* + M \leftrightarrow CO + H^* + M$	34.	$C_{3}H_{7}^{*} \leftrightarrow C_{3}H_{6} + H^{*}$	
15.	$HCO^* + O_2 \leftrightarrow CO + HO_2^*$	35.	$O_2 + H^* \leftrightarrow OH^* + O^*$	
16.	$CO + HO_2^* \leftrightarrow CO_2 + OH^*$	36.	$O_2 + H^* + M \leftrightarrow HO_2^* + M$	
17.	$C_2H_6 + H^* \leftrightarrow C_2H_5^* + H_2$	37.	$HO_2^* + HO_2^* \leftrightarrow O_2 + OH^* + OH^*$	
18.	$C_2H_6 + OH^* \leftrightarrow C_2H_5^* + H_2O$	38.	$H_2O_2 + M \leftrightarrow OH^* + OH^* + M$	
19.	$C_2H_6 + CH_3^* \leftrightarrow C_2H_5^* + CH_4$	39.	$C_2H_6 \leftrightarrow C_2H_5^* + H^*$	
20.	$C_2H_5^* + HO_2^* \leftrightarrow CH_3^* + CH_2O + OH^*$			

SURFACE REACTIONS				
S40.	$O_2 + X(s) + X(s) \rightarrow O(s) + O(s)$	S54.	$CH_3O(s) + O(s) \rightarrow CH_2O(s) + OH(s)$	
S41.	$O(s) + O(s) \rightarrow O_2 + X(s) + X(s)$	S55.	$CH_2O(s) + OH(s) \rightarrow CH_3O(s) + O(s)$	
S42.	$CH_4 + O(s) \rightarrow CH_3^* + OH(s)$	S56.	$CH_2O(s) + O(s) \rightarrow CHO(s) + OH(s)$	
S43.	$CH_3^* + OH(s) \rightarrow CH_4 + O(s)$	S57.	$CHO(s) + OH(s) \rightarrow CH_2O(s) + O(s)$	
S44.	$C_2H_4 + O(s) \rightarrow C_2H_3^* + OH(s)$	S58.	$CHO(s) + O(s) \rightarrow CO(s) + OH(s)$	
S45.	$C_2H_3^* + OH(s) \rightarrow C_2H_4 + O(s)$	S59.	$CO(s) + OH(s) \rightarrow CHO(s) + O(s)$	
S46.	$C_2H_6 + O(s) \rightarrow C_2H_5^* + OH(s)$	S60.	$CO(s) + O(s) \rightarrow CO_2(s) + X(s)$	
S47.	$C_2H_5^* + OH(s) \rightarrow C_2H_6 + O(s)$	S61.	$CO_2(s) + X(s) \rightarrow CO(s) + O(s)$	
S48.	$2OH(s) \rightarrow H_2O(s) + O(s)$	S62.	$CO + X(s) \rightarrow CO(s)$	
S49.	$H_2O(s) + O(s) \rightarrow 2OH(s)$	S63.	$CO(s) \rightarrow CO + X(s)$	
S50.	$H_2O(s) \rightarrow H_2O + X(s)$	S64.	$CO_2 + X(s) \rightarrow CO_2(s)$	
S51.	$H_2O + X(s) \rightarrow H_2O(s)$	S65.	$CO_2(s) \rightarrow CO_2 + X(s)$	
S52.	$CH_3^* + O(s) \rightarrow CH_3O(s)$	S66.	$4HO_2^* \rightarrow 3O_2 + 2H_2O$	
S53.	$CH_3O(s) \rightarrow CH_3^* + O(s)$			

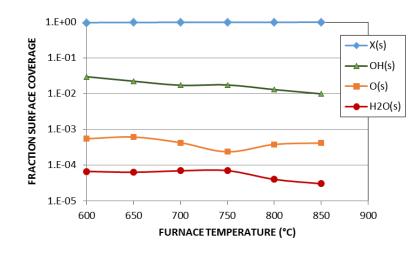
M represents third body interactions X(s) is generic catalytic surface site * denotes gas-phase free radical Lunsford model captures most major features of isothermal-based reaction mechanism Yellow – catalytic pathways Blue – gas phase reactions

J. H. Lunsford, Angew. Chem. Int. Ed. 34, 970-980 (1995)

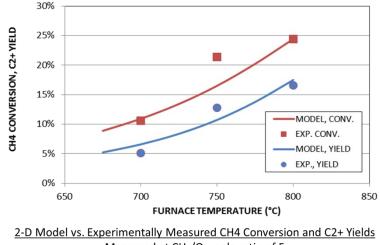
Modeled using 'mean-field approximation,'

- surface reactions on identical uniformly distributed sites

see: "A detailed reaction mechanism for oxidative coupling of methane over Mn/Na₂WO₄/SiO₂ catalysts for non-isothermal conditions," C. Karakaya, H. Zhu, C. Loebick, J. G. Weissman and R. J. Kee, Catalysis Today 312, 10-22 (2018).



Modeling Results



Goals:

- Reactive CFD modeling to optimize reactor design
- Determine process conditions to enable economic C₂H₄ yields from OCM (and ODH)

<u>Catalyst Active Site Coverage as Function of Temperature</u> – at CH_4/O_2 5:1 Most surface sites are not covered by reactive species Only important reactive surface species are O, OH, and H_2O

Measured at CH_4/O_2 mole ratio of 5

Acknowledgement: This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Award Numbers DE-SC0011353 and DE-SC0019711