H₂@Ports Workshop

Japan's activity on hydrogen energy

10 September, 2019

Eiji Ohira

New Energy and Industrial Technology Development Organization (NEDO)

©NEDO

Policy: "Basic Hydrogen Strategy"

	Cu	rrent	2020	2025	2030	2050
Sul	,	larch 2019)			mational Supply Chains	
Supply	Doi	mestic H ₂	<u>(RD&D)</u>		: Power-to-ga	\rightarrow CO ₂ -free H ₂ s
Volume	(t/y) 2	200	4k		300k	5~10m
Cost (\$/	′kg) ́	~10			3	2
ສຸດ	Large Pov	ver Plant	(RI)&D)	>1 <mark>GW</mark> —	→ 15~30GW
Gene- ration De	FC CHP* *Primary ene	274k — rgy: natural gas.	1.4m		5.3m	→ Replace Old Systems
Demand	HRS	103 —	160	320	<u>(900)</u>	→ Replace Filling Stations
nd	FCV	3.0k —	40k	200k	8 <mark>00</mark> k	Replace
Mobility nd	FC Bus	18 —	100		<u>1.2k</u>	\rightarrow Conventional
	FC FL	160 —	500		10 k	Mobility
	Industry (Jse		(RD&D)	> Ex	kpand H ₂ Use

Source: Ministry of Economy, Trade and Industry

Strategic Roadmap for Hydrogen & Fuel Cells

		Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target
	Mobility	FCV 200k b y2025 800k by 2030	2025 Price difference between FCV and HV ($\$3m \rightarrow \$0.7m$) • Cost of main FCV system FC $\$20k/kW \rightarrow \$5k/kW$ Hydrogen Storage $\$0.7m \rightarrow \$0.3i$	 Regulatory reform and developing technology
Use		HRS 320 by 2025 900 by 2030	• Construction and operating costs (Construction cost $\pm 350m \rightarrow \pm 200m$) Operating cost $\pm 34m \rightarrow \pm 15m$	Extending hours of operation
	Ň	Bus 1,200 by 2030	 Costs of components for HRS Compressor ¥90m → ¥50r Accumulator¥50m → ¥10r Vehicle cost of FC bus (¥105m → ¥52.5m) Vehicle cost of FC bus (¥105m → ¥52.5m) In addition, promote development of guidelines and technology development for expansion ydrogen use in the field of FC trucks, ships and trains. 	 Increasing HRS for FC bus
	Power	Commercialize by 2030	 Efficiency of hydrogen power generation (26%→27%) %1MW scale 	 Developing of high efficiency combustor etc.
	FC	Early realization of grid parity	 Realization of grid parity in commercial and industrial use 	 Developing FC cell/stack technology
Supply	Fossil +CCS Fuel +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	 Production: Production cost from brown coal gasification (¥several hundred/Nm3→ ¥12/N Storage/Transport : Scale-up of Liquefied hydrogen tank (thousands m→50) Higher efficiency of Liquefaction (13.6kWh/kg→6k) 	 efficiency of brown coal gasifier Scaling-up and improving thermal insulation properties
	Green H2	System cost of water electrolysis ¥50,000/kW in future	 Cost of electrolyzer (¥200,000m/kW→¥50,000/kW Efficiency of water (5kWh/Nm3→4.3kWh/Nm3) electrolysis 	 Designated regions for public deployment demonstration tests utilizing the outcomes of the demonstration test in Namie, Fukushima Development of electrolyzer with higher efficiency and durability

Source: Ministry of Economy, Trade and Industry

Action Plan (mobility) on the RM

		Target to achieve	Approach to achieving target	
Hydrogen Use (Mobility)	FCV	 200k by FY2025, 800k by FY2030 Achieving a cost reduction of FCV to the level of HV around 2025 (Price difference ¥3m → ¥0.7m) Reducing cost of main elemental technologies around 2025 (Fuel cell system around ¥20k/kW→¥5k/kW Hydrogen storage system around ¥0.7m → ¥0.3m) Expansion of vehicle types for volume zones in FY2025 	 Sharing technical information and problems in a cooperation area among stakeholders Developing technology for reducing the amount of platinum used. Developing technology for reducing of amount of carbon fiber in hydrogen storage systems 	
	HRS	 320 by FY2025, some 900 by FY2030 Making HRS independent by the second half of the 2020s Reduction of cost for construction and operation by FY2025 (construction cost ¥350m +¥200m, operation cost ¥34m/year -¥15m/year) Setting of cost target for each component (Compressor ¥90m→¥50m High pressure vessels ¥50m→¥10m) 	 <u>Thoroughly integrate promotion of regulatory reform</u> and technological development (Realization of self- service HRS, use of inexpensive steel material etc.) <u>Consideration for nation wide networking of HRS</u> Extending opening hours Increasing of the number of HRS with gasoline station/convenience store 	
	Bus	 1,200 FC buses by 2030 Expansion of regions where FC buses run Reducing FC bus's price by half (¥105m→¥52.5m) Independent FC bus by FY2030 	 Developing technology for enhancing the fuel efficiency and durability of such vehicles Expansion of types other than city buses Promotion of deployment of HRS for FC buses 	
	Forklift	 10k FC forklifts by 2030 Expansion to an overseas markets In addition, promote development of guidelines and technology development for expansion of hydrog	 <u>Versatile deployment</u> of fuel cell units <u>Promotion of maintenance of simple and</u> <u>easy to operate filling equipment</u> 	

Source: Ministry of Economy, Trade and Industry

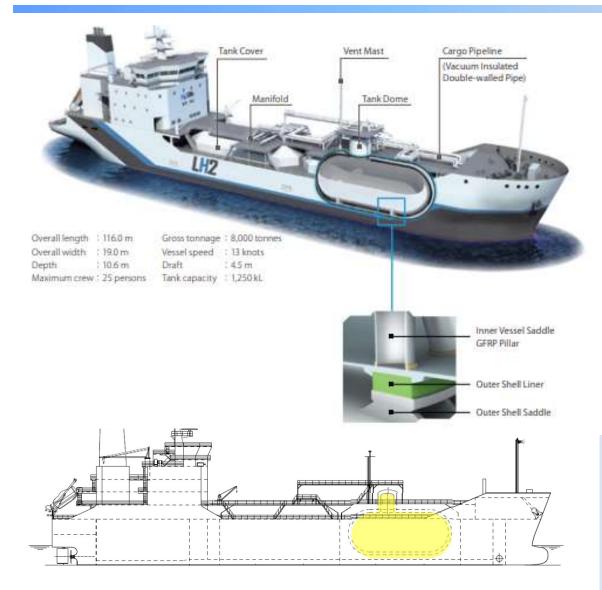
Current status of Fuel Cell application

RD&D: Scaling-up

Related Activities: Maritime application

"Raicyo (Ptarmigan) N" Tokyo University of Marine Science and Technology Gross tonnage: 9.1 tons The length of the ship: 12.60 meters Maximum speed at full load: 11 knots Fuel cell: PEFC 7 kW (3.5 kW x 2) Battery: Lithium ion 145 kWh (13.2 kWh x 11 pack) Propulsion motor: 90 kW (45 kW x 2)

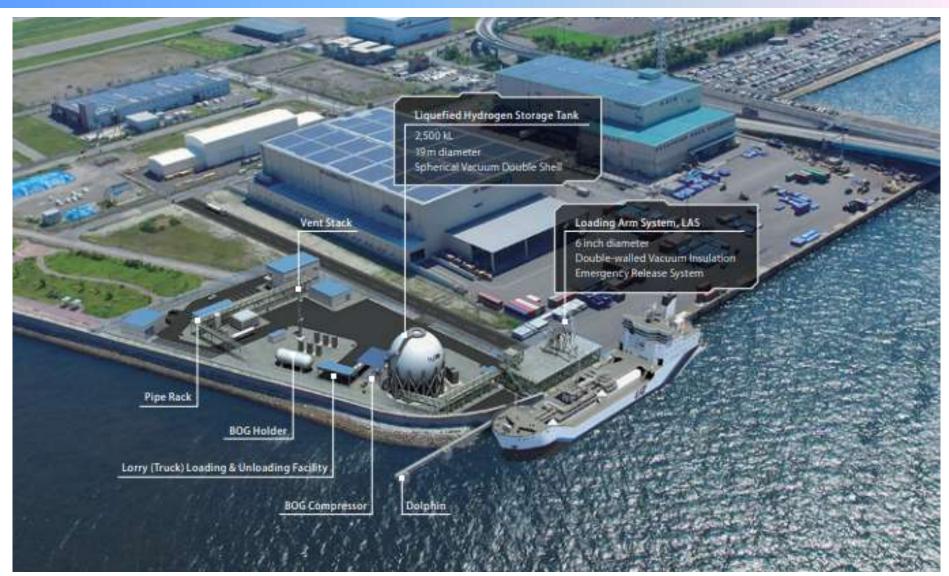
Source: Tokyo University of Marine Science and Technology



"PHEB-3" Osaka City University Gross tonnage: 2.6 tons The length of the ship: 9.6 meters Rated speed: 8 knots Battery: 24kWh (96V) 、2.4kWh (24V) 、 1.2kWh (12V) Propulsion motor: 12 kW (6 kW x 2)

Source: Osaka City University

Related Activities: Transportation


Hydrogen Storage: - 1,250m³ x 1 / 75t-H₂

- vacuum insulated
 - double-walled structure
- Boil off rate: 0.1 vol %

Source: CO2-free Hydrogen Energy Supply-chain Technology Research Association (HySTRA)

Related Activities : Transportation

Source: CO2-free Hydrogen Energy Supply-chain Technology Research Association (HySTRA)

Related Activities: @port

Total operation hours: 699 hours - with hydrogen: 444 hours - Hydrogen only: 49 hours - H2/NG: 395 hours - NG only: 255 hours H2 Consumption: 179,000 Nm3 (16t) Total Power Generation: 822 MWh Total Steam Distribution: 547 t Estimated CO₂ reduction: 109t

Source: KHI, Obayashi

Related Activities: @port

Concept of FC towing tractor

reddot award 2017 winner

I	tem	Spec	
Output	Rated	8kW	
	Peak	32kW	
H ₂ Refueli	ng	35MPa, 1kg (3min)	
Working ti	ime	8hours	
Price: JPY 13,400,000- (US\$ 127K)			

Source: Toyota Industries Corporation

Thank you!