Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions

EE0008320

Michigan State University, Argonne National Laboratory & Fraunhofer USA, Inc. 05/16/2018 – 11/15/2019

> Thomas Schuelke, Michigan State University Nina Baule, Fraunhofer USA, Inc.

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: 05/16/2018
- Project end date: 11/15/2019

Barriers

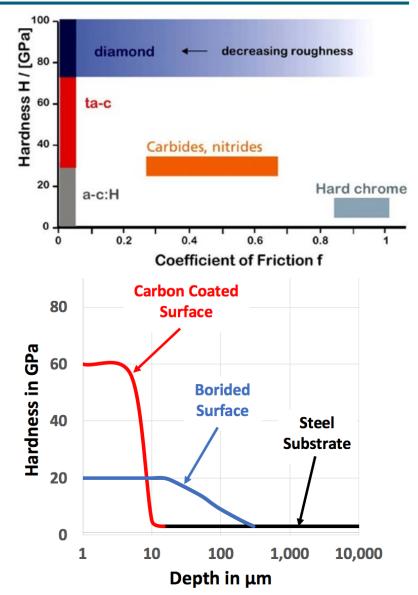
• Develop a **commercially feasible** treatment for making extremely durable low-friction wear and corrosion resistant surfaces.

AMO MYPP

 Materials for Harsh Service Conditions

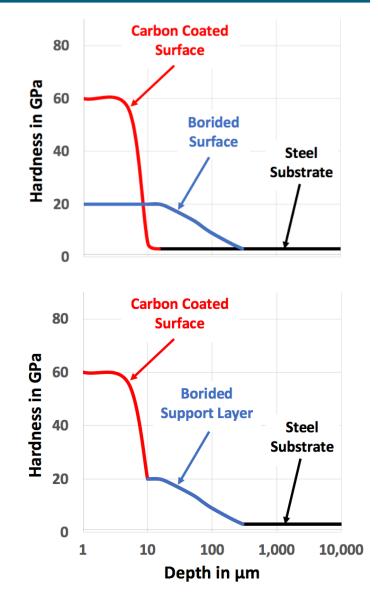
Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$550,000	\$200,000	\$750,000	26.7%
Costs as of 3/31/19	\$2 19,444	\$154,977	\$374,420	41.4%

Partners

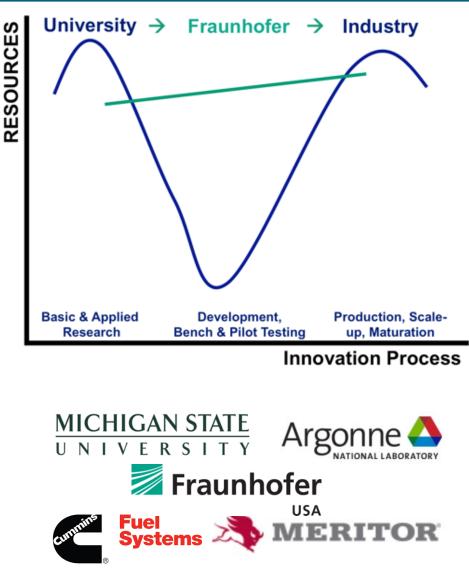

- Michigan State University (project management, coating technology)
- Argonne National Laboratory (boriding technology)
- Fraunhofer USA Inc. (coating technology)
- Industry partners (application specification and testing)

Project Objectives

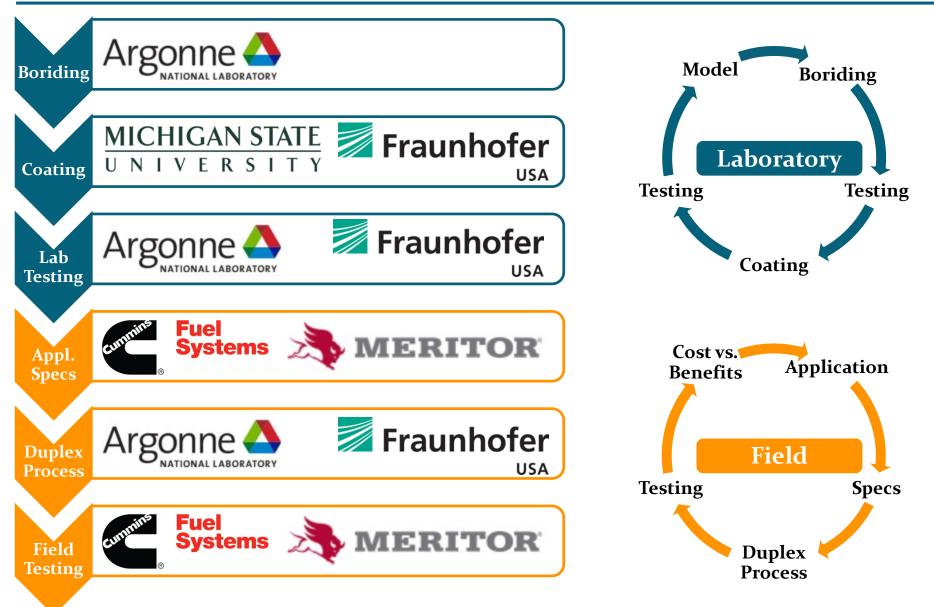
- Mechanical assemblies (engines, transmissions, complex tools) experience ever harsher operating conditions (extreme contact loads, corrosive environments), while durability has to increase and costs have to decrease. Therefore this project aims:
 - To develop a hybrid process for creating **extremely durable low friction**, **wear and corrosion protective engineered surfaces** for tribological components in harsh conditions.
 - To **demonstrate the performance** of such surfaces on the laboratory scale.
 - To demonstrate a commercialization path via industry engagement and cost-benefit analysis to enable deployment across transportation, renewable power and manufacturing industries to reduce energy consumption and increase service life.


Technical Innovation – State-of-the-Art

- Today's Surface Engineering:
 - Hard carbon coatings
 - Fast boriding
- Issues:
 - Insufficient mechanical substrate support for the hard coating
 - **Insufficient hardness** of borided layers for extreme applications
 - Corrosive attack of substrate through pinholes in thin coating


Technical Innovation – New Approach

- Hybrid Treatment: Fast Boriding + Hard Carbon Coatings
- Advantages:
 - Tailored mechanical substrate support for the hard coating by thicker boride support layer
 - **Corrosion protection** by thicker boride support layer
 - Economical due to ultra fast electrochemical boriding process



Technical Approach – Unique Attributes

- Unique collaboration to bridge the innovation gap:
 - University,
 - National Laboratory,
 - Fraunhofer,
 - Industry.
- **Risk reduction** through existing
 - Translational experience,
 - Equipment, infrastructure,
 - Precompetitive and crossindustrial approach.

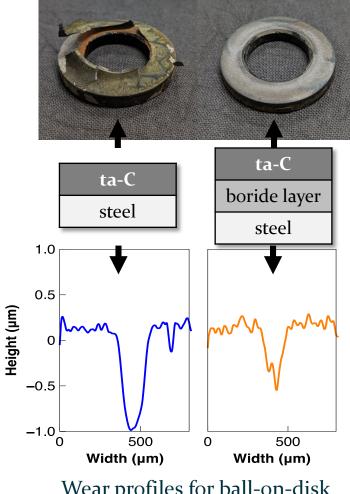
Technical Approach – Team Roles

Results and Accomplishments

Milestones

• Diamond and ta-C coatings with good adhesion on borided parts made from industry relevant steels

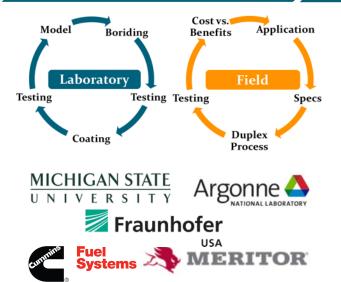
Accomplishments


- Duplex layers have better wear and corrosion resistance than single layers
- In contact with end-users

Future Work

- Fatigue Performance
- End-user specifications
- Cost-benefit model

(Boride-carbon hybrid technology to produce ultra-wear and corrosion resistant surfaces for applications in harsh conditions)


After corrosion test, 15 % HCl for 3 h

Wear profiles for ball-on-disk experiments (ta-C vs. ta-C)

Transition

Additional Application Development

Who cares?

- Oil & gas,
- Mining,
- Rail vehicles,
- Heavy duty trucks,
- Cement and mineral processing,
- Hydro, wind and tidal energy,
- Automotive,

Transfer & Implementation with Service Providers

- **Component manufacturers** will work with **service providers** to treat parts adding value for the **end user**.
- If **benefits outweigh costs** for all, the technology will succeed as previous surface engineering technologies have demonstrated (e.g. coated cutting tools).