Powder Synthesis and Alloy Design for Additive Manufacturing

CPS Agreement Number: 32036, WBS #2.1.013 Ames Laboratory/Oak Ridge National Lab—Manufacturing Demonstration Facility October 1, 2016 to June 30, 2019

> Principal Investigator: Iver E. Anderson, Ames Laboratory Co-Principal Investigator: Emma M.H. White, Ames Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project Start: October 2016
- Projected End: June 2019, with NCE.
- Project 100% complete

Budget	FY 17	FY 18	FY 19
DOE Funded	\$2.0M	\$3.0M	
Project Cost Share	\$oM	\$oM	

Alignment with AMO MYPP Goals

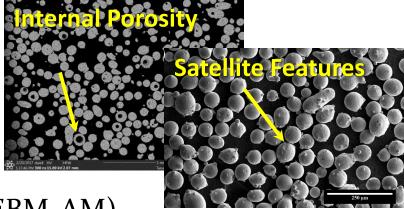
- <u>3.1.4 Materials for Harsh Service Conditions</u> Target 4.3: Achieve performance-based cost parity for the manufacture of alternative materials and parts for use in harsh service conditions. Develop tailored powders for AM for use in high-temperature, high-pressure, highvalue applications such as power generation turbine blades.
- <u>3.1.6 Additive Manufacturing</u>

Target 6.1: Demonstrate AM components whose physical properties and cost/value outperform selected conventionally produced parts by 20%

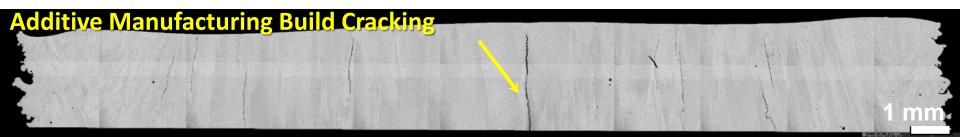
Barriers

- Inconsistent AM powder feedstock quality and excessive cost.
- Need for alloys designed to mitigate build cracking and benefit from AM processing.

Partners

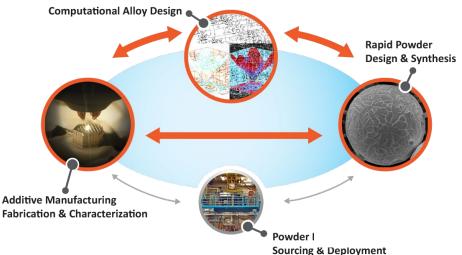

- Ames Laboratory (lead): managing the project, performing alloy design and sample characterization, improving the gas atomization process for AM feedstock powders, and producing powders of the improved alloy designs in-house
- Oak Ridge National Laboratory's Manufacturing Demonstration Facility: providing input to the alloy design, assisting in AM feedstock specification and performing AM builds of the produced powders

Project Objective


- Additive manufacturing (AM) promises to change the game in metal and alloy component production
 - Ultimate design agility, rapid prototyping, mold fabrication
 - Increased complexity for part and system designs
- Today's metallic AM parts include:
 - Segregation, residual porosity & stress
 - Unwanted inclusions/precipitates
 - Limitations of conventional alloy compositions
- Realization of AM process potential requires ideal powder feedstocks
 - Reasonable cost
 - Compositions designed for AM processing
 - Spherical, smooth/flowable, low porosity & oxidation

Technical Innovation

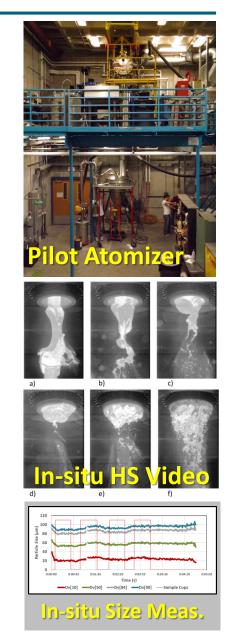
- Gas atomization = potential low cost method of mass production for AM powders
- Currently suffers from:
 - Low yield (tight size range limits) Need powder size separation Off-size inventory/reverb/waste



- Internal porosity (powders > 50µm, EBM-AM)
- Reduced flowability (satellite powder features)
- Surface impurities (excessive oxidation)
- Available powders of conventional alloys, not designed for AM melting & solidification conditions (poor "weldability")

Technical Innovation

- Address AM powder feedstock issues via:
 - Advancing gas atomization technology
 - Improve powder size yield (increase efficiency, lower production cost)
 - Increase smooth spherical shape uniformity (improve flowability)
 - Suppress internal porosity (reduce persistent pores that resist HIP)
 - Lower powder oxidation (improve ductility & fatigue performance)
 - Designing metal alloys for AM
 - Thermodynamic & solidification modeling (improve build microstructure and performance)



Technical Approach

- Expanded gas atomized powder making efficiency and quality for AM processing
 - Utilized AMES atomization capability, insitu process monitoring and system customization, unique within atomization research community world-wide.
 - Performed "pilot-scale" atomization runs.
 - Correlated atomization results with AMES CFD multi-phase flow 2-D & 3-D modeling.

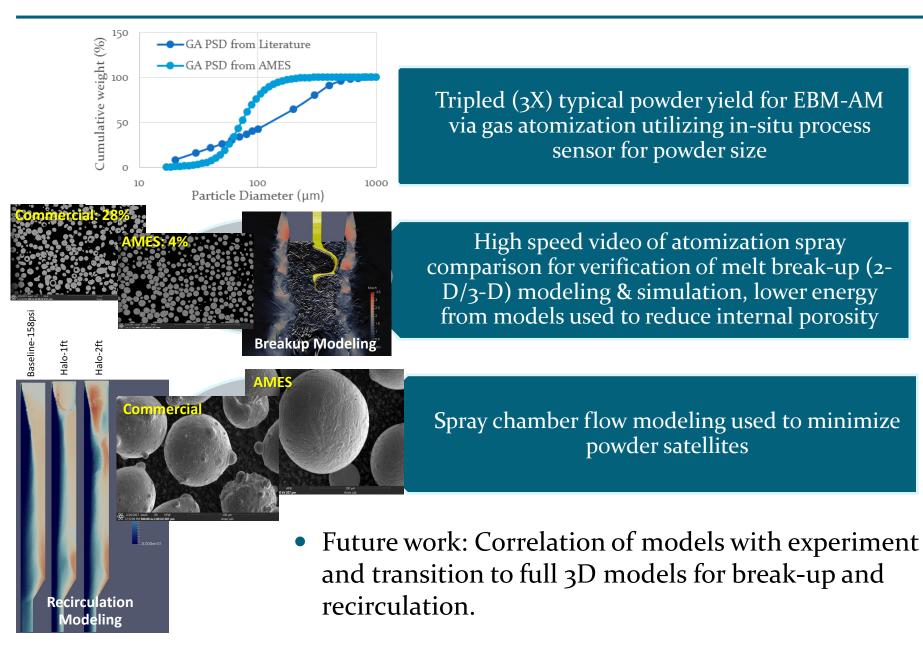
Unknown/Risk: explored limits to improved atomization efficiency & powder quality

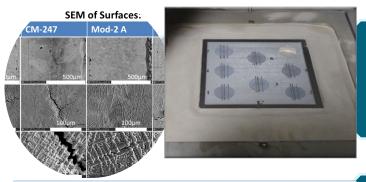
Based on AMES extensive recent licensing experience, activated research partnership with leading powder producer on new alloy.

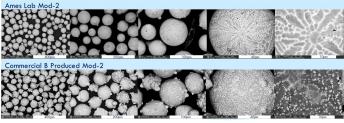
Technical Approach

- Developed effective alloy design principles and methodology for AM feedstock powders
 - ORNL shared AM experience on target alloy for high temperature/strength (Mar-M-247)
 - Used AMES alloy design expertise to modify
 - AMES Materials Preparation Center made precision alloys for tests and atomization runs
 - ORNL made AM builds with AMES alloy powder and commercial powder batch of AMES alloy

Unknown/Risk: investigated if Mar-M-247 could be made AM-compatible with modification.


Developed ORNL & AMES research partnership for rapid AM alloy re-design and build testing.




Results on Powder Making Efficiency and Quality for AM

Results on Alloy Design Methodology for AM Powders

Thermodynamic and solidification modeling compared to multi-pass (laser & e-beam) solidification microstructures

atest

Initial

2nd generation modified (Mod-2) alloy powder produced (by AMES & industry partner)

AM builds of Mod-2 alloy powders characterized

(microstructure and strength testing)

• Future work: High temperature mechanical testing of builds from Mod-2 powder.

Transition (beyond DOE assistance)

- Results encourage American competitiveness in critical advanced manufacturing technologies
- Involving U.S. supply chain for additive manufacturing
- Powder producers & AM users enabled
 - Increased production efficiency/lower costs
- Developing IP to promote CRADAs

#PRAXAIR

• Reserving new technologies for further development by US industry partners

