Science-based Acceleration of the Full Value Stream for Metal Additive Manufacturing: Expedited AM Powder Development

Contract Number 2.1.0.11, CPS Agreement No. 34932 AMES, ORNL, KCNSC, SNL, ANL & Industrial Partners December 1, 2018 to September 30, 2021

Emma White, Ames Laboratory (USDOE)

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

<u>Project Title</u>: Science-based Acceleration of the Full Value Stream for Metal Additive Manufacturing: Expedited AM Powder Development

Timeline:

Project Start Date:	12/01/2019
Budget Period End Date:	09/30/2021
Project End Date:	09/30/2021

Barriers and Challenges:

- Materials Discovery
- Materials Compatibility
- Validation and Demonstration

AMO MYPP Connection:

- <u>3.1.4 Materials for Harsh Service Conditions</u> Target 4.2: Accelerate the process of materials discovery by 50% to improve performance in selected applications/materials classes Target 4.3: Achieve performance-based cost parity for the manufacture of alternative materials and parts for use in harsh service conditions
- <u>3.1.6 Additive Manufacturing</u> Target 6.1: Demonstrate AM components whose physical properties and cost/value outperform selected conventionally produced parts by 20%

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$8,120,000	\$1,100,001	\$9,220,001	11.9%
Approved Budget	\$8,120,000	\$1,100,001	\$9,220,001	11.9%
Costs as of 3/31/19	\$1,208,125	\$33,815	\$1,241,940	2.7%

Project Team and Roles:

- <u>AMES (Lead)</u>: Project management, alloy design & selection, characterization, sample & powder production
- <u>ORNL</u>: Ni-base superalloy melting scans & AM builds, verification of AM processing method & parameter selection
- <u>SNL</u>: Alloy design input for high entropy alloys (HEA), HEA melting & AM builds, characterization
- <u>KCNSC</u>: Al alloy melting scans & AM builds, characterization
- ANL: APS internal porosity measurements of AM powders
- <u>Industrial partners (in-kind)</u>: Economic analysis of technology impact, input to target property metrics & key applications, AM processing of samples, characterization, AM powder production

Development of a rapid, science-based approach to alloy design for AM.

- Potential to revolutionize efficiency in manufacturing requires optimizing metal alloys for AM
 - Rapid solidification processing
- Reduce the time for alloy design iterations
 - Developing knowledge-base tools for alloy design

(Science-based Acceleration of the Full Value Stream for Metal AM)

Technical Innovation

- Alloy design for AM
 - Thermodynamic & solidification modeling
 - Improve build outcomes (e.g., reduce cracking issues, undesirable metastable phases, volatile losses)
 - Rapid assessment of prototype alloys
- Design process plus three new alloys will enable AM for aerospace, energy, defense, & transportation

(Science-based Acceleration of the Full Value Stream for Metal AM)

Technical Approach

Results and Accomplishments

- Milestones:
 - Performance targets & criteria
 - 20 alloys defined in each class
 - Phases, Scheil solidification, lattice mismatch, volume change
- **Results**:
 - Thermodynamic & electronic models
 - Initial samples of baseline alloys
 - Hot cracking susceptibility testing
- Further Work:
 - Down-selection of alloys
 - Powder production
 - AM builds & characterization

Alloy	Target 1	Target 2
Al	YS of 500MPa @ RT	YS of 300MPa @ RT
	YS of 400MPa @ 180C	YS of 200MPa @ 300C
	Fatigue Strength 250MPa	Fatigue Strength 150MPa
	HT Fatigue >10 ⁷ cycles	HT Fatigue >10 ⁷ cycles
	180MPa @ 180C	150MPa @ 300C
	Elongation >10%	Elongation >10%
Ni	TS 143ksi	TS >150ksi
	YS 121ksi	YS >130ksi
	Elongation 6-7%	Elongation >14%
	Operating T 1900F	Operating T 1300°F
	Weldable, TBC, lower Co	Weldable, TBC
HEA	YS 1GPa @ RT	YS 2GPa @ RT
	YS 0.8GPa @ 800C	YS 1.6GPa @ 800C
	TS 1.2GPa	Elongation >10% @ RT-
	Flongation >10% @ RT	8000

Transition (beyond DOE assistance)

- Input to alloy targets
- Economic analysis of impact
- Improved powder production
- AM builds & characterization by OEMs

(Science-based Acceleration of the Full Value Stream for Metal AM)