Integration of Thermal Energy Storage with a Combined Heat and Power System

Agreement Number: 34626 Argonne National Laboratory/Capstone Turbine Corporation Project Period: 03/01/2019 - 02/28/2021

Dileep Singh, Argonne National Laboratory

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11 – 12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project Title: Integration of Thermal Energy Storage with a Combined Heat and Power System

Timeline:

Project Start Date:	03/01/2019
Budget Period End Date:	02/28/2020
Project End Date:	02/28/2021

Barriers and Challenges:

- High thermal resistance barrier in current phase-change material (PCM) storage systems; hence precludes their usage
- Need for a rapid charge/discharge thermal energy storage system
- Large footprint for current thermal ٠ energy storage technology such as hotwater storage

AMO MYPP Connection:

- Combined Heat and Power (CHP) Systems
- Waste Heat Recovery Systems

Project Budget and Costs:

Budget	DOE Share	Cost Share	Total	Cost Share %
Overall Budget	\$380,000	\$393,000	\$773,000	50.8
Approved Budget (BP-1&2)	\$380,000	\$393,000	\$773,000	50.8
Costs as of 3/31/19	\$13657	\$435	\$14,092	3*

*Number low since the project start was delayed, expected to increase in coming months

Project Team and Roles:

- Dileep Singh (ANL, PI): overall project progress, deliverables, and reporting
- Donald Ayers (Capstone): overall efforts at Capstone
- Munidhar Biruduganti (ANL): integration of thermal energy storage system (TESS) prototype with C65 combined heat and power (CHP) unit
- Wenhua Yu (ANL): simulations, experiment design, and experimental testing
- David M. France (ANL): system analysis and experiment design

Background

- There is a strong push to recover the thermal energy from engine exhaust gases and use it to perform useful work:
 - About 30-40% of the combustion energy from a typical heat engine is lost through exhaust gases
- There is an imbalance for turbine operation between daytime and nighttime
- Argonne has developed at <u>Thermal Energy Storage System</u> (TESS) technology that can help in efficiently balancing the energy loads for the CHP system

Project Objective(s)

- Integrate a TESS with Capstone C65 CHP unit for storing heat during power generation and releasing the stored heat on demand
- Target TESS with a 4-hour nighttime thermal load
- Key Tasks
 - Simulating TESS operation with C65 CHP unit
 - Building a lab-scale TESS prototype and integrating with C65 unit
 - Testing thermal performance of the TESS, and transferring the TESS technology for manufacturing

Technical Innovation

• State-of-the art:

• Current commercial TES technologies being used in concert with CHP are PCM and hot-water storage

• Limitations:

- Limited charging and discharging abilities due to high thermal resistance for PCM storage
- Large footprints for hot-water storage

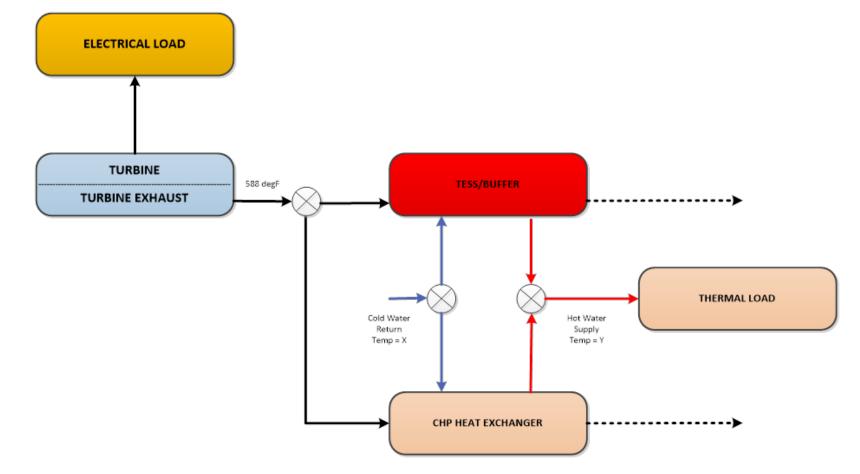
• Proposed Approach:

- Using the proven ANL technology, TESS, that comprises of PCM/foam composite as the storage medium
 - Large storage density with PCM infiltrated into high-porosity foam
 - Fast heat transfer rate from high-thermal conductivity foam
 - High round-trip exergy efficiency

• Alternate Approach:

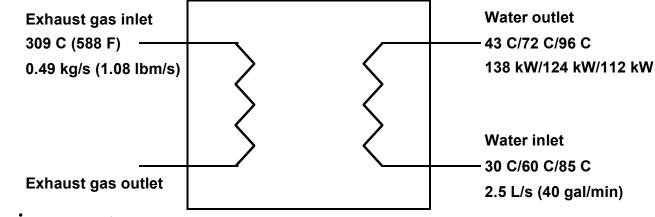
- Using metal-based PCM
 - High thermal conductivity
 - High melting points and expensive

Technical Approach


- Optimize PCM/foam combination as the storage medium for operation with C65 CHP unit
 - PCM: appropriate melting temperature, high latent heat of fusion
 - Foam: high thermal conductivity, low cost
- Design heat exchanger with PCM/foam and exhaust gas
 - A tube-PCM/foam-fin module structure
- Laboratory-scale module testing using ANL's existing C65 unit
- Key challenge: optimized system design with minimized cost
- Multidisciplinary team roles
 - ANL will lead: PCM/foam selection and experimental testing
 - Capstone will lead: test module fabrication
 - ANL and Capstone will collaborate on heat exchanger design
- TESS technology will be marketed through Capstone's leadership position on CHP systems

Project Initialization

- Project selected for funding September 2018
- ANL team members met with Capstone at ANL for laying out the overall project goals October 2018
- ANL team members inspected the existing C65 unit at ANL on its instrumentation and readiness for the project testing October 2018
- CRADA signed 02/28/2019
- ANL team members visited Capstone for in-depth discussions of the project path forward April 2019
 - Current heat recovery unit of C65 CHP (without storage function)
 - Overall design approach of the TESS: similar to the current heat recovery system


Overall Operation Principle

• TESS, a separate component, works in parallel with heat recovery

Design Criteria

• Current heat recovery operation conditions

- TESS requirements:
 - Water inlet and outlet temperatures: 30 °C and 43 °C
 - Water flow rate: 2.5 L/s (40 gal/min)
 - Heat transfer rate: 138 kW
 - Required night thermal load time: 4 hours
 - Total stored thermal energy: 1987 MJ

Preliminary PCM Selection and Calculations

• Based on 4-hour nighttime thermal load

	Pure Temp 151/foam
Total energy (MJ)	1987
Melting temperature (°C)	151
Heat of Fusion (kJ/kg)	217
Water flow tube ID (inch)	0.402
Water flow tube length (feet)	9
Required PCM mass (kg)	10774
Solidification radius (inch)	16.190
Required water flow tube number	8

Milestones for BP-1

Milestone 1: Collect CHP C65 and Heat Recovery Module Specifications – Month 1-2 (completed)

Milestone 2: Establish cost/performance benefits of the integrated system – Month 2-4 (ongoing)

Milestone 3: Complete thermal simulations of the TESS optimized module, design parameters, and predictive performance specifications – Month 5-8 (ongoing)

Transition

- Technology readiness level (TRL) of 5 is anticipated by the end of the project
- ANL will work with Capstone and/or a third party vendor for licensing and transferring of the TESS technology for manufacturing
- Demonstrated TESS technology will be applicable for other waste heat recovery applications and such opportunities will be explored