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What is “machine learning”?

”Underfitting”
(Machine guessing)

”Overfitting”
(Machine memorizing)

Optimal complexity
(Machine learning)

Machine learning is the quantitative optimization of model complexity 
based on large amounts of observed data.



Naive applications of machine learning 
models are likely to fail in catalysis

Catalysis data
Machine 
learning 
models

Catalyst 
predictions

Small diverse 
datasets with 

large uncertainty

Models with 
millions of 

parameters and 
no physics

Magical 
discovery of new 

materials and 
processes

Large volumes of 
data from a 
consistent source 
are ideal for 
machine learning

A. J. Medford, M. R. Kunz, S. M. Ewing, T. Borders, and R. Fushimi, ACS Catalysis, vol. 8, no. 8, pp. 7403–7429, Jun. 2018.



Catalysis data has unique challenges

• Process-Structure-Property paradigm fails for catalysis
• Same material responds differently depending on environment

• Catalysis involves interaction of molecules + materials
• Intersection of cheminformatics and materials informatics

• Catalysis is a dynamic phenomenon
• Catalysts alter their environment, which can induce structure changes

• Catalytic active sites are often ”rare” defects
• Catalytic activity can be sensitive to unknown or unquantified impurities

• Chemical environment data 
(cheminformatics)

• Chemical potentials, molecular 
structures, etc.

• Reaction kinetics data
• Reaction rates, activation 

barriers, etc.
• Surface science data

• Oxidation state, adsorption 
energies, etc.

• Bulk materials data 
(materials informatics)

• Material stability, composition, 
structure, etc.

A. J. Medford, M. R. Kunz, S. M. Ewing, T. Borders, and R. Fushimi, ACS Catalysis, vol. 8, no. 8, pp. 7403–7429, Jun. 2018.



The chemical master equation 
quantifies catalysis knowledge

• Chemical master equation 
= knowledge

• Active site(s)
• Reaction mechanism(s)

• Data science and machine 
learning extract 
knowledge from data

A. J. Medford, M. R. Kunz, S. M. Ewing, T. Borders, and R. Fushimi, ACS Catalysis, vol. 8, no. 8, pp. 7403–7429, Jun. 2018.



Machine learning for catalysis optimizes 
complexity of reaction model

Mechanism is too simple:
Data not fully explained

Mechanism is too complex:
Model doesn’t work at 

other conditions

Mechanism correct:
Data is explained and 
model works at other 

conditions

Identifying (micro-)kinetic models with optimal complexity can facilitate 
robust process models that enable optimization of process conditions



A variety of techniques and data are 
needed for atomic-scale knowledge

• Boundaries between data/info/knowledge are fuzzy
• Derived data, TPR, etc.

• Knowledge extraction is a dynamic process
• Design of experiments/calculations
• Model refinement

A.J. Medford, R. Kunz, S. Ewing, T. Borders, R. Fushimi. ACS Catalysis - submitted



Catalysis “knowledge engines” seek 
to extract knowledge from data

• Catalysis “knowledge engines” were 
first proposed by Caruthers et. al. in 
2004

• Combine high-throughput 
experimentation with model fitting

• Recent advances improve feasibility
• computational catalysis
• machine learning
• open-source development
• data infrastructure

• Dynamic catalysis provides new 
opportunities for top-down kinetics

J. M. Caruthers, J. A. Lauterbach, K. T. Thomson, V. Venkatasubramanian, et. al., Journal of Catalysis, vol. 216, no. 1–2, pp. 98–109, May 2003.
A.J. Medford, R. Kunz, S. Ewing, T. Borders, R. Fushimi. ACS Catalysis - submitted



Dynamic catalysis provides large, consistent 
kinetic datasets for real catalysts

• TAP pulses are ~1s
• Compare to hours for steady-

state
• TAP pulses probe multiple rate 

constants
• Only rate-limiting step for steady-

state
• All measurements can be 

performed on a single sample
• Steady state often requires re-

starting with new samples
• TAP experiments work with real 

catalysts
• Surface science typically requires 

single crystals

E. A. Redekop, G. S. Yablonsky, D. Constales, P. A. Ramachandran, C. Pherigo, and J. T. Gleaves, Chemical Engineering Science, 66, 24, 6441–6452, 2011.



Physics-based models facilitate 
learning of micro-kinetic models

• “TAPSolver” code 
developed in 
collaboration with INL

• Enables simulation of 
TAP reactor with micro-
kinetic models

• Use of “automatic 
differentiation” enables 
efficient optimization

• Similar to techniques 
used by TensorFlow, etc.



Dynamic catalysis data can be coupled 
with physics-based “learning” models

TAP data Differentiable 
TAP simulator

Catalyst 
knowledge

Large consistent 
dataset

Parameters of 
model are rate 

constants

Intrinsic kinetic 
information

Example: Fitting TAP curve 
for CO oxidation on 
supported Pt particles



Statistical approaches can also provide 
kinetic insight through correlations
• “Rate Reactivity Model” uses 

correlations in transient 
concentrations.

• Co-linearity can be removed with 
penalties (LASSO/SCAD)

• Correlation structure provides insight 
into mechanism

• Results are related to Jacobian of rate 
with respect to concentration.

• Can be directly related to rate constants 
for simple cases

• Provide initial guesses for rate constants

G. S. Yablonsky, E. A. Redekop, D. Constales, J. T. Gleaves, and G. B. Marin, International Journal of Chemical Kinetics, vol. 48, no. 6, pp. 304–317, Mar. 2016.
Kunz et al, Fused Lasso and Tensor Covariance Learning with Robust Estimation. 2018



Rapid response time of TAP can enable 
adaptive approaches

• Automated mechanism analysis
• Modify pulse composition/frequency to distinguish between 

ambiguous mechanisms

• Automated condition optimization
• Modify pulse composition/frequency to search for active/selective 

catalyst regions

• Need to couple with search/optimization algorithms
• Integration with mechanism/kinetic model generation

Concentrations 
& Rates

RRM parameter 
estimates

TAP pulse 
controller

Validate/refine 
with TAPSolver

Identify Ill-defined 
parameters

Identify crucial 
reactant pulse
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