Dynamics at the Interface for Advancing Efficient Manufacturing (DIAdEM): Developing new methods to understand catalysts for ethylene production

Contract # 34921

Idaho National Laboratory, Georgia Institute of Technology, Wayne State University 10/1/18 – 9/30/21

Rebecca Fushimi, Idaho National Laboratory

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project Title: Dynamics at the Interface for Advancing Efficient Manufacturing (DIAdEM): Developing new methods to understand catalysts for ethylene production

|--|

Project Start Date:	10/01/2018
Budget Period End Date:	09/30/2019
Project End Date:	09/30/2021

Barriers and Challenges:

- 60% ethane/ethylene yield is needed to enable an economically viable industrial oxidative coupling of methane (OCM) process
- Current SOTA catalysts offer 30% C₂ yield
- Conventional catalyst development methods have stymied
- Transient kinetic tools can close key knowledge gaps to understand how/why materials perform differently

AMO MYPP Connection:

- Process Intensification
- Microkinetic data on catalyst performance supports improved catalyst design, potentially leading to the 60% ethane/ethylene yield target.
- High catalyst activity/selectivity enables:
 - Decentralized manufacture of ethylene matched to the size/location of the end user
 - Significantly reduce the energy intensity in comparison to steam cracking
 - Higher selectivity to eliminate separation steps
 - Lower operating temperature

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$5,000,000	\$0	\$5,000,000	0%
Approved Budget (BP-1&2)	\$1,967,815	\$0	\$1,967,815	0%
Costs as of 3/31/19	\$770,074	\$0	\$770,074	0%

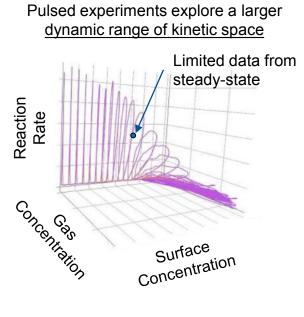
Project Team and Roles:

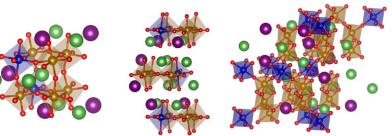
- Idaho National Laboratory Transient kinetic characterization, method development, catalyst evaluation, project management
- Georgia Institute of Technology Modeling and analytical tools for transient kinetics data
- Wayne State University Synthesis and structural characterization of novel layered oxide structures and new catalysts

Project Objectives

• Ethylene production via steam cracking is centralized and energy intensive

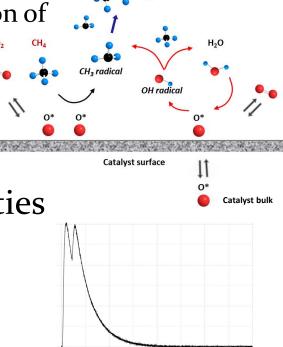
Time (s)


- Catalytic OCM is a promising alternative route to ethylene
 - Higher selectivity, lower temperature: 30% energy reduction
 - \$100/t cost advantage and a 90% reduction in scale to match with delocalized end-users
 - Process economics require > 60% C₂ yield, SOTA: 30% yield
- OCM catalyst development has stymied, conventional kinetic tools are limited to a global picture of a complex mechanism


• <u>Objectives:</u>

- Develop transient kinetic tools to address key knowledge gaps in catalyst function (OCM and beyond)
- Create advanced oxides for testing/performance
- Advance modeling and analytical tools for transient data

Technical Innovation

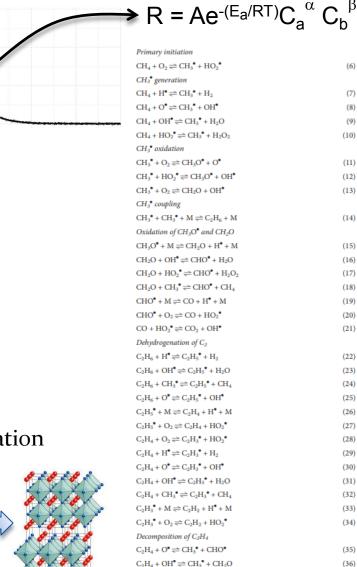

- Today: Conventional kinetic analysis at steady-state
 - Parallelized reactors can screen large libraries of composition
 - Only coarse kinetic information about conversion, selectivity
- Innovation: Transient kinetic methods
 - Greater details of *microkinetic* properties; info. about how/why A is better than B
 - TAP pulse response method can directly study complex industrial materials
 - Transient experiments = high throughput *kinetic* sampling
 - New tools for transient analysis, modeling and simulation
- Advanced nonstoichiometric layered oxides

Technical Approach

- Key knowledge gaps for OCM chemistry
 - Influence of catalyst composition on distribution of selective/nonselective oxygen species
 - Regulation of oxygen between surface/bulk
 - Role of gas phase vs. surface chemistry

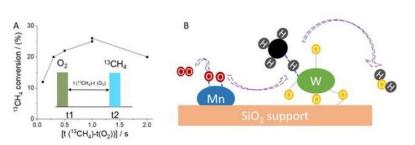
product

TAP Reactor System at INL (2 of 3 systems in US) Transient Kinetic Leadership Position

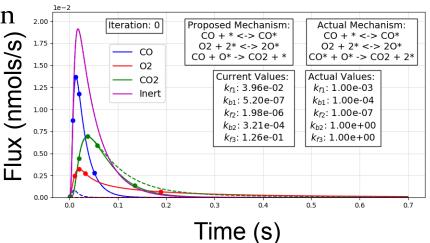

INL Roles/Responsibilities

Transient Kinetic Experiments

- Oxygen screening
 - Pump/probe surface dynamics
 - >90% confidence interval for discriminating 2 or more surface oxygen species
- Surface/bulk transport
 - Modulated pulse intensity, variable anneal time
 - Nanomole precision
- Gas/gas vs. gas/solid chemistry
 - NonKnudsen pulsing regime

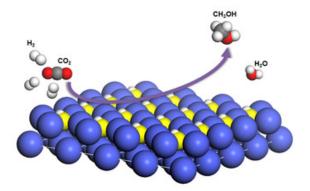

Technical Approach

- Georgia Tech
 - Kinetic modeling of transient data
 - Software for mechanism generation
 - Connection to density functional theory
 - Multiscale transport/kinetic modeling
- Wayne State University
 - Advanced oxide synthesis and structural characterization
 - Steady-state catalyst testing
 - Ruddlesden-Popper (RP) layered oxides
 - Substoichiometric characterization/manipulation
 - Thermodynamic properties
 - Structure-stability relationships



Results and Accomplishments

- Y1Q1: Prepare OCM catalyst library for testing
- Y1Q2: Transient kinetic data, supporting characterizations
 - First generation performance on par with industry preparations, SOTA
 - Early results in TAP pump/probe experiments
 - CO formed in gas phase, CO₂ on surface
 - Mn significantly enhances oxygen exchange and surface/bulk diffusion, full exchange for CO₂, more reactive than W
 - Metal promoters identified, linked to change in W binding energy
 - Early success in modeling/simulation for CO oxidation
- Y1Q4 Go/No-Go
 - >90% confidence interval in statistical discrimination of 2 or more surface oxygen distributions
- Y2Q1: 2nd generation materials



Mn/Na₂WO₄/SiO₂

Transition (beyond DOE assistance)

- Industrial collaborations
 - Transient kinetic tools will be used to develop promising pre-commercial OCM catalysts for industry
 - Current partnership with Precision Combustion Inc.
- Transient kinetic methods applied beyond OCM
 - Selective oxidation catalysts
 - Oxidative dehydrogenation catalysts
 - Chemical looping materials
 - Solid oxide electrolytes
 - Sorbents and separations
- Intellectual property license of new RP-oxide based catalyst for OCM

