Carbon conductors for lightweight motors and generators

DE-EE0007865 Rice University, University of Maryland, DexMat, Irvin Global Industries April 2017- Oct 2019

Matteo Pasquali, Rice University (Presenter)

U.S. DOE Advanced Manufacturing Office Program Review Meeting Arlington, VA June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

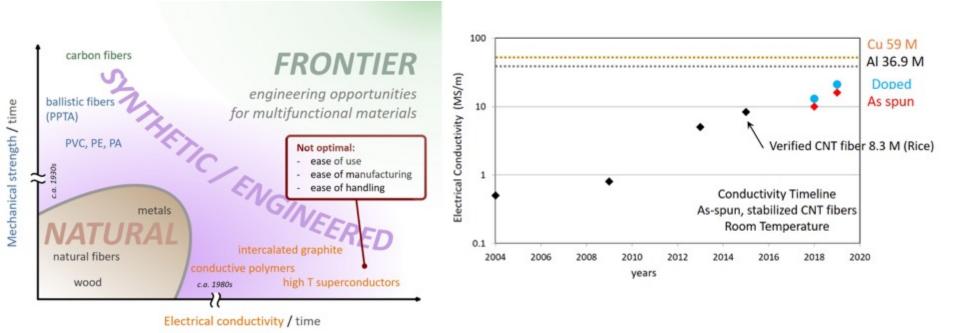
- Awarded 3/30/2017
- Projected End date Sept 2019
- Project 80% complete

Barriers

- Aligning the carbon nanotubes in the cable without breaking connections
- Methods to increase length of individual carbon nanotubes can result in lower quality structures
- Dopants to improve electron transfer between nanotubes don't necessarily end up where you want them

	FY 16 Costs	FY 17 Costs	FY 18 Costs	FY 19 YTD Costs	Planned Funding (YTD – Project End Date)
DOE Funded	-	\$118k	\$385k	\$320k	\$178k
Project Cost Share	_	\$14k	\$36k	\$44k	\$20k

Budget

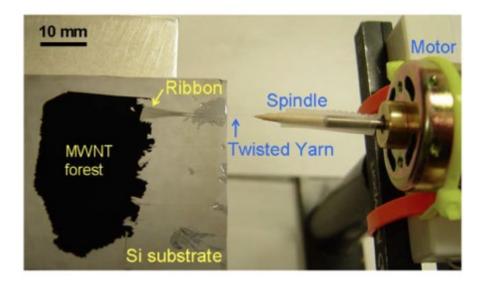

Partners

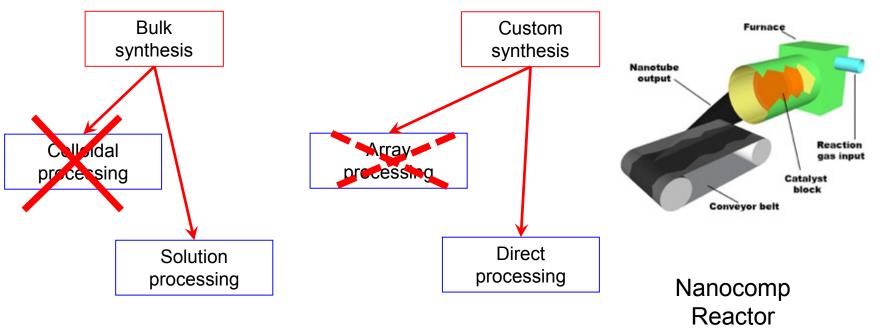
- University of Maryland
- DexMat
- Irvin Global Industries

Project Objective

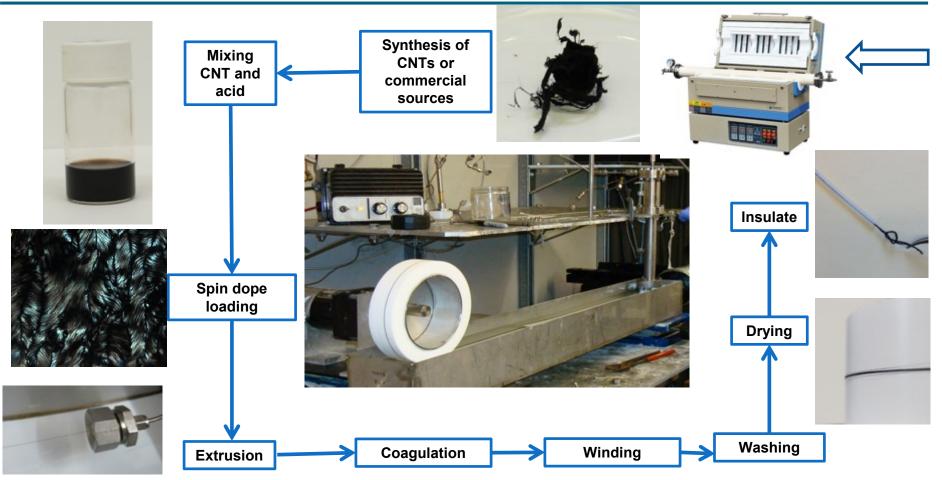
Problem: metals are presently used as motor winding conductors; they are heavy, prone to corrosion, and fragile at small size \rightarrow Need for a lightweight, strong conductor

Goal: Demonstrate high conductivity carbon nanotube (CNT) conductors as winding material for electrical motors; develop scalable manufacturing process for CNT conductors

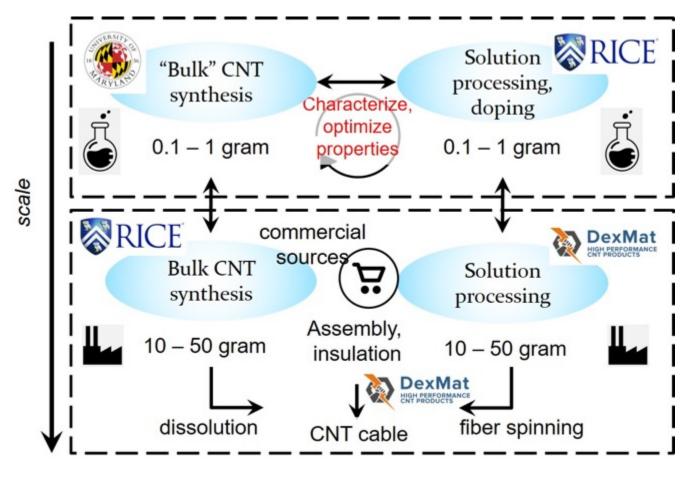

Challenges:


- Produce high quality CNTs \rightarrow reach target electrical conductivity
- Translate properties of CNT fibers from lab to large scale
- Optimize CNT doping and conductor insulation for high-temperature stability

Technical Innovation


Limits of current practice:

Technical Innovation



Our approach: scalable & allows independent optimization of CNT synhesis & fiber spinning UNIT OPERATION approach: each step can be optimized separately Cost aspect:

•Optimal CNT synthesis to lower cost of CNTs; our solvent is widely used in industry and inexpensive

•Wet fiber spinning is cheaper than solid state spinning

Technical Approach

Potential project risks and unknowns:

Low performing CNTs produced "in house"

- → Work with CNT manufacturers and purchase their material
- → Work in parallel between Rice and University of Maryland to obtain optimal recipes
- → Introduce CNT synthesis industry experience (Glen Irvin) in the team

Transition (beyond DOE assistance)

Motor market: \$99.85 B in 2014 and expected to reach \$141.7 B in 2022

(source: Electric motor market analysis, Grandview research:2015)

CNT conductors for winding material:

- Lightweight
- Electrically and thermally conductive
- High flex fatigue resistance
- Resistant to corrosion

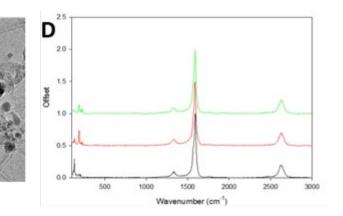
Application in motors - advantages:

- •Increase energy efficiency → energy saving
- •Avoid the need to rewind due to failures
- Lightweight motors

Commercialization approach:

Scale up of CNT fiber conductor

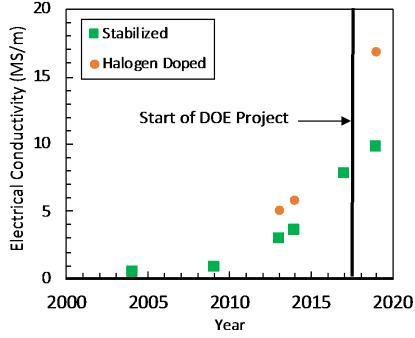
OEMs for motor producers and rewinding industry



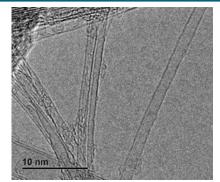
Results and Accomplishments

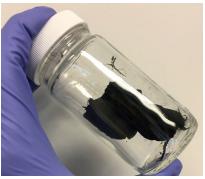
Progress:

- CNT synthesis reactors (Rice and UMD) operational and producing high-quality CNTs
 - High-quality CNTs produced
 - Conductivity above 0.5 MS/m (without doping)


- Spinning and braiding machines operational at Rice and DexMat, producing fibers and wires
 - 10 MS/m conductivity achieved without doping
 - Highest ever attained in continuous CNT fibers

Results and Accomplishments


Growth:


- Long (est. 10 micron) , high quality CNTs produced from lab-scale reactor
- High quality CNTs from MSGRS in quantities large enough to make fiber

Doping:

- Mixed halide doping of CNT fibers achieving conductivity higher than **16 MS/m**.

CNT Conductor Production:

- Record specific conductivity for CNT fibers (>5,500 Sm²/kg)
- Scaled up fiber spinning to yarns >500 um in diameter
- Neat CNT fibers with conductivity greater than 9 MS/m

Further Research:

- CNT fiber conductivity modelling

Coating:

Lab scale continuous coating process developed

