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Introduction

e Recycling Alternatives for Municipal Plastic Waste
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Chemical Recycling of Waste Plastic: Technologies
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Conversion: a thermal process involving breaking bonds in the polymer to
produce liquid and gaseous products such as fuels and petrochemicals.

ical, chemical, or thermal process involving selective
polymer to produce monomers.

ss involving dissolving plastics in solvents to remove
es prior to separating pure resin.

Accelerating Circular Supply Chains for Plastics: A Landscape of Transformational Technologies. Closed Loop Partners, 2019
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LCA Results for Mechanical Recycling: PET, HDPE, PP
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Figure 3-1. Total Energy Results for Recycled and Vu'gm Resins (MJ/kg)

LIFE CYCLE IMPACTS FOR POSTCONSUMER RECYCLED RESINS; PET, HDPE, PP, FRANKLIN AND ASSOCIATES DIVISION OF ERG, DEC 2018
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LCA Results for Mechanical Recycling: PET, HDPE, PP
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Figure 3-3. Water Consumption Results for Recycled and Virgin Resins
(liters water/kg resin)

LIFE CYCLE IMPACTS FOR POSTCONSUMER RECYCLED RESINS; PET, HDPE, PP, FRANKLIN AND ASSOCIATES DIVISION OF ERG, DEC 2018
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LCA Results for Mechanical Recycling: PET, HDPE, PP
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Figure 3-6. Global Warming Potential Results for Recycled and Virgin Resins
(kg CO2 eq/kg resin)
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LCA Results for Chemical Recycling: HDPE
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Case Study: Sustainability Assessment - Thermal
Conversion of Waste HDPE

Research Objectives

e Design and simulation a multi-product refinery process for
conversion of waste High Density Polyethylene using pyrolysis.

* Evaluate the energy requirements of the refinery (Energy returned
over energy invested).

e Evaluate the environmental performance of the refinery products
(kg CO, eq./kg of product).

* Evaluate the of the project (Net present value).
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Materials and Methods
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Conceptual
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Pyrolysis experiments performed at 650 °C and 2.8 s of residence
time, in a two-stage micropyrolysis reactor (Gracida-Alvarez et al.,
2018).

Modeled with aid of the software Aspen Plus v.8.8. Operating
conditions obtained from literature from similar petrochemical
processes.

Calculation of the Energy Returned over Energy Invested (EROI)
indicator.

Use of Life Cycle Assessment (LCA) with aid of the software
Simapro v.8.5.0. Inventory of inputs obtained from the process
simulation.

Calculation of the Net Present Value (NPV) considering five
products. Costs and prices obtained from Aspen Plus and
literature.

Gracida-Alvarez U. et al. (2018) Industrial & Engineering Chemistry Research, 57: 1912-1923




Results — Micro-pyrolysis experiments

 Composition of the two-stage micro-pyrolysis reactor outlet
(650 °C & 2.8s vapor residence time)

___________________

1.2E+09 -

. | 256408 AKE C11
Chemical class Mass o o i
percentage o 80608 | 13 Ere
Hydrocarbon gases (C1-C4) 68.63 £ o0e08 e T -
< 4.0E+08 - e l l ciz 26
Gasoline range hydrocarbons (C5-C10) 20.68 L Cs v v a8
0.0E+00 -
. 0 10 20 30 40 50 60 70
Diesel range hydrocarbons (C11-C15) 3.14 Retention time (min)
Light waxes (C16-C20) 1.34
650
Heavy waxes (C21-C29) 0.75 80% -
e T ¢ o ace
Aromatics 5.46 0% 1 o510
50% 1 —o—C11C15
. . . 40% 1 —=—C16C20
A total of 86 compounds were used in the simulation s 2125
20% A [ 3 3 — = C26-C31
10% - o - — —— Aromatics
Process Temperature range: -140 °C to 1200 °C o L
Process Pressure range: 0.5 to 25 bar Vapor Residence Time (s)

Processing Capacity: 500 tonnes/day (20.83 tonnes/hr)
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Results — Conceptual design

* Process Flow Diagram (PFD)
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TEA Results

Total Installed Costs (MM USD)
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Results — Environmental evaluation

; it ° i
* Functional unit: 1 kg of product General inventory
Basis: Processing of 20.83 tonnes of
e Scope: Cradle to gate HDPE (Plant capacity for 1 hr of
. . operation)
* Allocation: Mass allocation
* US grld electr|C|ty area input BC HI-1 HI2
Electricity Water Natural gas A-100 electricity (kWh 333.54 330.70 330.70
! ; ! y (
r-——=—=—"=—"7=———7= T = — — natural gas (GJ) 220 0.50 0.50
| . . purge combustion (G]J) 3.10 3.10 3.10
Waste HDPE I Collection | cooling water (m?') 3.95 1.44 L44
Diesel | 7 | Monomer —}—» Ethylene helium (kg) 0.04 0.04 0.04
| y Separation —}— Propylene A-200 electricity (kWh) 954.55 791.57 791.57
Diesel -y " HDPE separation | natural gas (GJ) 242 0.59 1.49
Natural gas | """ (MRF) | cooling water (m?) 7.37 5.75 5.75
Electricity - I """" i 4|> Aromatics mixture A-300 natural gas ((:J) 0.60 0.51 0.51
— Hydr.ocarbon — Aromat.lcs Sulfolane cooling water (m*) 0.79 0.63 0.63
| Y Mixture Extraction
. Water sulfolane (kg) 0.27 0.27 0.27
oty - Shrggg'(;gga”d | process water (kg) 0.17 0.17 0.17
I ) A-400 natural gas (GJ) 0.25 0.00 0.00
| Low MW HC mixture ooling water (m?) 0.09 0.09 0.09
. . Ci Imng water \m A Al LS
I v o Hvdrotreatment |1 High MW HC mixture ] & _
Helium s ydrotreatment | | | Hydrogen hydrogen (kg) 15.82 15.82 15.82
' FastPyrolysis — | g e Natural gas
I

MRF: Materials Recovery Facility

Note: Recycled inputs (Helium, sand, and

o _ _ _ refrigerants) were not considered in the
* Electricity generated in turbines is inventory.

utilized internall
y Fitzgerald G. et al. (2012) Resources, Conservation, and Recycling, 69: 50-56
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* Heat from Flue gas is utilized internally




LCA Results — Carbon

Gracida-Alvarez,
U.R., et al., ACS
Sustainable
Chemistry and
Engineering, DOI:
10.1021/acssusch
emeng.9b04764
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LCA Results — Regional Electricity

A SF

-

Grid Effects

OB O B B O &=

Monomers, aromatics, and fuels with more
than 25% reduction in GHG emissions
compared to fossil-derived production.

Monomers, aromatics, and fuels with less
GHG  emissions than fossil-derived
production.

Monomers, aromatics, and Low NWHCs
with less GHG emissions than fossil-derived
production.

Only monomers and aromatics with less
GHG emissions than fossil-derved
production.

Ethylene and aromatics with less GHG
emissions than fossil-derived production.

Only ethylene w ith less GHG emissions than
fossil-derived production.

Monomers, aromatics, and fuels with more
GHG emissions than fossil-derived
production.

Figure 9. Effect of state mixture composition on the GHG emissions of the refinery products. (A) Scenario HI-1 and (B) scenario HI-2.
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Systems Analysis Framework

Sustainability Assessments of Plastics in a Global Circular Economy

Model-based
approach I

M/E Balance I | Simulations Impact
(

Databases Software tools) Assessment NPV = net presentvalue.

* Materials flow

| — IRR = internal rate of return
analyses | Landfiling, . _ MSP = minimum selling price
D cecs " Incineration | »  LCA(SimaPro) -+ Environmental
c . : [
simulation : o : _ Sustainability
: aterials p :
: : . Indicators
* TEA models -+ Recovery . [ 'Processsimulation-
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: o : b - g
e Social LCA CRPIFS Recycllng ’ gggicoth;bEsconomics
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lzljlecy-:'.llng -y Research questions,
* Policy-driven o e : == New policies,
analyses _ Gmmaw trigger new analyses
/ Recycle/Reman. ,\
B
— o — 8
Shonnard, et al., 2019, Systems analysis for PET
and olefin polymers in a circular economy,
Procedia CIRP, 80, 602-606, 26th CIRP Life Cycle REMADE Project 18-01-SA-04

Engineering (LCE) Conference.
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Research issues and questions

A SFI

Will a plastics circular economy improve performance compared
to the current plastics linear economy
» environmental, economic, and societal impacts?

How would the prevalence of chemical versus mechanical
recycling versus incineration for energy affect system
performance?

If renewable (i.e. plant-derived) feedstocks increase vs fossil, what
affect would this have on system performance?

What could be the impacts of biodegradable plastics on system
performance?
» Including ocean debris effects

External effects beyond the plastics pathways

» Indirect economic multipliers
» Impacts to the petroleum, gas, and petrochemical industries

17
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Cumulative Plastic Production/Use Data

Production/Use

4% of petroleum (feedstocks)

4% of petroleum (process energy)
Additional inputs in Natural Gas
Non-fiber plastics (88%)

Packaging (39%) is largest
consumption sector (PE, PP, PET)
with the shortest in-use lifetime (<1

yr)

End of Life

Landfilling (79%)
Incineration (12%)
Recycled (9%)

A SFI

RRS, Ann Arbor, Ml, 2017

SECTOR CONSUMPTION* MATERIAL TYPE* PRODUCTION

IN USE/END OF LIFE*

8,300 MILLION METRIC TONS

Other Fiber PET Fiber  Other PUR PET e (2] PP HOPE
% 8% 4% ™% 9% 10% ™ 9% "% 18%

Consumer &  Electrical &

Other Textile Industrial

Building&  Packaging  Transport

12% 12% Machinery  Institutional  Electronic  Construction 39% 6%
1% 1% 4% %
LtTE. 5 YEARS 5 YEARS 20 YeS 1Y TR BSYBRS  OSYEMS 13 YEARS
Waste
'“iﬁ;ﬁ:‘;‘ Generation *Based on 2004-
. 5700 2015 data
**End of life and
in-use stock
mg;!: allocation is based
Incineration  Landfilled/ on RRS field
800(12%)  Environment knowledge and
4,900 (19%) assumptions.

23



Projections to 2050

* Cumulative plastic waste generation and disposal

[}
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e Health risk to aquatic and terrestrial life.
* Displacing primary plastic production.
* Use of emerging technologies.

2014 2025°"

Plastics Europe (2018) Plastics — the Facts 2017

Geyer R. et al. (2017) Science Advances, 3: €1700782
% S ’ World Economic Forum et al. (2016) The New Plastics Economy. Rethinking the future of plastics.
1885 F
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Linear vs Circular Economy for Plastics

Open-Loop Recycle Process
Closed-Loop Collected and

Recycling Losses Inci tion /
ncineration Recyclin
Energy Recovery yeling —— Processed for ——

Collected for Recycle

Closed-Loop
Recycling / Recycle/Reman. \
Production \ _/
and Use - —, Production ___,
8 million d U Energy
tons / year alGEuSe Recovery
. . marine
Linear Dominant Economy . Virgin Wastes Landfilled
debris Feedstock
eakage Circular Dominant Economy
(Litter)
* 80% of plastics is landfilled or lost to the environment. * Reduce the use of virgin materials.
* Economic losses between 80 to 120 billion USD/year. * Eliminate mismanagement and leakage.
* Consumption of virgin fossil resources. * Build up recycling infrastructure.

World Economic Forum et al. (2016) The New Plastics Economy. Rethinking the future of plastics.
Arena U. et al. (2011) Waste Management, 31, 1494-1504.
European Commission (2016) A European Strategy for Plastics in a Circular Economy.

Shonnard, D.R., Tipaldo, E., Thompson, V., Pearce, J., Caneba, G., Handler, R.M., 2019, Systems analysis for PET and olefin
polymers in a circular economy, Procedia CIRP, 26th CIRP Life Cycle Engineering (LCE) Conference.




Linear Economy: Production Inputs

Open-Loop Recycle Process
Recycling Losses

Incineration /
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Natural Gas Operations

A SFI




Circular economy: production inputs
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Conceptual Design —Mass and Energy Balances

Refinery Mass Balances

Refinery Energy Balances

Streams Energy Source A(‘gljc/);: :)t
Process Energy 223.03

INLET | Materials Energy 931.31
TOTAL 1154.35

Process Energy 180.78

OUTLET | Products Energy 966.43
TOTAL 1147.20

Streams Product ( tg::\(:;%r)
Waste HDPE 20.83
Helium 0.001
INLET Sulfolane 0.006
Water 0.004
Hydrogen 0.33
TOTAL 21.17
Flue gas purge 1.32
Ethylene 391
Propylene 2.80
OUTLET | Aromatic mixture 0.77
Low MW HC (C4-C12) 11.25
High MW HC (C12-C29) 1.12
TOTAL 21.17

A SFI

28



Conceptual Design - Results

Primary Energy

Refinery Products Specifications Requirements

Product Recovery (%) | Purity (%) 240 1 @ Electricity
Ethylene 89.51 97.22 ‘é 200 - | Natural gas
Propylene 99.70 97.85 2 160 {

Aromatics 57.15 84.27 g’f 10 |
mixture 23
Low MWHCs 56.10 97.74 5 80
High MWHCs 76.43 83.33 -;_Eu 40 A
Energy Returned over Invested (EROI) 07
Base Case (BC) 2.2 Refinery section

Heat Integrated (HI): 3.0
Petroleum Refining: 9

Primary Energy Savings

- BC: 35% reduction




TEA Methods

Parameters for Discounted
Cash Flow Analysis

Prices for Discounted
Cash Flow Analysis

Parameter Value
Internal rate of return (%) 10
Project economic life (years) 20
Depreciation method 7-year MACRS
Tax rate (%) 21
Working capital (WC) 15% FCI
Base year 2017
Operating days per year 350
Investment year 1 30% FCI
Investment year 2 50% FCI
Investment year 3 20% FCl + WC + FOC + 50%
VOC
Investment year 4 FOC +90% VOC
Investment year 5 FOC +VOC

Product Price
Waste HDPE (USD/tonne) 22.0
Electricity (USD/kWh) 0.069
Natural gas (USD/GJ) 3.95
Cooling water (USD/m3) 0.053
Hydrogen (USD/kg) 2.83
Helium (USD/kg) 42.81
Ethylene (USD/kg) 0.61
Propylene (USD/kg) 0.97
Aromatics mixture (USD/kg) 1.02
Low MWHC mixture (USD/kg) [ 0.86
High MWHC mixture 0.84
(USD/kg)
LP steam (USD/kg) 0.021

A SFI
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Results — Environmental evaluation

* Multi-product mass allocation

Purge Ethylene Propylene
1316 kg/hr 3909 kg/hr 2800 kg/hr
HDPE 17791 kg/h Heater + 13882 kg/h Heater + 3636 kg/h Heater +
20833 kg/h BLOCKA E:3909 kg/h Deethanizer | P:2800 kg/h Depropanizer | P: 2800 kg/h Depropylenizer
P:2800 kg/h A: 663 kg/h L:834kg/h
A: 663 kg/h L:10268 kg/h 10246 kg/h H: 2 kg/h
1727 kg/h L: 10268 kg/h H: 151 kg/h A: 663 kg/h

A: 156 kg/h H: 151 kg/h L:9434 kg/h 836 kg/h

L: 546 kg/h H: 150 kg/h L:83akg/h

H: 1025 kg/h H: 2 kg/h

¢ Water
21 I|<g/h
Heater + Debutanizer L .
Phase 736kg/h + 2900 kg/h : BlockB  ——p Aromatics
A: 156 kg/h . A:818 kg/h s 882 kg/hr
Separator Depentanizer r
L:340kg/h L: 1740 kg/h |
H: 240 kg/h H: 342 kg/h Sulfolane
142ke/h 5545 kg/h
H: 785 kg/h H: 48 kg/h
> Low MW Hydrocarbons
P Hydrotreater . 11170 kg/h
Hydrogen _ _ _ _ _ _ _ _ _ _ _ S I High MW Hydrocarbons
326kg/h 1307 kg/h

E: Ethylene product, P: Propylene product, A: Aromatics mixture product, L: Low MW HC mixture product, H: High MW HC mixture product

* Allocation was product-based, therefore, trace amounts of different chemical species included in a
particular product were also included on its allocation factors.

A SFI
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Results — Environmental evaluation

e Carbon Footprint: Process Sections
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