Ultra-High Temperature Thermal Barrier Coating Development and Validation

DE-EE0008307

Solar Turbines Incorporated, Solution Spray Technologies LLC Project Period 1

A Caterpillar Company

Brent Cottom (PI), Solar Turbines Incorporated

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project Title: Ultra-High Temperature Thermal Barrier Coating Development and Validation

Timeline:

 Project Start Date:
 05/01/2018

 Budget Period End Date:
 08/31/2019

 Project End Date:
 08/31/2021

Barriers and Challenges:

- Current thermal barrier coatings have debits in maximum temperature limit (1200°C), durability and corrosion resistance
- Process robustness and deposition rate

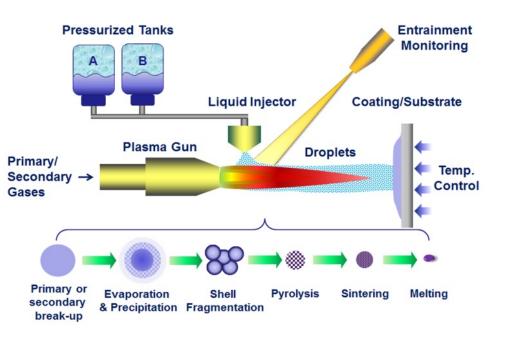
AMO MYPP Connection:

 Materials for Harsh Service Conditions

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$2,399,591	\$774,471	\$3,174,062	24.4%
Approved Budget (BP1)	\$778,016	\$251,106	\$1,029,122	24.4%
Costs as of 4/30/19	\$464,199	\$149,820	\$614,019	24.4%

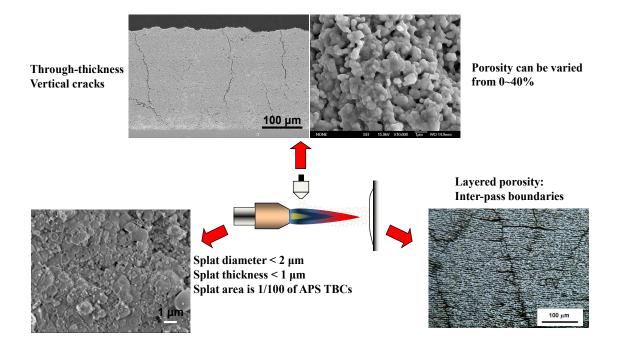
Project Team and Roles:


- Solar Turbines Incorporated
 - Program Manager: Jeff Price
 - Principal Investigator: Brent Cottom
- Solution Spray Technologies LLC (SST)
 - Solution Precursor Plasma Spray (SPPS)
 process development and optimization
 - Dr Jordan, Dr. Gell, Dr. Nair, Dr. Kumar, Dr. Jiang, and J. Roth

Project Objectives

- Increasing the efficiency of gas turbines is an important goal for DOE and Mfg industry (to reduce GHG & operating costs)
 - Higher operating temperature results in gas turbines with higher efficiency
 - Current thermal barrier coatings have debits in maximum temperature limit (1200°C), durability, and corrosion resistance
- This Project will implement, improve (process and properties), and demonstrate a thermal barrier coating with +200°C temperature increase
 - Manufacturing improvements with a higher enthalpy torch
 - Optimized coating properties with graded porosity
 - Develop Manufacturing process for full-scale components
 - Rig demonstration of higher temperature capability & durability
 - Development engine test on combustion and turbine components

Technical Innovation


- Solution Precursor Plasma Spray (SPPS) will be used to apply yttrium aluminum garnet (YAG) with unique microstructure characteristics
 - Phase stable crystalline YAG
 - Improved erosion and corrosion resistance
 - Higher thermal cycle durability
 - Lower thermal conductivity
 - Higher temperature capability (+1400 °C)

Material Challenges: bulk YAG has lower thermal expansion and higher thermal conductivity Process Challenges: standoff distance, low deposition rates, part temperature control

Technical Innovation

 Generate microstructures with strain tolerant through thickness cracks and porosity - inherent and inter-pass boundaries (IPBs)

 Prior testing has demonstrated durability in both laboratory and rig testing along with better insulating capability

Technical Approach

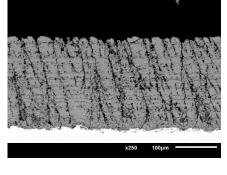
- Implement the Solution Precursor Plasma Spray Technology initiated at the Univ. Connecticut/Solution Spray Technologies (SST)
- Improve application process using the higher enthalpy torch with SST's process experience
- Develop and improve process for application on gas turbine hardware progressing from combustion injector components followed by more complex liners and turbine components

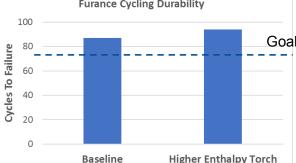




Technical Approach

- Develop processing capability to grade coating porosity and tailor coating properties for specific application
 - Control process settings for continuous porosity grading
 - Increase porosity for abradability and to reduce thermal conductivity
 - Decrease porosity to improve resistance to erosion and corrosion
 - Grade coatings for optimal thermal cycling durability
- Demonstrate and validate higher temperature capability and durability in both rig and development engine testing





Results and Accomplishments

- Replicated process and fabricated coatings at Solar with acceptable properties to program milestone requirements
- Achieved program goals for higher enthalpy torch parameter evaluation and identified key parameters to fabricate coatings with acceptable properties
- Increased process standoff by 50% and deposition rate by 70%
- Fabricated coatings from low to high density and evaluated for microstructure, hardness, thermal conductivity, furnace cycle durability and erosion resistance
- density

- Demonstrated a coating with a 0.5 W/mK thermal conductivity, even lower than the program goal of 0.6 W/mK at 1300°C
- On track for go/no-go milestone on graded coating evaluation

Transition

- Validate long-term durability of the coating through additional development engine testing and further optimize application process
- Successfully development engine testing will substantiate field trials of the coating technology
- The coating will be evaluated by Solar for other applications
 - Other engine models as upgrades/uprates
 - New engine models as they are developed
 - Other turbine parts (e.g., turbine blades)
- SST will continue to advance the solution precursor coating process and evaluate other potential applications