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Catalysis Research Paradigm
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Molecular Beam Scattering vs. TAP

1 active site receives 
1000 collisions

Knudsen Diffusion

Single crystals
Detailed, intrinsic kinetics

Real catalysts
Detailed, intrinsic kinetics

Schuurman, Y., (2007) Catal. Tod. 121 p187
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Temporal Analysis of Products (TAP)
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Inert, reactant & 
product pulse 
response

Distinguishing Features:

- Low pulse intensity 10 nmols
- Well-defined Knudsen transport
- Isothermal operation even for 
highly exothermic reactions

- Pulse-by-pulse, controlled 
titration of materials

- Separation of reactant inputs and 
product detection with high time 
resolution

Gleaves, J.T., et al. (1988) Catal. Rev. Sci. and 
Eng. 30(1), pp.49-116.
Morgan, K., et al. (2017) Catal. Sci. & Tech. 7(12), 
pp.2416-2439.



Temporal Analysis of Products (TAP)

• A low-pressure pulse response technique

– Understanding how catalysts work based on chemical 
response to pressure transients

• Rate constants of elementary reaction steps

• Incremental titration (chemical calculus) enables 
observation of material evolution

• Development of detailed microkinetic models

Fushimi, R., et al. (2008) Topics in Catal. 49(3-4), 167-177.

Shekhtman, S. O., (2003) Chem. Eng. Sci., 58(21), 4843-4859.
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Advances in Transient Data Analysis
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Experimental Data
Exit flux (volts vs. time)
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The exit flux contains 
transport and kinetic 

information

Preprocessing and 
Y-Procedure 

Analysis

3D Kinetic Mapping

High-throughput kinetic analysis

Prior Art:
- Moment-based analysis
- Curve fitting

Reaction rates,
Rate constants,

Numbers of active 
sites,

Activation energies,
Surface residence 

time,
Mechanism

Y-Procedure

Exit Flux →
Time-dependence Rate and Concentration

Yablonsky, G.S., et al., (2007) Chem. Eng. Sci., 62(23), 6754-6767.
Redekop, E.A., et al., (2011) Chem. Eng. Sci., 66(24), 6441-6452.
Kunz, M.R., et al., (2018) Chem. Eng. Sci., 192, 46-60.
Wang, Y., et al., (2019) J. Phys. Chem. A, 123, 8717.



Advances in Measurement
• Distinguishing active sites from a mixture
• Resolution of short-lived surface species
• Quantification of surface-to-bulk transport
• Distinguishing gas phase from gas/surface kinetics
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Oxidative Coupling of Methane Reaction

Karakaya, C., et al., 2018. Catalysis Today, 312, pp.10-22.

• Complex catalyst
– Mn2O3/Na2WO4/SiO2

• Aggressive environment, 850 °C
• Complex reaction mechanism

– Both surface and gas phase reactions

U. Zavyalova, et al., 2011. ChemCatChem, 3, pp.1935-1947.

• C2 Yield is a key challenge 



Reversible Adsorption of Oxygen
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Finite surface 
lifetime

Isotopic studies distinguish different forms of oxygen with distinct surface lifetimes
Time scale < 1s

2%Mn/Na2WO4/SiO2



Reactive Oxygen Species – Surface Lifetime
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TAP Pump/Probe Experiment at reaction temperature, 750 °C

16O2 Pump
18O2 Probe

Dioxo species (O2
2-, O2

-)   

Monoxo species (O-)   
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time delay

Amount and surface lifetime of different oxygen species 
changes with catalyst composition, %Mn



Reactive Oxygen Species – Kinetic Role
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Dioxo species (O2
2-, O2

-) => CO2 formation   

Monoxo species (O-)  => C2H4 formation 

16O2/13CH4 Pump/Probe

• Short-lived surface intermediates and their role 
in product formation can be studied

• Not observable under steady-state
• Need link to composition/structure
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Reactive Oxygen Species – Structural Information
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Sourav, S., Kiani, D., Baltrusaitis, J. Fushimi, R., Wachs, I., Determination of 
catalytic active site for oxidative coupling of methane over supported Mn2O3-
Na2WO4/SiO2 catalysts.  17th International Congress on Catalysis, San Diego, 
CA, June 14 – 19, 2020 

Catalyst is changes dramatically with temperature.



Operando Spectroscopy State of the Art
Operando Spectroscopy

 Structural features, operating environment
 Changes due to reaction, e.g. effects of moisture
 Switch between oxidation/reduction
 Poor reactor design

 Bypassing, readosorption, temperature 
gradients, holdup, complex hydrodynamics

 Low time-resolution (seconds)
 Coarse kinetic data

 Improved time-resolution of FT instruments
 Inadequate switching time (milliseconds)
 Large switching volumes (microliters)
 No theory for mechanistic analysis
 Coarse kinetic data
 Only qualitative structure/kinetics link 

hereto now

Modulation Excitation

Harrick Praying 
Mantis

Linkam CCR1000 



Transient Spectrokinetic Reactor Concept
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TAP (Temporal Analysis of Products) Pulse Response + Spectroscopic Probe

 Detailed, quantitative intrinsic kinetic information
 Well-developed theoretical tools for mechanism analysis
 High time resolution (milliseconds)
 Well-defined transport

Isothermal, far from equilibrium, well-mixed
 Fast (µs), precise dosing control (10 nmols) for superior modulation

Risks:
 Low spectral signal intensity (10 nmols)

 Dispersive spectra collection mode
 Higher pulse intensities

Directly addressing the materials structure/activity knowledge gap:
How do specific structural features control complex reaction mechanisms?



New Spectrokinetic Collaboration
• Mithra Technologies, SBIR Phase I Award

– Developing a fast gas delivery system for transient spectroscopic 
measurements

• BNL, NAP backfilling lab-scale XPS
• INL, Performance validation using TAP system
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First-generation capillary gas 
delivery prototype developed by 

Mithra Technologies SPECS NAP-XPS system including
Bruker Vertex 80V for IRRAS
measurement at BNL.



Conclusion
• Dynamic Catalyst Science

– TAP pulse response experiments 
• Complex industrial catalysts
• Decoupling of transport and kinetics
• Detailed kinetic information

– Oxidative Coupling of Methane
• Measurement surface lifetime of short-lived oxygen species
• Role in CO2 versus C2 selectivity

– Operando tools
• Need higher time-resolution
• Coupled to detailed kinetic information, Spectrokinetic
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