Structure/Kinetics of Complex, Industrial Catalysts

DOE/EERE/AMO Industry Roundtable on Dynamic Catalyst Science

February 26, 2020, Houston, TX

Rebecca R. Fushimi

www.inl.gov

Catalysis Research Paradigm

Molecular Beam Scattering vs. TAP

Single crystals Detailed, intrinsic kinetics

Temporal Analysis of Products - TAP experiment

Real catalysts Detailed, intrinsic kinetics Knudsen Diffusion

1 active site receives 1000 collisions

Schuurman, Y., (2007) Catal. Tod. 121 p187 ³

Temporal Analysis of Products (TAP)

Distinguishing Features:

- Low pulse intensity 10 nmols
- Well-defined Knudsen transport
- Isothermal operation even for highly exothermic reactions
- Pulse-by-pulse, controlled titration of materials
- Separation of reactant inputs and product detection with high time resolution

Gleaves, J.T., *et al.* (1988) *Catal. Rev. Sci. and Eng. 30*(1), pp.49-116. Morgan, K., *et al.* (2017) *Catal. Sci. & Tech. 7*(12), pp.2416-2439.

Temporal Analysis of Products (TAP)

- A low-pressure pulse response technique
 - Understanding how catalysts work based on chemical response to pressure transients
 - Rate constants of elementary reaction steps
 - Incremental titration (chemical calculus) enables observation of material evolution
 - Development of detailed microkinetic models

Fushimi, R., et al. (2008) Topics in Catal. 49(3-4), 167-177.

Shekhtman, S. O., (2003) Chem. Eng. Sci., 58(21), 4843-4859.

Advances in Transient Data Analysis

- Curve fitting

Time-dependence Rate and Concentration

6

Advances in Measurement

- Distinguishing active sites from a mixture
- Resolution of short-lived surface species
- Quantification of surface-to-bulk transport
- Distinguishing gas phase from gas/surface kinetics

Oxidative Coupling of Methane Reaction

Karakaya, C., et al., 2018. Catalysis Today, 312, pp.10-22.

- Complex catalyst
 - Mn₂O₃/Na₂WO₄/SiO₂
- Aggressive environment, 850 °C
- Complex reaction mechanism
 - Both surface and gas phase reactions

C₂ Yield is a key challenge

Reversible Adsorption of Oxygen

Time scale < 1s

Isotopic studies distinguish different forms of oxygen with distinct surface lifetimes

Reactive Oxygen Species – Surface Lifetime

TAP Pump/Probe Experiment at reaction temperature, 750 °C

Amount and surface lifetime of different oxygen species changes with catalyst composition, %Mn

Reactive Oxygen Species – Kinetic Role

¹⁶O₂/¹³CH₄ Pump/Probe

Dioxo species $(O_2^{2-}, O_2^{-}) \Rightarrow CO_2$ formation

Monoxo species (O⁻) => C_2H_4 formation

- Short-lived surface intermediates and their role in product formation can be studied
- Not observable under steady-state
- Need link to composition/structure

Reactive Oxygen Species – Structural Information

Catalyst is changes dramatically with temperature.

Sourav, S., Kiani, D., Baltrusaitis, J. Fushimi, R., Wachs, I., *Determination of catalytic active site for oxidative coupling of methane over supported* Mn_2O_3 - Na_2WO_4/SiO_2 catalysts. 17th International Congress on Catalysis, San Diego, CA, June 14 – 19, 2020

Operando Spectroscopy State of the Art

Operando Spectroscopy

Harrick Praying Mantis

Linkam CCR1000

- ✓ Structural features, operating environment
- ✓ Changes due to reaction, e.g. effects of moisture
- Switch between oxidation/reduction
- Poor reactor design
 - Bypassing, readosorption, temperature gradients, holdup, complex hydrodynamics
- Low time-resolution (seconds)
- Coarse kinetic data

Modulation Excitation

- ✓ Improved time-resolution of FT instruments
- Inadequate switching time (milliseconds)
- Large switching volumes (microliters)
- No theory for mechanistic analysis
- Coarse kinetic data
- Only qualitative structure/kinetics link hereto now

Transient Spectrokinetic Reactor Concept

TAP (Temporal Analysis of Products) Pulse Response + Spectroscopic Probe
Directly addressing the materials **structure/activity** knowledge gap:
How do specific structural features control complex reaction mechanisms?

- ✓ Detailed, quantitative *intrinsic* kinetic information
- ✓ Well-developed theoretical tools for mechanism analysis
- High time resolution (milliseconds)
- ✓ Well-defined transport

Isothermal, far from equilibrium, well-mixed

✓ Fast (μ s), precise dosing control (10 nmols) for superior modulation

Risks:

- Low spectral signal intensity (10 nmols)
 - ✓ Dispersive spectra collection mode
 - ✓ Higher pulse intensities

New Spectrokinetic Collaboration

- Mithra Technologies, SBIR Phase I Award
 - Developing a fast gas delivery system for transient spectroscopic measurements
- BNL, NAP backfilling lab-scale XPS
- INL, Performance validation using TAP system

First-generation capillary gas delivery prototype developed by Mithra Technologies

SPECS NAP-XPS system including Bruker Vertex 80V for IRRAS measurement at BNL.

Conclusion

- Dynamic Catalyst Science
 - TAP pulse response experiments
 - Complex industrial catalysts
 - Decoupling of transport and kinetics
 - Detailed kinetic information
 - Oxidative Coupling of Methane
 - Measurement surface lifetime of short-lived oxygen species
 - Role in CO₂ versus C₂ selectivity
 - Operando tools
 - Need higher time-resolution
 - Coupled to detailed kinetic information, Spectrokinetic

Acknowledgements

- Idaho National Labs
 - Yixiao Wang
 - Ross Kunz
 - Zongtang Fang
 - Rakesh Batchu
 - Jim Pittman
 - Brooklyne Thompson
- Georgia Tech
 - A.J. Medford
 - Adam Yonge
- Wayne State University
 - Eranda Nikolla
 - Binweng Wang

Collaborators

- John Gleaves (Washington University in Saint Louis)
- Gregory Yablonsky (Washington University in Saint Louis)
- Denis Constales (Ghent University, Belgium)
- Alessandro Fortunelli (University of Pisa)
- Jian Qian (Caltech)
- William A. Goddard (Caltech)

Funding:

U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office Next Generation R&D Projects under contract no. DE-AC07-05ID14517.

Idaho National Laboratory