# September 2017

## Benefit-Cost Evaluation of U.S. Department of Energy Investment in HVAC, Water Heating, and Appliance Technologies

**Final Report** 

Prepared for

Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585

Prepared by

Michael Gallaher Troy Scott Zachary Oliver Kyle Clark-Sutton Benjamin Anderson RTI International 3040 E. Cornwallis Road Research Triangle Park, NC 27709



## Rosalie Ruegg TIA Consulting

RTI Project Number 0214666

# Acknowledgements

The authors wish to thank the many scientists, engineers, and analysts who contributed data and insights that informed this evaluation. We are especially grateful to two external reviewers, Irwin Feller and Cheryl Oros, and to internal DOE reviewer Sam Baldwin. John Ryan provided a wealth of information on BTO's Building Equipment R&D portfolio. Jack Mayernik, Mark Friedrichs, Yaw Agyeman, Tony Bouza, and Jeff Dowd were the project managers overseeing RTI's technical performance for DOE-EERE.

RTI International is a registered trademark and a trade name of Research Triangle Institute.

# Notice

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, usefulness or any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

## Contents

|        |                       |                                                                                                                                                                                                                                                                                                                                                                                             | Page                                                                      |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| A      | cknowl                | edgements                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| N      | otice                 |                                                                                                                                                                                                                                                                                                                                                                                             | iv                                                                        |
| E>     | xecutiv               | e Summary                                                                                                                                                                                                                                                                                                                                                                                   | ES-1                                                                      |
|        | ES.1                  | l Portfolio Approach                                                                                                                                                                                                                                                                                                                                                                        | ES-2                                                                      |
|        | ES.2                  | 2 Counterfactual Approach                                                                                                                                                                                                                                                                                                                                                                   | ES-4                                                                      |
|        | ES.3                  | 3 Energy and Resource Benefits                                                                                                                                                                                                                                                                                                                                                              | ES-5                                                                      |
|        | ES.4                  | 4 Environmental Health Benefits                                                                                                                                                                                                                                                                                                                                                             | ES-6                                                                      |
|        | ES.5                  | 5 Considering Remaining Effective Useful Life<br>Benefits                                                                                                                                                                                                                                                                                                                                   | ES-7                                                                      |
|        | ES.6                  | 5 Robustness                                                                                                                                                                                                                                                                                                                                                                                | ES-9                                                                      |
|        |                       |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |
| 1      | Intro                 | duction                                                                                                                                                                                                                                                                                                                                                                                     | 1-1                                                                       |
| 1<br>2 | Intro<br>Metho        | duction<br>odology                                                                                                                                                                                                                                                                                                                                                                          | 1-1<br>2-1                                                                |
| 1      | Intro<br>Metho<br>2.1 | duction<br>Approach to Energy and Resource Benefits<br>Estimation<br>2.1.1 Primary Data Collection Protocol<br>2.1.2 Attribution of Benefits to BTO R&D<br>2.1.3 Disentangling Impacts: R&D and Stand<br>2.1.4 Estimation of Benefits Relative to the N<br>Best Technology Alternative                                                                                                      | <b>1-1</b><br><b>2-1</b><br>2-3<br>2-3<br>2-6<br>ards2-7<br>lext<br>2-9   |
| 1      | Intro<br>Metho<br>2.1 | duction<br>odology<br>Approach to Energy and Resource Benefits<br>Estimation<br>2.1.1 Primary Data Collection Protocol<br>2.1.2 Attribution of Benefits to BTO R&D<br>2.1.3 Disentangling Impacts: R&D and Stand<br>2.1.4 Estimation of Benefits Relative to the N<br>Best Technology Alternative<br>Approach to Environmental Health Benefits<br>Estimation<br>Overview of the COBRA Model | 1-1<br>2-1<br>2-3<br>2-3<br>2-6<br>ards2-7<br>lext<br>2-9<br>2-11<br>2-11 |

|       | 2.3.1  | Calculating Avoided Crude Oil Consumption<br>Flame-Retention-Head Oil Burner                                        | on:<br>2-18       |
|-------|--------|---------------------------------------------------------------------------------------------------------------------|-------------------|
|       | 2.3.2  | Calculating Avoided Crude Oil Consumption<br>Residential Refrigerators, Heat Pumps, and<br>Central Air Conditioners | on:<br>Id<br>2-18 |
| 2.4   | Approa | ach to Knowledge Benefits Analysis                                                                                  | 2-19              |
|       | 2.4.1  | Background                                                                                                          | 2-19              |
|       | 2.4.2  | Scope and Goals                                                                                                     |                   |
| 2 5   | 2.4.3  | Methods Overview                                                                                                    |                   |
| 2.5   | Measu  | res of Social Economic Return                                                                                       |                   |
| 2.6   | 1 ecnn | ology Selection for Portfolio Approach                                                                              |                   |
|       | 2.0.1  | not Selected                                                                                                        | 2-26              |
| Flame | -Reter | ntion-Head Oil Burner                                                                                               | 3-1               |
| 3.1   | Techn  | ology Overview                                                                                                      | 3-1               |
| 3.2   | Sampl  | e of Interviewees                                                                                                   | 3-3               |
| 3.3   | Summ   | nary of Qualitative Findings                                                                                        | 3-4               |
| 3.4   | Summ   | nary of Quantitative Findings                                                                                       | 3-5               |
| 3.5   | Energy | y and Resource Benefits                                                                                             | 3-7               |
| 3.6   | Enviro | nmental Health Benefits                                                                                             | 3-15              |
| 3.7   | Energy | y Security Benefits                                                                                                 | 3-20              |
| Advar | nced R | efrigeration                                                                                                        | 4-1               |
| 4.1   | Techn  | ology Overview                                                                                                      | 4-1               |
| 4.2   | Sampl  | e of Interviewees                                                                                                   | 4-3               |
| 4.3   | Summ   | nary of Qualitative Findings                                                                                        | 4-6               |
| 4.4   | Summ   | ary of Quantitative Findings                                                                                        | 4-7               |
| 4.5   | Energy | y and Resource Benefits                                                                                             | 4-10              |
| 4.6   | Enviro | nmental Health Benefits                                                                                             | 4-13              |
| 4.7   | Energy | y Security Benefits                                                                                                 | 4-19              |
| 4.8   | Knowl  | edge Benefits                                                                                                       | 4-20              |
|       | 4.8.1  | Trends in Attributed Patenting                                                                                      | 4-20              |
|       | 4.8.2  | Assignees of Attributed Patents                                                                                     | 4-21              |
|       | 4.8.3  | Influence of Attributed Patents: Forward<br>Tracing                                                                 | 4-21              |

| Tracing                                                                                                                                                                                                    |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 4.8.5 Most Influential Attributed Patents                                                                                                                                                                  |                   |
| 4.8.6 Summary of Findings                                                                                                                                                                                  |                   |
|                                                                                                                                                                                                            |                   |
| Heat Pump Design Model and Alternative Refrigerant                                                                                                                                                         | ts 5-1            |
| 5.1 Technology Overview                                                                                                                                                                                    | 5-1               |
| 5.2 Sample of Interviewees                                                                                                                                                                                 | 5-3               |
| 5.3 Summary of Qualitative Findings                                                                                                                                                                        | 5-6               |
| 5.4 Summary of Quantitative Findings                                                                                                                                                                       | 5-7               |
| 5.5 Energy and Resource Benefits                                                                                                                                                                           | 5-10              |
| 5.6 Environmental Health Benefits                                                                                                                                                                          | 5-15              |
| 5.7 Energy Security Benefits                                                                                                                                                                               | 5-20              |
| 5.8 Knowledge Benefits                                                                                                                                                                                     | 5-21              |
| 5.8.1 Trends in Attributed Patenting                                                                                                                                                                       | 5-21              |
| 5.8.2 Assignees of Attributed Patents                                                                                                                                                                      | 5-23              |
| 5.8.3 Influence of Attributed Patents: Forward<br>Tracing                                                                                                                                                  | 5-23              |
| 5.8.4 Influence of Attributed Patents: Backward                                                                                                                                                            | 5-25              |
| 5.8.5 Most Influential Attributed Patents                                                                                                                                                                  |                   |
| 5.8.6 Summary of Findings                                                                                                                                                                                  | 5-32              |
| Heat Pump Water Heating Technology                                                                                                                                                                         | 6-1               |
| 6.1 Technology Overview                                                                                                                                                                                    | 6-1               |
| 6.2 Knowledge Benefits                                                                                                                                                                                     | 6-2               |
| 6.2.1 Trends in Attributed Patenting                                                                                                                                                                       | 6-2               |
| 6.2.2 Assignees of Attributed Patents                                                                                                                                                                      | 6-3               |
| 6.2.3 Influence of Attributed Patents: Forward                                                                                                                                                             | 6-4               |
| 6.2.4 Influence of Attributed Patents: Backward                                                                                                                                                            | 6-6               |
| 6.2.5 Most Influential Attributed Patents                                                                                                                                                                  | 6-9               |
|                                                                                                                                                                                                            | 6-11              |
| 6.2.6 Summary of Findings                                                                                                                                                                                  |                   |
| Retrospective Economic Impact Assessment                                                                                                                                                                   | 7-1               |
| <b>Retrospective Economic Impact Assessment</b>                                                                                                                                                            | <b>7-1</b>        |
| <ul> <li>6.2.6 Summary of Findings</li> <li>Retrospective Economic Impact Assessment</li> <li>7.1 Building Technologies Office Research Investments</li> <li>7.2 Attributable Economic Benefits</li> </ul> | <b>7-1</b><br>7-1 |

| 8  | Effect | tive Useful Life Economic Impact Assessment                              | 8-1  |
|----|--------|--------------------------------------------------------------------------|------|
|    | 8.1    | Attributable Economic Benefits                                           | 8-1  |
|    |        | 8.1.1 Residential Refrigeration                                          | 8-1  |
|    |        | 8.1.2 Heat Pumps and Central Air Conditioners                            | 8-4  |
|    | 8.2    | EUL Return on Investment Analysis                                        | 8-7  |
| 9  | Sumn   | nary Results and Conclusions                                             | 9-1  |
|    | 9.1    | Sensitivity to Incrimental Impact of Flame-<br>Retention-Head Oil Burner | 9-2  |
|    | 9.2    | Sensitivity to Changes in the Composition of Our<br>Group of Experts     | 9-2  |
|    | 9.3    | Sensitivity to Rebound Effects                                           | 9-4  |
|    | 9.4    | Scenario Analysis                                                        | 9-5  |
|    |        | Flame-retention                                                          | 9-5  |
|    |        | Refrigeration                                                            | 9-5  |
|    |        | Heat pump and air conditioning                                           | 9-5  |
|    | 9.5    | Discussion                                                               | 9-6  |
| 10 | ) Refe | erences                                                                  | 10-1 |
| Aŗ | pendi  | xes                                                                      |      |
|    | А      | Interview Guides                                                         | A-1  |

B Design of Knowledge Benefit Assessment .....B-1

# **Figures**

### Number

### Page

| 3-1.  | Percentage of New Burners Sold of Flame-Retention<br>Type, Actual and Counterfactual (without BTO)                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-2.  | Percentage of Operating Burners of Flame-Retention<br>Type, Actual and Counterfactual (without DOE)                                                     |
| 4-1.  | Career Experience of Interviewees4-4                                                                                                                    |
| 4-2.  | Interviewee Familiarity with Specific BTO Projects4-5                                                                                                   |
| 4-3.  | In what ways has private R&D (or your R&D work specifically) been influenced by BTO?4-6                                                                 |
| 4-4.  | Shipments-Weighted Average Energy Consumption of<br>Residential Refrigerators (kWh/year), Actual and<br>Counterfactual (without DOE)4-9                 |
| 4-5.  | Trend in BTO-Attributed Appliance Patent Family Births 4-20                                                                                             |
| 4-6.  | Trend in All Appliance Patent Family Births4-21                                                                                                         |
| 4-7.  | Patent Families Linked to BTO-Attributed Prior Appliance<br>Patents by IPC                                                                              |
| 4-8.  | Organizations with the Greatest Numbers of Patent<br>Families Linked to BTO-Attributed Prior Appliance<br>Patents by IPC                                |
| 4-9.  | Companies with the Ten Largest Appliance Patent<br>Portfolios                                                                                           |
| 4-10. | Average Number of Appliance Patent Families of Leading<br>Companies and DOE Linked to the Appliance Patent<br>Portfolios owned by Leading Organizations |
| 4-11. | Total Number of Citation Links from Leading Companies'<br>Appliance Patent Families to Earlier BTO-Appliance<br>Patent Families                         |
| 5-1.  | Career Experience of Interviewees                                                                                                                       |
| 5-2.  | Interviewee Familiarity with Specific BTO Projects                                                                                                      |
| 5-3.  | In what ways has private R&D (or your R&D work specifically) been influenced by BTO?5-6                                                                 |
| 5-4.  | Shipments-Weighted Average SEER, Actual and Counterfactual (without DOE)5-9                                                                             |
| 5-5.  | Trend in BTO-Attributed HVAC Patent Family Births5-22                                                                                                   |
| 5-6.  | Trend in All HVAC Patent Family Births5-23                                                                                                              |
| 5-7.  | Patent Families Linked to BTO-Attributed Prior HVAC<br>Patents by IPC                                                                                   |

| 5-8.  | Organizations with the Greatest Numbers of Patent<br>Families Linked to BTO-Attributed Prior HVAC Patents by<br>IPC5-25                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-9.  | Companies with the Ten Largest HVAC Patent Portfolios 5-26                                                                                                         |
| 5-10. | Average Number of HVAC Patent Families of Leading<br>Companies and DOE Linked to the HVAC Patent<br>Portfolios owned by Leading Organizations                      |
| 5-11. | Percentage of Leading Companies' HVAC Patent Families<br>Linked to Earlier BTO-HVAC Patent Families5-27                                                            |
| 6-1.  | Trend in BTO-Attributed Water Heating Patent Family<br>Births6-3                                                                                                   |
| 6-2.  | Trend in All Water Heating Patent Family Births                                                                                                                    |
| 6-3.  | Patent Families Linked to BTO-Attributed Prior Water<br>Heating Patents by IPC6-5                                                                                  |
| 6-4.  | Organizations with the Greatest Numbers of Patent<br>Families Linked to BTO-Attributed Prior Water Heating<br>Patents by IPC6-6                                    |
| 6-5.  | Companies with the Ten Largest Water Heating Patent<br>Portfolios6-6                                                                                               |
| 6-6.  | Average Number of Water Heating Patent Families of<br>Leading Companies and DOE Linked to the Water<br>Heating Patent Portfolios owned by Leading<br>Organizations |
| 6-7.  | Total Number of Citation Links from Leading Companies'<br>Water Heating Patent Families to Earlier BTO-Water<br>Heating Patent Families6-8                         |
| 9-1.  | Sensitivity of Average Attribution to Hypothetical<br>Changes in Sample Composition9-4                                                                             |

# **Tables**

| Number |                                                                                                              | Page        |
|--------|--------------------------------------------------------------------------------------------------------------|-------------|
| ES-1.  | Retrospective Investment Performance Metrics: Energy an Resource Benefits                                    | d<br>ES-6   |
| ES-2.  | Retrospective Investment Performance Metrics: Energy an Resource Benefits and Environmental Health Benefits  | d<br>ES-7   |
| ES-3.  | EUL Investment Performance Metrics: Energy and Resource Benefits                                             | e<br>ES-8   |
| ES-4.  | EUL Investment Performance Metrics: Energy and Resource Benefits and Environmental Health Benefits           | e<br>ES-9   |
| 2-1.   | Sources of Potential Interviewees                                                                            | 2-5         |
| 2-2.   | Sources of Actual Interviewees                                                                               | 2-6         |
| 2-4.   | Percentage of U.S. Crude Oil Supply Imported.                                                                | 2-17        |
| 3-1.   | Actual and Counterfactual Percentage of Burners of Flame Retention Type                                      | -<br>3-10   |
| 3-2.   | Actual and Counterfactual Residential Consumption of No. Heating Oil, and Derived Savings Attributed to BTO. | 2<br>3-13   |
| 3-3.   | BTO-Attributed Fuel and Cost Savings                                                                         | 3-14        |
| 3-4.   | BTO-Attributed PM 2.5 and SO2 Abated                                                                         | 3-17        |
| 3-5.   | BTO-Attributed NOx and VOC Abated                                                                            | 3-18        |
| 3-6.   | COBRA parameters for Residential Distillate Oil Combustio (rounded)                                          | n<br>3-19   |
| 3-7.   | Value of All BTO-Attributed Avoided Adverse Health Events                                                    | s 3-20      |
| 3-8.   | BTO-Attributed Avoided Crude Oil Imports: Flame-Retention<br>Head Oil Burner                                 | on-<br>3-21 |
| 4-1.   | Distribution of Experts Contacted and Interviewed                                                            | 4-3         |
| 4-2.   | Actual and Counterfactual Average Energy Consumption a First-Year Savings                                    | nd<br>4-11  |
| 4-3.   | Cumulative Energy and Energy Cost Savings                                                                    | 4-12        |

| 4-4.  | Average Amounts of Criteria Pollutants Released from Fue<br>Combustion by Electric Utilities in the United States (tons<br>GWh) | l<br>per<br>4-14 |
|-------|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| 4-5.  | BTO-Attributed PM 2.5, NH3, and VOC Abated (tons)                                                                               | 4-15             |
| 4-6.  | BTO-Attributed SO2 and NOx (tons)                                                                                               | 4-16             |
| 4-7.  | COBRA parameters for Electric Utility Fuel Combustion (rounded)                                                                 | 4-17             |
| 4-8.  | Value of All BTO-Attributed Avoided Adverse Health Events                                                                       | s 4-18           |
| 4-9.  | BTO-Attributed Avoided Crude Oil Imports: Residential Refrigeration                                                             | 4-19             |
| 4-10. | BTO-Appliances Patent Families Linked to the Most Appliar Patent Families of Leading Companies.                                 | nce<br>4-27      |
| 4-11. | Highly Cited BTO-attributed Appliance Patents Overall.                                                                          | 4-29             |
| 5-1.  | Distribution of Experts Contacted and Interviewed                                                                               | 5-4              |
| 5-2.  | Actual and Counterfactual Shipments-Weighted Average S<br>and Numbers of Heat Pumps and Central Air Conditioners                | EER,             |
|       | Shipped                                                                                                                         | 5-13             |
| 5-3.  | First-Year Energy Savings for Heat Pumps and Central Air Conditioners (GWh)                                                     | 5-14             |
| 5-4.  | Cumulative Energy and Energy Cost Savings                                                                                       | 5-15             |
| 5-5.  | Average Amounts of Criteria Pollutants Released from Fue<br>Combustion by Electric Utilities in the United States (tons<br>GWh) | l<br>per<br>5-16 |
| 5-6.  | BTO-Attributed PM 2.5, NH3, and VOC Abated (tons)                                                                               | 5-17             |
| 5-7.  | BTO-Attributed SO2 and NOx (tons)                                                                                               | 5-18             |
| 5-8.  | COBRA parameters for Electric Utility Fuel Combustion (rounded)                                                                 | 5-19             |
| 5-9.  | Value of All BTO-Attributed Avoided Adverse Health Events                                                                       | s 5-20           |
| 5-10. | BTO-Attributed Avoided Crude Oil Imports: Heat Pumps ar Central Air Conditioners                                                | nd<br>5-21       |
| 5-11. | BTO-Appliances Patent Families Linked to the Most HVAC F<br>Families of Leading Companies.                                      | Patent<br>5-28   |
| 5-12. | Highly Cited BTO-attributed HVAC Patents Overall.                                                                               | 5-31             |
| 6-1.  | BTO Water Heating Patent Families Linked to the Most Wa<br>Heating Patent Families of Leading Companies.                        | ter<br>6-9       |
| 6-2.  | Highly Cited BTO-attributed Water Heating Patents Overal                                                                        | l.6-10           |
| 7-1.  | BTO HVAC, Water Heating, and Appliance R&D Portfolio<br>Investment Costs                                                        | 7-2              |
| 7-2.  | Total Retrospective Energy and Resource Benefits, Summe over the Three Technologies                                             | ed<br>7-3        |

| 7-3.  | Total Monetized Benefits, Summed over the Three Technolog                                                                     | gies<br>7-4 |
|-------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7-4.  | Retrospective Investment Performance Metrics: Energy and Resource Benefits                                                    | 7-5         |
| 7-5.  | Retrospective Investment Performance Metrics: Energy and Resource Benefits and Environmental Health Benefits                  | 7-6         |
| 8-1.  | Actual and Counterfactual Average Energy Consumption and First-Year Savings                                                   | <br>8-2     |
| 8-2.  | Cumulative Energy and Energy Cost Savings: Effective Useful Life                                                              | וג<br>8-3   |
| 8-3.  | Value of All DOE-Attributed Avoided Adverse Health Events                                                                     | 8-4         |
| 8-4.  | Actual and Counterfactual Shipments-Weighted Average SEE<br>and Numbers of Heat Pumps and Central Air Conditioners<br>Shipped | ER,<br>8-5  |
| 8-5.  | Cumulative Energy and Energy Cost Savings: Effective Useful Life                                                              | וו<br>8-6   |
| 8-6.  | Value of All DOE-Attributed Avoided Adverse Health Events                                                                     | 8-7         |
| 8-7.  | Total EUL Energy and Resource Benefits, Summed over the Three Technologies                                                    | 8-8         |
| 8-8.  | EUL Investment Performance Metrics: Energy and Resource Benefits                                                              | 8-9         |
| 8-9.  | Total EUL Monetized Benefits, Summed over the ThreeTechnologies                                                               | 3-10        |
| 8-10. | EUL Investment Performance Metrics: Energy and Resource<br>Benefits and Environmental Health Benefits                         | 3-11        |
| 9-1.  | Retrospective Investment Performance Metrics: Energy and Resource Benefits                                                    | 9-2         |

# **Executive Summary**

The purpose of this study is to conduct a rigorous benefit-cost impact evaluation of the research and development (R&D) activities of the Building Technologies Office (BTO) in the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE). The study focuses on one of four long-standing R&D portfolios within BTO's Emerging Technologies Program: R&D investments in heating, ventilation, and air conditioning (HVAC), water heating, and appliance technologies.

This evaluation answers the question of whether BTO's investments in HVAC, water heating, and appliance technologies have been worthwhile. The analysis suggests that they have indeed, generating benefits 20 to 66 times R&D portfolio costs and providing an estimated internal rate of return of between 38% and 51%. BTO's mission is to improve the energy efficiency of United States homes and buildings through a combination of energy performance standards, building energy codes, and R&D investments. The purpose of this analysis is to evaluate the performance of only the R&D investments, asking the question: Have BTO investments in HVAC, water heating, and appliance R&D generated a reasonable rate of return on investment?

The analysis suggests that the answer is yes. Considering only energy and resource benefits—that is, the economic value of energy savings attributable to BTO R&D—the estimated benefitto-cost ratio is between 20-to-1 and 66-to-1, using a 7% discount rate; the estimated internal rate of return is between 38% and 51%.

Interviews with industry experts point to several reasons BTO R&D has had these impacts. DOE laboratories are perceived by industry to be trusted independent sources of objective, scientific and engineering data and fundamental knowledge. The research output of DOE laboratories is valuable to industry because the laboratories combine objectivity—a reputation as a trusted third party—with solid technical capabilities and stateof-the-art facilities, such as HVAC and refrigeration test facilities. DOE laboratories integrate multidisciplinary scientific and engineering capabilities that are beyond the scope of most companies' R&D laboratories. BTO R&D investments are able to leverage these facilities and interdisciplinary expertise to conduct basic research having applications much broader than BTO R&D investments support the role of DOE laboratories as trusted third-party sources of objective, high-quality scientific and engineering data and research. BTO R&D impacts stem from its ability to leverage DOE laboratories' unique capabilities to create productive R&D investment opportunities for the private sector. the scope of any one company's business model. BTO R&D investments can also support early development of novel technologies that companies would find unattractive because of high technical risk (the risk of failing to achieve performance improvements over existing technologies), market risk (the risk of failing to commercialize a product embodying the new technology once it has been successfully developed from a technical perspective), and a long and uncertain timeline to eventual commercialization and market acceptance. Especially high-risk and long-term R&D projects are good candidates for BTO investment because they are less likely to attract privatesector investment.

BTO R&D can de-risk a new energy-efficient technology to the point that a company will want to invest in its further commercial development. BTO's role in the development of a given technology may vary; depending on the technology, its application, and market and other conditions, BTO involvement may end with basic research or proof of concept, or it may extend through later stages of development. BTO investment is most effective when it complements private investment, i.e., when BTO outputs create productive investment opportunities for the private sector, thereby crowding in private investment. The nature of high-risk R&D portfolios is that not all projects will be successful. In selecting projects, the questions to ask are whether a project is one that BTO is uniquely capable of undertaking—a project which the private sector could not or would not choose to undertake—and whether, if it is technically successful, the project will create productive investment opportunities for U.S. industry while advancing BTO's mission.

## ES.1 PORTFOLIO APPROACH

The analysis compares R&D investment costs for BTO's HVAC, water heating, and appliance technology portfolio from 1976 through 2015 against the benefits, attributable to those BTO investments, in three technology areas:<sup>1</sup>

1. **flame-retention-head oil burners**, efforts known as Project Oilheat, in which BTO conducted technical research (testing fuel savings and verifying safety and reliability of retrofits) and market conditioning activities (disseminating

<sup>&</sup>lt;sup>1</sup> DOE was established on October 1, 1977. The analysis includes investments in building technologies made by DOE's predecessor agencies in 1976 and the beginning of 1977.

test results, partnering with states' energy offices and oil dealer trade associations in communications campaigns and technician training), from 1979 to 1981;

- advanced refrigeration, focusing on BTO's research related to the energy-efficiency of residential refrigerators;
- 3. heat pump design model and alternative refrigerants research, including BTO's R&D related to the energyefficiency of heat pump and air conditioning technology.

These three technology areas were selected from a larger portfolio of R&D investments made by BTO in HVAC, water heating, and appliance technologies, which is one of four longstanding R&D portfolios within BTO's Emerging Technologies Program. The other three portfolios in the Emerging Technologies Program address the technology areas of 1) lighting, 2) windows and building envelope, and 3) building energy modeling.<sup>2</sup> In addition to the three technology areas selected for this evaluation, the HVAC, water heating, and appliance portfolio has included such other technology areas as thermally activated heat pumps, combustion and thermal distribution, and household appliances like dishwashers and clothes washers and dryers.

The portfolio approach to benefit-cost analysis, which we adopt here, compares the economic benefits of only a subset of the portfolio with the investment costs of the entire portfolio. In this case, investment costs include all HVAC, water heating, and appliance R&D investments from 1976 through 2015. The quantified benefits stem from the three selected technology areas as follows:

- Benefits attributable to BTO's flame-retention-head oil burner investments were quantified in terms of residential heating oil saved by the earlier adoption of flame-retention burners that can be attributed to those investments.
- Benefits attributable to BTO's R&D investments in advanced refrigeration were quantified in terms of the energy saved by the more rapid improvement in the average energy consumption of residential refrigerators that can be attributed to those R&D investments.

Benefits are quantified for three technology areas within BTO's HVAC, water heating, and appliance R&D portfolio:

- 1. Flame-retention-head oil burners
- 2. Advanced refrigeration technology
- 3. Heat pump design model and alternative refrigerants research

<sup>&</sup>lt;sup>2</sup> More recently, BTO has added R&D portfolios addressing sensors and controls and transactive energy.

 Benefits attributable to BTO's R&D investments in heat pumps and air conditioning technology, focusing especially on the heat pump design model and alternative refrigerants research, were quantified in terms of the energy saved by the more rapid improvement in the average energy efficiency of residential heat pumps and central air conditioners.

Considering only these benefits, BTO's R&D investments have been worthwhile. Combined, these benefits compare favorably with BTO's HVAC, water heating, and appliance R&D investment costs through 2015. Specifically, these investments are estimated to have generated present-valued benefits of between 20 and 66 times their costs (using a 7% discount rate) and an internal rate of return of between 38% and 51%.

Of course, the benefits quantified for this study are not all of the benefits attributable to the HVAC, water-heating, and appliance R&D portfolio, because these are by no means the only technologies supported by these R&D investments. Therefore, the portfolio approach used here yields a conservative estimate of the overall performance of the portfolio, which should therefore be considered a lower bound.

## ES.2 COUNTERFACTUAL APPROACH

The analysis endeavors to isolate benefits attributable to BTO R&D investments and include only those among the quantified benefits used to calculate investment performance metrics. This was done through 91 in-depth interviews with experts with knowledge of BTO R&D contributions, industry trends, and other relevant factors. These experts were asked to characterize what would have most likely happened in the absence of BTO R&D, holding all other factors constant.

In principle, the benefits attributable to BTO R&D can be calculated by comparing actual observed trends to the counterfactual trends characterized by these experts. In practice, it is a difficult exercise for someone to "hold all other factors constant" and describe what would have happened without BTO R&D. For this reason, great care was taken to explain the exercise and discuss with the experts a range of factors contributing to the relevant trends in each of the three technology areas.

Benefits attributable to BTO's R&D investments in the three selected technology areas are compared to investment costs for the entire HVAC, water heating, and appliance R&D portfolio, yielding conservative estimates of the overall performance of the portfolio. Estimated benefits attributable to BTO's R&D investments were based on in-depth interviews in which industry experts were asked to characterize what would have happened without BTO R&D. Care was taken to hold constant a range of other factors in order to isolate the impact of BTO R&D investments. Special attention was paid to the treatment of energy performance standards. Because BTO R&D could have affected the timing and levels of new standards, it would not necessarily be appropriate to hold those factors constant. Experts were therefore asked to hold constant the framework within which standards are developed and promulgated and characterize counterfactual trends without BTO R&D. If the absence of BTO R&D would, in the expert's opinion, have had an effect on the timing or levels of standards, then that would be reflected in her response. In this way, the impact of the standards program is to some extent excluded and the impact of the R&D is isolated. To be sure, the R&D program and the standards program are complementary; on this point experts were unanimous. Therefore, the benefits attributed to BTO R&D are partly due to the standards program, in the sense that BTO R&D would not have been as impactful had the standards programs not existed. However, the purpose of this evaluation was not to quantify the impact of the standards program. Rather, our remit was to isolate, to the extent practicable, the impacts attributable to BTO R&D.

The thought exercise experts were asked to perform in interviews to establish the counterfactual is unavoidably subjective. Nevertheless, this was determined to be the best practicable approach. The alternative to going through this exercise would have been to make some ad hoc assumptions about what would have happened without BTO R&D. We deferred instead to experts' opinions over our own ad hoc assumptions to characterize these counterfactual trends. The purpose of the exercise is to recognize that some improvement in energy efficiency trends—or some development and diffusion of more energy-efficient technologies—might have happened without the BTO R&D and to reduce estimates of attributable benefits accordingly. We offer a wide range of estimated benefits, which appropriately reflects the unavoidable subjectivity inherent in this approach and the variability of experts' opinions.

## ES.3 ENERGY AND RESOURCE BENEFITS

BTO R&D is estimated to have saved between 2.2 billion and 5.4 billion gallons of #2 heating oil and between 324,200 and 1,235,891 GWh of electricity, a combined savings of between

1.4 and 5.0 quads, through 2015.<sup>3</sup> To put this in perspective, U.S. households consumed 10.2 quads in 2009: 4.2 quads for space heating; 1.8 quads for water heating; 0.64 quads for air conditioning; 0.48 quads for refrigeration; and 3.0 quads for lighting, appliances, and other residential consumption.<sup>4</sup>

Based on these energy savings, BTO's investments have had a net present value (NPV) of between \$6 billion and \$22 billion and a benefit-to-cost ratio of between 20-to-1 and 66-to-1 (using a 7% discount rate), and an internal rate of return of between 38% and 51% (Table ES-1).

 Table ES-1. Retrospective Investment Performance Metrics: Energy and Resource Benefits

| Metric                         | Low    | Mid    | High   |
|--------------------------------|--------|--------|--------|
| NPV (millions of 2015 dollars) |        |        |        |
| 7% Discount Rate               | 6,205  | 13,874 | 21,804 |
| 3% Discount Rate               | 17,820 | 40,912 | 64,945 |
| Benefit-to-Cost Ratio          |        |        |        |
| 7% Discount Rate               | 20:1   | 42:1   | 66:1   |
| 3% Discount Rate               | 37:1   | 84:1   | 132:1  |
| Internal Rate of Return        | 38%    | 46%    | 51%    |

Note: Benefits are retrospective; only energy savings realized through 2015 are included.

## **ES.4 ENVIRONMENTAL HEALTH BENEFITS**

The U.S. Environmental Protection Agency's (EPA's) Co-Benefits Risk Assessment (COBRA) model was used to provide firstorder estimates of avoided adverse health events and their economic value, termed environmental health benefits, resulting from avoided air emissions.

With the value of these environmental health benefits included, BTO's investments have had a NPV of between \$10 billion and \$34 billion and a benefit-to-cost ratio of between 30-to-1 and 102-to-1 (using a 7% discount rate), and an internal rate of return of between 46% and 61% (Table ES-2).

<sup>&</sup>lt;sup>3</sup> One quad is equal to 10<sup>15</sup> (a short-scale quadrillion) British Thermal Units (BTUs).

<sup>&</sup>lt;sup>4</sup> Source: U.S. Energy Information Administration, Office of Energy Consumption and Efficiency Statistics, Consumption and Expenditures Table 3.1, 2009 Residential Energy Consumption Survey: https://www.eia.gov/consumption/residential/data/2009/.

| Metric                         | Low    | Mid    | High    |
|--------------------------------|--------|--------|---------|
|                                |        |        |         |
| NPV (millions of 2015 dollars) |        |        |         |
| 7% Discount Rate               | 9,698  | 21,512 | 33,698  |
| 3% Discount Rate               | 28,034 | 63,863 | 101,039 |
|                                |        |        |         |
| Benefit-to-Cost Ratio          |        |        |         |
| 7% Discount Rate               | 30:1   | 65:1   | 102:1   |
| 3% Discount Rate               | 58:1   | 130:1  | 205:1   |
|                                |        |        |         |
| Internal Rate of Return        | 46%    | 55%    | 61%     |
|                                |        |        |         |

## Table ES-2. Retrospective Investment Performance Metrics: Energy and Resource Benefits and Environmental Health Benefits

Note: Energy and resource benefits are retrospective; only energy savings realized through 2015 are included. Environmental health benefits include benefits realized after 2015 that are associated with energy savings (and commensurate reductions in pollution) realized through 2015. For example, the impacts of reduced pollution in 2015 include incremental reductions in numbers of deaths and nonfatal heart attacks in future years.

## ES.5 CONSIDERING REMAINING EFFECTIVE USEFUL LIFE BENEFITS

The inclusion of benefits to reflect remaining effective useful life (EUL) of purchased and installed systems is an extension of the retrospective analysis, in that these are future benefits that have not yet been realized but which are reasonably assured to be realized in the future.

For this analysis, because BTO efforts related to flameretention-head oil burners were limited to the period from 1977 to 1981, actual and counterfactual trends in the adoption of flame-retention-head oil burners converged by 2010, so this technology area contributes nothing to the EUL analysis. However, because BTO R&D related to advanced refrigeration and heat pumps has been ongoing, attributable benefits are embodied in recently installed refrigerators, heat pumps, and central air conditioners. The retrospective analysis considered only energy savings estimated to have occurred through 2015. The EUL analysis considers also energy savings projected to occur over the remaining life of the equipment, assumed to be 15 years for refrigerators, heat pumps, and central air conditioners. Only equipment that was in use in 2015 is included in the EUL analysis; equipment purchased in 2016 or later is excluded, and no projected equipment sales are included.

When the remaining EUL years are considered for residential refrigerators, heat pumps, and central air conditioners, BTO's investments have a NPV of between \$7 billion and \$26 billion and a benefit-to-cost ratio of between 23-to-1 and 79-to-1 (using a 7% discount rate), and an internal rate of return of between 38% and 51% (Table ES-3).

| Metric                         | Low    | Mid    | High   |
|--------------------------------|--------|--------|--------|
| NPV (millions of 2015 dollars) |        |        |        |
| 7% Discount Rate               | 7,252  | 16,455 | 26,058 |
| 3% Discount Rate               | 23,613 | 55,196 | 88,496 |
| Benefit-to-Cost Ratio          |        |        |        |
| 7% Discount Rate               | 23:1   | 50:1   | 79:1   |
| 3% Discount Rate               | 49:1   | 113:1  | 180:1  |
| Internal Rate of Return        | 38%    | 46%    | 51%    |

### Table ES-3. EUL Investment Performance Metrics: Energy and Resource Benefits

Note: Benefits associated with residential refrigerators, heat pumps, and central air conditioners include products purchased through 2015, including estimated savings after 2015 during the products' effective useful lives (assumed to be 15 years). In comparison to Table ES-1, the internal rates of return change only slightly, because of the leverage of these high discount rates applied over more than 40 years, and round to the same whole percentage values.

With environmental health benefits included in the EUL analysis, BTO's investments have a NPV of between \$11 billion and \$39 billion and a benefit-to-cost ratio of between 34-to-1 and 116-to-1 (using a 7% discount rate), and an internal rate of return of between 46% and 61% (Table ES-4).

| Metric                         | Low    | Mid    | High    |
|--------------------------------|--------|--------|---------|
| NPV (millions of 2015 dollars) |        |        |         |
| 7% Discount Rate               | 10,911 | 24,501 | 38,624  |
| 3% Discount Rate               | 34,854 | 80,678 | 128,763 |
| Benefit-to-Cost Ratio          |        |        |         |
| 7% Discount Rate               | 34:1   | 74:1   | 116:1   |
| 3% Discount Rate               | 71:1   | 164:1  | 261:1   |
| Internal Rate of Return        | 46%    | 55%    | 61%     |

## Table ES-4. EUL Investment Performance Metrics: Energy and Resource Benefits and Environmental Health Benefits

Note: Benefits associated with residential refrigerators, heat pumps, and central air conditioners include products purchased through 2015, including estimated savings after 2015 during the products' effective useful lives (assumed to be 15 years), plus the value of avoided adverse health impacts from pollution reductions associated with those energy savings. In comparison to Table ES-2, the internal rates of return change only slightly, because of the leverage of these high discount rates applied over more than 40 years, and round to the same whole percentage values.

## **ES.6 ROBUSTNESS**

We consider the sensitivity of estimated benefits and investment performance metrics to changes in

- the composition of the group of expert informants with whom we spoke,
- assumptions about the average incremental energy efficiency improvement of flame-retention-head oil burners, and
- assumptions about the magnitude of the rebound effect for all three technology areas.

Based on these sensitivity analyses, the main finding is quite robust. Recall, taking the most restrictive estimate of benefits considering only retrospective benefits for the three technology areas selected from the larger HVAC, water heating, and appliance R&D portfolio and omitting environmental health benefits—the estimated benefits-to-costs ratio is between 20to-1 and 66-to-1 (Table ES-1). In alternative scenarios based on the most conservative alternative assumptions considered for the sensitivity analysis (Sections 9.1 through 9.4), more than half of the estimated benefits remain, strongly supporting the conclusion that BTO investments in HVAC, water heating, and appliance R&D have been worthwhile. Scenario analyses show that more than half of estimated benefits remain even under the most conservative alternative assumptions. Applying these assumptions to the *lower-bound benefits* estimates would still result in estimated benefits of more than ten times R&D investment costs, strongly supporting the conclusion that BTO investments in HVAC. water heating, and appliance R&D have been worthwhile.

This conclusion appears all the more robust in light of the following reasons to view the investment performance metrics as conservative lower bounds:

- The portfolio approach, taken here, considers the investment cost of the entire HVAC, water heating, and appliance R&D portfolio from 1976 (including investments made by DOE's predecessor agencies) through 2015, yet includes estimated benefits for only three technology areas within this portfolio.
- The retrospective energy and resource benefits, which are the basis for the top-line investment performance metrics, do not include environmental health benefits or benefits associated with the remaining EUL of equipment operating as of 2015 but due to accrue in 2016 and later.
- Benefits associated with the knowledge generated by BTO R&D, rated as the most important aspect of BTO's contributions by the experts with whom we spoke, are not quantified beyond their effects on energy efficiency of residential refrigerators, heat pumps, and air conditioners. Knowledge benefits are treated only qualitatively, in an analysis of patenting and patent citations.

For these reasons, a benefits-to-costs ratio of 20-to-1 is appropriately viewed as a lower bound on the estimated performance of BTO investments in HVAC, water heating, and appliance R&D.

# Introduction

Benefits are quantified for three technology areas within BTO's HVAC, water heating, and appliance R&D portfolio:

- 1. Flame-retention-head oil burners
- 2. Advanced refrigeration technology
- 3. Heat pump design model and alternative refrigerants research

The purpose of this study is to conduct a rigorous benefit-cost impact evaluation of the research and development (R&D) activities of the Building Technologies Office (BTO) in the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE). BTO's mission is to improve the energy efficiency of United States homes and buildings through a combination of energy performance standards, building energy codes, and R&D investments. The sole focus of this study is the R&D aspect of this mission. The study evaluates the performance of one of four long-standing R&D portfolios within BTO's Emerging Technologies Program:<sup>5</sup> R&D investments in heating, ventilation, and air conditioning (HVAC), water heating, and appliance technologies.

The analysis compares R&D investment costs for BTO's HVAC, water heating, and appliance technology portfolio from 1976 through 2015 against the benefits, attributable to those BTO investments, in three technology areas:<sup>6</sup>

 flame-retention-head oil burners, efforts known as Project Oilheat, in which BTO conducted technical research (testing fuel savings and verifying safety and reliability of retrofits) and market conditioning activities (disseminating test results, partnering with states' energy offices and oil dealer trade associations in communications campaigns and technician training), from 1979 to 1981;

<sup>&</sup>lt;sup>5</sup> The Emerging Technologies Program was called Technology and Consumer Products prior to the 1990s. Beginning in fiscal 2018, the program will be renamed Building Energy Research and Development.

<sup>&</sup>lt;sup>6</sup> DOE was established on October 1, 1977. The analysis includes investments in building technologies made by DOE's predecessor agencies in 1976 and the beginning of 1977.

- 2. **advanced refrigeration**, focusing on BTO's research related to the energy-efficiency of residential refrigerators;
- 3. **heat pump design model and alternative refrigerants research**, including BTO's R&D related to the energyefficiency of heat pump and air conditioning technology.

These three technology areas were selected from a larger portfolio of R&D investments made by BTO in HVAC, water heating, and appliance technologies, which is one of four longstanding R&D portfolios within BTO's Emerging Technologies Program. The other three portfolios in the Emerging Technologies Program address the technology areas of 1) lighting, 2) windows and building envelope, and 3) building energy modeling. In addition to the three technology areas selected for this evaluation, the HVAC, water heating, and appliance portfolio has included such other technology areas as thermally activated heat pumps, combustion and thermal distribution, and household appliances like dishwashers and clothes washers and dryers.

Benefits attributable to BTO's R&D investments in the three selected technology areas are compared to investment costs for the entire HVAC, water heating, and appliance R&D portfolio, yielding conservative estimates of the overall performance of the portfolio.

By focusing the quantitative benefits analysis on these three technology areas within BTO's HVAC, water heating, and appliances R&D portfolio and comparing estimated benefits to the cost of the entire portfolio, the analysis provides a conservative overall estimate of the portfolio's performance. The appropriateness of this "portfolio approach," as it is called, relies on the fact that a relatively small share of projects in high-risk R&D portfolios typically account for most of the benefits.<sup>7</sup> Projects destined for success cannot be identified at the time they are funded, and so a successful portfolio is one in which the rates of return on successful projects are large enough to also cover the costs of projects that do not achieve technical or commercial success. A retrospective evaluation can therefore select projects that are generally recognized to have been successful, quantify their benefits, and compare these benefits to the investment cost of the entire portfolio.

<sup>&</sup>lt;sup>7</sup> R&D is inherently risky; not every project is destined for technical or commercial success. Scherer and Harhoff (2000), for example, document highly skewed distributions of returns in eight datasets on inventions and innovations attributable to private sector firms and universities. The top 10% of projects captured between 48% and 93% of returns.

In this case, investment costs include all HVAC, water heating, and appliance R&D investments from 1976 through 2015. The quantified benefits stem from the three selected technology areas as follows:

- Benefits attributable to BTO's flame-retention-head oil burner investments were quantified in terms of residential heating oil saved by the earlier adoption of flame-retention burners that can be attributed to those investments. For this technology, benefits were quantified based on the faster adoption of a given technology enabled by BTO, rather than on the rate or magnitude of improvement in energy efficiency.
- 2. Benefits attributable to BTO's R&D investments in advanced refrigeration were quantified in terms of the energy saved by the more rapid improvement in the average energy consumption of residential refrigerators that can be attributed to those R&D investments. For this technology area, benefits were quantified based on the accelerated rate of improvement in the average energy performance of an entire class of products, comprising multiple technologies, rather than on the rate of adoption or energy efficiency of any discrete technology (like, e.g., a refrigerator compressor or motor).
- 3. Benefits attributable to BTO's R&D investments in heat pumps and air conditioning technology, focusing especially on the heat pump design model and alternative refrigerants research, were quantified in terms of the energy saved by the more rapid improvement in the average energy efficiency of residential heat pumps and central air conditioners that can be attributed to those R&D investments. For this technology area, as with advanced refrigeration, benefits were quantified based on the accelerated rate of improvement in the average energy performance of an entire class of products, comprising multiple technologies, rather than on the rate of adoption or energy efficiency of any discrete technology (like, e.g., a compressor or heat exchanger).

Considering only these benefits, we find the overall investment performance of BTO's HVAC, water heating, and appliance R&D portfolio to be excellent, having generated a benefit-to-cost ratio of at least 19-to-1. By foregoing estimation of benefits associated with other technology areas within the larger portfolio while including all investment costs, the portfolio approach yields a conservative estimate of the overall performance of BTO R&D investments, which should therefore be considered a lower bound.

BTO's HVAC, water heating, and appliance R&D portfolio includes numerous technologies for which benefits were not quantified as part of this study. The portfolio also includes technologies that were recently commercialized and that are therefore only beginning to have impacts that would be quantified here. To better appreciate why the estimates of investment performance presented here are lower bounds, we refer the reader to the report recently released by BTO, which highlights 27 technologies and 112 LED lighting components that BTO helped to develop and that resulted in commercial products between 2010 and 2015 (U.S. DOE, 2017). While not all of the investment costs associated with these technologies are included in this analysis (the cost of lighting, windows and building envelope, and building energy modeling R&D costs are not included), all HVAC, water heating, and appliance technology R&D costs are included even though most of the benefits of these technologies will accrue in the future and are therefore not quantified here.

For example, the impact of the following small subset of technologies is only beginning to be reflected in the shipmentsweighted average energy efficiencies of residential refrigerators, heat pumps, and air conditioners, and is therefore showing up as only a small fraction of the benefits estimated in this analysis:

- Preserva advanced sequential dual evaporator cycle for refrigerators, commercialized by Whirlpool in 2013;
- Everest polyolesters, next-generation refrigerant lubricants, commercialized by Chemtura in 2013;
- Wireless remote monitoring systems and controls for residential air conditioners and heat pumps, commercialized by Mainstream Engineering Corporation in 2014 and 2015;
- Advansor high-efficiency, low-emission refrigeration system, commercialized by Hillphoenix in 2014;
- Solstice N40, a low-global-warming refrigerant, commercialized by Honeywell in 2014.

These technologies, having been only recently commercialized, contribute little to a retrospective evaluation like this one; the

majority of their benefits will be realized in the future. Nevertheless, all BTO R&D investment costs associated with these technologies are included in this analysis.

The remainder of the report is organized as follows. Section 2 describes the methodology. Sections 3, 4, and 5 each focus on one of the three selected technology areas: Section 3 on flameretention-head oil burner, Section 4 on advanced refrigeration, and section 5 on the heat pump design model and alternative refrigerants research. Section 6 looks at a fourth technology area, which was not included in the quantitative analysis but which is a promising area for future impact analysis: water heating technology and especially heat pump water heaters. Section 7 collects the quantified benefits for the three selected technology areas and compares them with BTO R&D investment costs to develop the main investment performance metrics. Section 8 extends the retrospective analysis by also considering the remaining effective useful life of equipment installed and operating as of 2015. Section 9 concludes with a discussion of the robustness of our finding that BTO R&D investments have been worthwhile, based on sensitivity and scenario analyses.

# 2

# Methodology

This study identifies and documents four categories of benefits:

- energy and resource,<sup>8</sup>
- environmental health,
- energy security, and
- knowledge.

**Energy and resource benefits** are related to the value of goods and services in the economy and include energy-related savings. Advancements in technology are one avenue through which economic benefits increase. Economic benefits accrue to society through the improved performance of existing goods and services and/or through reductions in the cost of existing goods and services. Resource savings, such as energy savings, labor savings, capital savings, or material savings, are often significant sources of economic benefit. The largest source of economic benefits quantified in this study is energy savings.

**Environmental benefits** are principally changes in pollutant emissions associated with changes in the physical units of fossil-fuel energy consumed. Given the relationship between pollution and environmental health, another stream of economic benefits may accrue through a reduction in the incidence of adverse health events. These are termed environmental health benefits. Environmental health benefits may result from emissions changes related to changes in fossil fuel combustion.

**Energy security benefits** refer to the changes in risks to the national energy infrastructure, national energy independence, and exposure to exogenous (non-U.S.) volatility in fossil fuel trade.

<sup>&</sup>lt;sup>8</sup> Although energy is an economic resource, the term *energy and resource* is used in this evaluation given EERE's mission.

**Knowledge benefits** are derived from the creation and dissemination of explicit knowledge as codified in patents, publications, relational networks, and tacit knowledge traceable to BTO R&D.

Economic benefits for fuel savings and environmental health resulting from BTO R&D are quantified in monetary terms in this evaluation. Energy security and knowledge benefits are described in quantitative and qualitative ways, but not in monetary terms per DOE/EERE impact evaluation guidelines (Ruegg, O'Connor, and Loomis, 2014).

The first three categories of benefits follow a hierarchy. Energy and resource benefits—namely energy savings attributed to BTO R&D—are estimated first. Environmental health benefits and energy security benefits are then calculated based on those estimates. Estimates of energy savings attributable to BTO R&D thus form the foundation of the quantitative part of the analysis and yield the benefits used to develop the main investment performance metrics. These estimates were developed through an extensive primary data collection effort, involving 91 indepth interviews with experts having knowledge of BTO R&D contributions, industry trends, and other relevant factors for each of the three technology areas.

- Section 2.1 describes our approach to energy and resource benefits estimation, including our primary data collection protocol and our approach to isolating benefits attributable to BTO R&D.
- Section 2.2 describes our approach to environmental health benefits estimation.
- Section 2.3 describes our approach to energy security benefits estimation.
- Section 2.4 describes our approach to knowledge benefits analysis
- Section 2.5 discusses investment performance metrics.
- Section 2.6 discusses selection of technologies for benefits estimation.

# 2.1 APPROACH TO ENERGY AND RESOURCE BENEFITS ESTIMATION

Economic benefits were measured in terms of the energy savings associated with the BTO's R&D contributions to the development and adoption of three technologies: flameretention-head oil burners (with energy savings in terms of No. 2 heating oil saved), residential refrigerators, and residential heat pump and central air conditioning systems (with energy savings in terms of electricity saved). The monetized value of energy savings is the principal economic benefit to society associated with BTO's R&D investments. These energy-savings benefits are captured partly by consumers in the form of consumer surplus and partly by firms in terms of producer surplus (i.e., the generally higher profit margins on the most efficient products).

Here we discuss our approach to the expert informant interviews on which BTO-attributable impact estimates were based. We first describe the group of experts with whom we spoke. We then describe steps taken to ensure that the benefits estimated based on experts' views and opinions were limited to those that experts would attribute to BTO R&D and not to other contributing factors. In this discussion, we pay special attention to how impacts attributable to BTO R&D are distinguished from impacts attributable to energy performance standards. We describe our characterization of the "next-best technology" alternative" for each of the three selected technologies and discuss our rationale for focusing on market diffusion trends, in the case of flame-retention-head oil burners, and shipmentsweighted average energy efficiency of residential products, in the case of advanced refrigeration and alternative refrigerants research and heat pump design model.

## 2.1.1 Primary Data Collection Protocol

Expert informant interviews formed the basis of our analysis. Interviews were conducted with individuals having first-hand knowledge of one or more of the following aspects relevant to BTO's contributions to energy efficiency of HVAC and appliance technologies:

• The relevant BTO research activities

Estimated benefits attributable to BTO's R&D investments were based on in-depth interviews in which industry experts were asked to characterize what would have happened without BTO R&D. Care was taken to hold constant a range of other factors in order to isolate the impact of BTO R&D investments.

- R&D performed by private companies—both original equipment manufacturers (OEMs) and component manufactures
- Energy performance standards and the process by which new standards are promulgated.
- Relevant activities of industry associations, such as the Association of Home Appliance Manufacturers (AHAM) and Air-Conditioning, Heating, and Refrigeration Institute (AHRI), and advocacy groups, such as the American Council for an Energy-Efficient Economy (ACEEE) and Appliance Standards Awareness Project.
- Relevant activities of other government agencies, such as the U.S. Environmental Protection Agency (EPA) and the National Institute of Standards and Technology (NIST).
- Relevant industry trends.

Through these interviews, we gathered qualitative insights on the way in which BTO contributed to energy efficiency trends, and we gathered quantitative responses that enabled us to estimate the range of impacts that can be attributed to BTO. The qualitative component is intended to at least partly address the concern of Feller (2017) that evaluations like this one address not only the worth, or efficiency, of R&D investments but also provide DOE-EERE with greater insight into impact pathways, to inform the planning and management of future R&D activities.

Names of potential interview participants came from several sources including the following:

- RTI's independent research of industry conference proceedings, publications, regulatory documents such as Energy Star stakeholder meeting summaries, and industry associations such as ASHRAE technical committee. The following sources were especially helpful:
  - ACEEE Summer Study on Energy Efficiency, papers and proceedings from multiple years
  - ASHRAE Reach-in meeting minutes
  - Energy Star stakeholder meeting minutes

- Heat Pump Design Model Technical Documentation
- Referrals from experts interviewed
- Contacts embedded in program document and reports provided by BTO, and names provided by BTO.

The majority of persons contacted were drawn from RTI's independent research (Table 2-1). From all sources, we identified 397 potential contacts from 239 organizations. We were able to obtain contact information for 231 individuals, and we interviewed 91 individuals representing a total of 65 organizations (Table 2-2). The conditional probability of an individual being interviewed, conditional on their being identified as a potential interviewee, is significantly lower for potential contacts identified by RTI. The main reason is that these potential interviewees were much less likely to have contact information. The possible effects of this issue on our estimates of BTO-attributable impacts are discussed in Section 9, where sensitivity and scenario analyses are presented.

|                | Source of Potential Interviewee |            |      |     |       |  |
|----------------|---------------------------------|------------|------|-----|-------|--|
| Stakeholder    | RTI                             | Respondent | ORNL | вто | Total |  |
| Group          |                                 | Referral   |      |     |       |  |
| Manufacturer   | 112                             | 15         | 24   | 5   | 156   |  |
| National Lab   | 16                              | 7          | 0    | 9   | 32    |  |
| Federal Agency | 17                              | 1          | 1    | 1   | 20    |  |
| University     | 40                              | 7          | 3    | 1   | 51    |  |
| Industry/Trade |                                 |            |      |     |       |  |
| Association    | 14                              | 6          | 2    | 3   | 25    |  |
| Advocacy Group | 23                              | 9          | 1    | 1   | 34    |  |
| Consulting     | 6                               | 0          | 3    | 1   | 10    |  |
| Other          | 62                              | 6          | 0    | 1   | 69    |  |
| Total          | 290                             | 51         | 34   | 22  | 397   |  |

#### **Table 2-1. Sources of Potential Interviewees**

Note: Names obtained from multiple sources are reported under the source with the fewest names: BTO first, then Oak Ridge National Laboratory (ORNL), then respondent referral, then RTI.

|                               | Source of Potential Interviewee |                        |      |     |       |  |  |
|-------------------------------|---------------------------------|------------------------|------|-----|-------|--|--|
| Stakeholder<br>Group          | RTI                             | Respondent<br>Referral | ORNL | вто | Total |  |  |
| Manufacturer                  | 8                               | 7                      | 16   | 3   | 34    |  |  |
| National Lab                  | 4                               | 6                      | 0    | 6   | 16    |  |  |
| Federal Agency                | 4                               | 1                      | 0    | 1   | 6     |  |  |
| University                    | 6                               | 3                      | 2    | 0   | 11    |  |  |
| Industry/Trade<br>Association | 3                               | 4                      | 0    | 3   | 10    |  |  |
| Advocacy Group                | 1                               | 6                      | 1    | 0   | 8     |  |  |
| Consulting                    | 0                               | 0                      | 2    | 0   | 2     |  |  |
| Other                         | 0                               | 3                      | 0    | 1   | 4     |  |  |
| Total                         | 26                              | 30                     | 21   | 14  | 91    |  |  |

#### Table 2-2. Sources of Actual Interviewees

Note: Interviewees whose names we obtained from multiple sources are reported under the source with the fewest names: BTO first, then ORNL, then respondent referral, then RTI.

### 2.1.2 Attribution of Benefits to BTO R&D

The nature and magnitude of impacts attributable to BTO R&D were assessed through detailed interviews with informed industry experts and scientists and engineers at DOE laboratories. Ideally, the BTO-attributed impact is assessed by comparing actual observed outcomes with the counterfactual outcomes that would have been observed in the absence of BTO R&D. But the counterfactual outcomes cannot be observed, and it is not realistic to design a randomized, controlled experiment to identify the BTO impact.

We are therefore compelled to rely on expert opinions to characterize the counterfactual outcomes and thus reveal the BTO impact. In interviews, we asked experts to characterize what would have most likely happened in the absence of BTO R&D, holding all other factors constant. Because of the many other factors influencing observed outcomes (e.g., energy performance standards programs, private R&D and commercialization efforts by companies, the research and regulatory activities of other government agencies like EPA and NIST), this is a difficult thought experiment for interviewees to perform. At best, we can expect to capture what is, based on interviewee's perspectives and opinions, a reasonable range for the impacts that can be fairly attributed to BTO research.

To ensure that variation among interviewee's responses reflects, as nearly as possible, only true differences of opinion regarding BTO's impact, we took the following steps when conducting interviews:
1. Interview guides (Appendix A) presented relevant objective facts regarding (1) the actual observed outcomes most relevant for the technologies at issue (trends in market penetration of flame-retention-head oil burners and average energy efficiency of residential refrigerators, heat pumps, and central air conditioners) and (2) the factors that are most likely to have contributed to those outcomes.

2. We asked respondents to react to the information presented: Is it complete? Are there important factors missing that they would want to add?

3. We then asked respondents to describe (in qualitative terms) how the actual observed outcomes would be different without BTO R&D.

4. Finally, we asked respondents to quantify how observed outcomes or trends would have been different without BTO R&D (i.e., we asked them to characterize counterfactual trends in quantitative terms), so that the difference between actual and counterfactual trends could be interpreted as the impact attributable to BTO R&D. The exact approach to quantitative data collection was different for each of the three technologies and is therefore discussed separately in the respective technologies' sections.

## 2.1.3 Disentangling Impacts: R&D and Standards

Special attention was paid in interviews to the treatment of energy performance standards. Because BTO R&D could have affected the timing and levels of new standards, it would not necessarily be appropriate to hold those factors constant. Experts were therefore asked to hold constant the framework within which standards are developed and promulgated and characterize counterfactual trends without BTO R&D. If the absence of BTO R&D would, in the expert's opinion, have had an effect on the timing or levels of standards, then that would be reflected in her response. In this way, the impact of the standards program is to some extent excluded and the impact of the R&D is isolated.

To be sure, the R&D program and the standards program are complementary; on this point experts were unanimous, although the nature of this complementarity was different for

R&D and energy performance standards are complementary. BTO R&D would not have been as impactful had the standards programs not existed. However, the purpose of this evaluation was not to quantify the impact of the standards program but rather to isolate, to the extent practicable, the impacts attributable to BTO R&D. refrigeration versus space heating and cooling.<sup>9</sup> Therefore, the benefits attributed to BTO R&D are partly due to the standards program, in the sense that BTO R&D would not have been as impactful had the standards programs not existed. However, the purpose of this evaluation was not to quantify the impact of the standards program. Rather, our remit was to isolate, to the extent practicable, the impacts attributable to BTO R&D.

## *Qualitative Differences between Energy Performance Standards and the Montreal Protocol*

Whereas energy performance standards for appliances and heating and air-conditioning equipment are the purview of DOE and may be influenced at least indirectly by BTO R&D, international treaties like the Montreal Protocol are more removed, and exogenous to the interactions between DOE and industry related to energy performance standards.<sup>10</sup>

The Montreal Protocol on substances that deplete the ozone layer was agreed upon in 1987 and then revised eight times during the 1990s to accelerate its phase-in and increase its stringency. BTO's R&D in alterative refrigerants, together with R&D efforts at EPA and NIST, played an important role in industry being able to cost effectively meet these requirements for air conditioners and heat pumps. An evaluation of alternative refrigerants research performed by NIST, partly funded by DOE, estimated a benefits-to-cost ratio of 4-to-1, considering only R&D cost reductions realized by the private

<sup>&</sup>lt;sup>9</sup> For refrigerators, and appliances more generally, energy performance is not a key selling point for most consumers, who tend to be more interested in other features. Standards programs are therefore essential to influence companies to direct R&D toward energy performance. In contrast, manufacturers of heat pumps and central air conditioners do differentiate their product lines by energy performance, the highest-priced (highest profit margin) product lines being the most energy efficient. There, the effect of standards is to push manufacturers to incorporate the energy-efficient components and designs into lower-priced (lower profit margin), larger-market product lines sooner than they otherwise would. On the interplay between standards and R&D more generally, see Newell, Jaffe, and Stavins (1999), Porter and Van der Linde (1995), and Popp, Newell, and Jaffe (2010).

<sup>&</sup>lt;sup>10</sup> DOE is tasked with establishing energy conservation and efficiency standards under several pieces of legislation beginning with the Energy Policy and Conservation Act (EPCA) of 1979. The National Appliance Energy Conservation Act of 1987 directed the DOE to develop efficiency standards for consumer appliances and set out a schedule for updating them periodically. In 1992, the Energy Policy Act (EPAct) added standards for more appliances. For more details, see https://energy.gov/eere/buildings/history-and-impacts.

sector among the benefits (Shedlick, Link, and Scott, 1998). BTO R&D investments continue to fund alternative refrigerants research (Abdelaziz et al., 2015, 2016).

During the interviews, experts were asked if BTO research had any impact on the timing or stringency of the Protocol's revisions during the 1990s. The consensus was that, whereas BTO R&D helped industry in complying with the Protocol, it had no impact on the timing or stringency of the Protocol itself. Respondents indicated that the Montreal Protocol was an international effort to phase out CFCs and other ozone depleting substances and was driven almost exclusively by environmental concerns.

In contrast, DOE is directly responsible for establishing energy performance standards. In 1992 and 2006, Minimum Energy Performance Standards (MEPS) were put in place raising the minimum performance of air conditioners and heat pumps to 10 SEER (from 8 SEER) and to 13 SEER (from 10 SEER) respectively.<sup>11</sup> U.S. energy performance standards for residential refrigerators took effect in 1990, 1993, 2001, and 2014. Asked if BTO R&D had influenced either the timing or levels of energy performance standards, most experts credited BTO R&D with at least one of these types of effects. These results are discussed in greater detail in Sections 4 and 5.

#### 2.1.4 Estimation of Benefits Relative to the Next Best Technology Alternative

In this type of benefit-cost evaluation, the counterfactual situation is often defined in terms of the next best technology alternative. The question to consider is: In the absence BTO's R&D contributions under study, how would the development and adoption of new technologies have unfolded?

#### Flame-retention-head oil burner

In the case of the flame-retention-head oil burner, the next best available technology is assumed to be the incumbent nonflame-retention burners. But we go further than defining the counterfactual as a non-flame-retention burner in place of each

<sup>&</sup>lt;sup>11</sup> Heat pumps and central air conditioners are rated according to their seasonal energy efficiency ratio (SEER), which indicates the relative amount of energy needed to provide a specific heating or cooling output. Specifically, SEER is the ratio of heating or cooling output to the amount of energy consumed. Thus, a higher SEER represents greater energy-efficiency.

flame-retention burner. Flame-retention burners were available and had a very small presence in the market before DOE became involved. We characterize DOE's contribution not as the replacement of one technology with another, but rather as the accelerated market acceptance, and hence the accelerated diffusion of the flame-retention-type oil burners.

This choice foregoes estimation of a portion of the BTO impact. Experts involved in the flame-retention-head burner program described a highly collaborative, iterative process involving BTO (specifically Brookhaven National Laboratory), oil burner manufacturers, and furnace and boiler manufacturers. Manufacturers provided equipment to Brookhaven National Laboratory for successive rounds of testing. After each round, everyone learned from the results and used this information to improve designs for greater energy efficiency. The publication of these test results by a universally trusted third party drove a highly risk-averse industry to adopt the new technology in place of the old. This is the effect we quantify. Some interviewees suggested that the program also contributed to improvements in the new technology—by testing early designs of multiple manufacturers and providing feedback manufacturers used to improve designs for subsequent rounds of testing, and iterating this process—but we did not think we had sufficient information to attempt to quantify this effect.

## Advanced Refrigeration, Heat Pump Design Model and Alternative Refrigerants Research

For residential refrigerators, heat pumps, and central air conditioners, the characterization of the next best technology alternative is more nuanced. These products consist not of a single technology but rather complex systems of technologies: compressor, motor, controls, heat exchangers, refrigerant fluids and lubricants, and (in the case of refrigerators) insulation.<sup>12</sup>

Rarely if ever does such a technology emerge from a national laboratory in its final commercial form. Research at a national laboratory might inform companies' efforts to develop a new technology, as when high-quality refrigerant properties data

<sup>&</sup>lt;sup>12</sup> In the R&D, innovation, and technological change literature focusing on intellectual property rights, a distinction is made between discrete product industries—like chemicals—and complex product industries—like appliances, heat pumps, central air conditioners comprised of a large number of patentable elements. See Cohen et al. (2000).

generated by a national lab enables a company to design vapor-compression equipment to use a new refrigerant. Or a prototype of a component, like a heat pump compressor, might emerge from a national lab, in need of further development by a component manufacturer and testing by an OEM before it can be integrated into a commercial product.

Moreover, multiple technologies—both component and systems technologies, characterized by different consumer prices, producer costs, and energy efficiency levels—coexist in the market at any given time.

In this setting, it is not appropriate to think of a "BTO technology" and a next best alternative "non-BTO technology". Rather, BTO R&D enabled or contributed in various ways to private companies' efforts to develop and commercialize more energy-efficient products. We therefore conceptualize the nextbest-alternative technology as the average energy efficiency of products shipped in a given year that would have been observed without the BTO R&D contributions.

## 2.2 APPROACH TO ENVIRONMENTAL HEALTH BENEFITS ESTIMATION

Environmental benefits associated with BTO's R&D investments were quantified on the basis of energy savings. Emissions reductions were quantified by applying emissions factors to energy savings estimates. These emissions reductions were then fed into the Co-Benefits Risk Assessment (COBRA) model, which was developed by the U.S. EPA to enable users to obtain first-order approximations of benefits due to different air pollution mitigation policies. The COBRA model provides estimates of health effect impacts and the economic value of these impacts resulting from changes in the physical units of emitted pollutants. An overview of the COBRA model and how it works is available from U.S. EPA (2014, 2015). A brief overview of the COBRA model is provided here.

## **Overview of the COBRA Model**

At the core of the COBRA model is a source-receptor (S-R) matrix that translates changes in emissions to changes in PM concentrations. The changes in ambient PM concentrations are then linked to changes in mortality risk and changes in health

incidents that lead to health care costs and/or lost workdays. Figure 2-1 provides an overview of the modeling steps.





Source: U.S. EPA (2014).

#### Changes in Emissions → Changes in Ambient PM Concentrations

The user provides changes (decreases) in emissions of pollutants ( $PM_{2.5}$ ,  $SO_2$ ,  $NO_x$ , VOCs,  $NH_3$ ) and identifies the economic sector from which the emissions are being reduced. For this analysis, the impacted sectors were Residential Distillate Oil Combustion (flame-retention-head oil burner impacts) and Electric Utility Fuel Combustion (advanced refrigeration and heat pump design model and alternative refrigerants research impacts). These changes are in total short tons of pollutants by sector for the U.S. economy for the chosen analysis year. The economic sectors chosen determine the underlying spatial distribution of emissions and hence the characteristics of the human population that is affected.<sup>13</sup>

The S-R matrix consists of fixed transfer coefficients that reflect the relationship between annual average PM concentration values at a single receptor in each county (a hypothetical monitor located at the county centroid) and the contribution by PM species to this concentration from each emission source. This matrix provides quick but rough estimates of the impact of emission changes on ambient PM levels as compared with the detailed estimates provided by more sophisticated air quality models (U.S. EPA, 2015).

<sup>&</sup>lt;sup>13</sup> The COBRA model has a variety of spatial capabilities. However, for this study there was limited information on the specific location of pollution reductions. Thus, a national analysis was conducted where the national distribution of emissions was used to determine the emission location as input to the S-R matrix.

#### Changes in Ambient PM Concentrations → Changes in Health Effects

The model then translates the changes in ambient PM concentration to changes in incidence of human health effects using a range of health impact functions and estimated baseline incidence rates for each health endpoint. The data used to estimate baseline incidence rates and the health impact functions used vary across the different health endpoints. To be consistent with prior U.S. EPA analyses, the health impact functions and the unit economic value used in COBRA are the same as the ones used for the Mercury and Air Toxics Standards (MATS) Final Rule.

The model provides changes in the number of cases for each health effect between the baseline emissions scenario (included in the model) and the analysis scenario (input by the user). The different health endpoints are summarized in Table 2-3 and described briefly below. For additional detail on the epidemiological studies, functional forms, and coefficients used in COBRA, see Appendix C of the COBRA user's manual (U.S. EPA, 2015).

**Mortality** researchers have linked both short-term and longterm exposures to ambient levels of air pollution to increased risk of premature mortality. COBRA uses mortality risk estimates from an epidemiological study of the American Cancer Society cohort conducted by Krewski et al. (2009) and by a Six-City cohort by Laden et al. (2006). These two studies provide a high and low estimate of mortality associated with changes in ambient PM2.5. COBRA includes different mortality risk estimates for both adults and infants. Infant mortality is based on Woodruff et al. (1997). Because of the high monetary value associated with prolonging life, mortality risk reduction is consistently the largest health endpoint valued in the study.

**Nonfatal heart attacks** were linked by Peters et al. (2001) to PM exposure. Nonfatal heart attacks were modeled separately from hospital admissions because of their lasting impact on long-term health care costs and earning. COBRA provides a high and low estimate of incidence for nonfatal heart attacks based on differing literature.

| Health Effect                   | Description                                                                                                                                                              |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mortality                       | Number of deaths (adult or infant)                                                                                                                                       |
| Acute bronchitis                | Cases of acute bronchitis                                                                                                                                                |
| Nonfatal heart attacks          | Number of nonfatal heart attacks                                                                                                                                         |
| Respiratory hospital admissions | Number of cardiopulmonary-, asthma-, or pneumonia-related hospitalizations                                                                                               |
| CDV-related hospital admissions | Number of cardiovascular-related hospitalizations                                                                                                                        |
| Upper respiratory symptoms      | Episodes of upper respiratory symptoms (runny or stuffy nose; wet cough; and burning, aching, or red eyes)                                                               |
| Lower respiratory symptoms      | Episodes of lower respiratory symptoms: cough, chest pain, phlegm, or wheeze                                                                                             |
| Asthma emergency room visits    | Number of asthma-related emergency room visits                                                                                                                           |
| MRAD                            | Number of minor restricted activity days (days on which activity is reduced but not severely restricted; missing work or being confined to bed is too severe to be MRAD) |
| Work loss days                  | Number of work days lost due to illness                                                                                                                                  |
| Asthma exacerbations            | Number of episodes with cough, shortness of breath, wheeze, and upper respiratory symptoms in asthmatic children                                                         |

#### Table 2-3. Health Endpoints Included in COBRA

**Hospital admissions** include two major categories: respiratory (such as pneumonia and asthma) and cardiovascular (such as heart failure, ischemic heart disease). Using detailed hospital admission and discharge records, Sheppard et al. (1999) investigated asthma hospital emissions associated with PM, CO, and ozone; Moolgavkar (2000, 2003) found a relationship between hospital admissions and PM. COBRA includes separate risk factors for hospital admissions for people aged 18 to 64 and aged 65 and older.

**Acute bronchitis**, defined as coughing, chest discomfort, slight fever, and extreme tiredness lasting for a number of days, was found by Dockery et al. (1996) to be related to sulfates, particulate acidity, and, to a lesser extent, PM. COBRA estimates the episodes of acute bronchitis in children aged 8 to 12 from pollution using the findings from Dockery et al.

**Upper respiratory symptoms** include episodes of upper respiratory symptoms (runny or stuffy nose; wet cough; and

burning, aching or red eyes). Pope et al. (2002) found a relationship between PM and the incidence of a range of minor symptoms, including runny or stuffy nose; wet cough, and burning; aching or red eyes.

**Lower respiratory symptoms** in COBRA are based on Schwarz and Neas (2000) and focus primarily on children's exposure to pollution. Children were selected for the study based on indoor exposure to PM and other pollutants resulting from parental smoking and gas stoves. Episodes of lower respiratory symptoms are coughing, chest pain, phlegm, or wheezing.

**Asthma related emergency room visits** are primarily associated with children under the age of 18. Sheppard (2003) found significant associations between asthma ER visits and PM and CO. To avoid double counting, hospitalization costs (discussed above) do not include the cost of admission to the emergency room.

**Minor restricted activity days** (MRAD) in COBRA were based on research by Ostro and Rothschild (1989). MRADs include days on which activity is reduced but not severely restricted (e.g., missing work or being confined to bed is too severe to be an MRAD). They estimated the incidence of MRADs for a national sample of the adult working population, aged 18 to 65, in metropolitan areas. Because this study is based on a "convenience "sample of nonelderly individuals, the impacts may be underestimated because the elderly are likely to be more susceptible to PM-related MRADs.

**Work loss days** were estimated by Ostro (1987) to be related to PM levels. Based on an annual national survey of people aged 18 to 65, Ostro found that 2-week average PM levels were significantly linked to work loss days. However, the findings showed some variability across years.

**Asthma exacerbations** estimates were pooled from Ostro et al. (2001) and Mar et al. (2004) to calculate impacts of changes in air quality on asthmatic children. Cough, wheeze, and shortness of breath are all considered to be exacerbations.

#### Changes in Health Effects → Monetary Impacts

COBRA translates the health effects into changes in monetary impacts using estimated unit values of each health endpoint.

The per-unit monetary values are described Appendix F of the COBRA user's manual (U.S. EPA, 2012d). Estimation of the monetary unit values varies by the type of health effect. For example, reductions in the risk of premature mortality are monetized using value of statistical life estimates. Other endpoints such as hospital admissions use cost of illness units that include the hospital costs and lost wages of the individual but do not capture the social (personal) value of pain and suffering. COBRA allows users to choose between a discount rate of 3% or 7% to calculate the present value of health effects that may occur beyond the year 2017.

## Limitations

It should be noted that COBRA does not incorporate effects of many pollutants, such as carbon emissions or mercury. This has two potential implications. First, other pollutants may cause or exacerbate health endpoints that are not included in COBRA. This would imply that reducing incidences of such health points are not captured. Second, pollutants other than those included in COBRA may also cause a higher number of incidences of the health effects that are part of the model. This is also not captured in this analysis. Thus, the economic value of health effects obtained from COBRA may be interpreted as a conservative estimate of the health benefits from reducing emissions.

## 2.3 APPROACH TO ENERGY SECURITY BENEFITS ESTIMATION

Energy security benefits are measured in terms of the reduction of our nation's dependency on imported crude oil. Savings of heating oil associated with flame-retention-head burners and electricity savings associated with improvements in the efficiency of residential refrigerators, heat pumps, and central air conditioners are converted to avoided barrels of imported crude oil over the time period of the analysis. Following EERE's evaluation guidelines (Ruegg, O'Connor, and Loomis, 2014), no additional monetary value is assigned to energy security impacts, and so these impacts are not considered in the calculation of economic impact metrics (net present value, benefit-to-cost ratio, and internal rate of return).

Following Ruegg, O'Connor, and Loomis (2014), avoided imported crude oil in a given year is calculated by multiplying

avoided U.S. crude oil consumption by the fraction of crude oil imported in that year:

Avoided Imports = (Avoided Consumption) 
$$\times \left(\frac{\text{Imported Crude}}{\text{Total Crude Supplied}}\right)$$

This formula is operationalized as follows, using data on the supply and disposition of crude oil in the United States, downloaded from the U.S. Energy Information Administration (EIA, 2017b). For 1981 onward, the ratio of imported crude to total crude supplied is calculated by dividing U.S. Imports of Crude Oil by U.S. Refinery and Blender Net Input of Crude Oil. For the years 1971 through 1980, for which U.S. Refinery and Blender Net Input of Crude Oil is unavailable, the calculation is based on a different ratio of U.S. Imports of Crude Oil to an alternative denominator:

$$\begin{pmatrix} U.S.Field \\ Production \\ of Crude Oil \end{pmatrix} + \begin{pmatrix} U.S.Supply \\ Adjustment \\ of Crude Oil \end{pmatrix} + \begin{pmatrix} U.S. \\ Imports \\ of Crude Oil \end{pmatrix} - \begin{pmatrix} U.S. \\ Exports \\ of Crude Oil \end{pmatrix}$$

For 1981 onward, when it is possible to calculate both ratios, their correlation is essentially perfect (correlation coefficient of 0.9997). For those years, the simple ratio of imports to refinery inputs is given by adding 0.007 to 0.99 times the alternative ratio (based on a simple linear regression of the simple ratio on the alternative). Table 2-4 gives the percentages of imported crude for 1977 through 2015.

| Year | Percentage | Year | Percentage | Year | Percentage |
|------|------------|------|------------|------|------------|
| 1977 | 44.9%      | 1990 | 44.0%      | 2003 | 63.2%      |
| 1978 | 42.9%      | 1991 | 43.5%      | 2004 | 65.2%      |
| 1979 | 44.2%      | 1992 | 45.4%      | 2005 | 66.5%      |
| 1980 | 39.1%      | 1993 | 49.9%      | 2006 | 66.4%      |
| 1981 | 35.3%      | 1994 | 50.9%      | 2007 | 66.2%      |
| 1982 | 29.6%      | 1995 | 51.7%      | 2008 | 66.8%      |
| 1983 | 28.5%      | 1996 | 52.9%      | 2009 | 62.9%      |
| 1984 | 28.4%      | 1997 | 56.1%      | 2010 | 62.6%      |
| 1985 | 26.7%      | 1998 | 58.5%      | 2011 | 60.3%      |
| 1986 | 32.9%      | 1999 | 59.0%      | 2012 | 56.8%      |
| 1987 | 36.4%      | 2000 | 60.2%      | 2013 | 50.5%      |
| 1988 | 38.6%      | 2001 | 61.7%      | 2014 | 46.3%      |
| 1989 | 43.6%      | 2002 | 61.2%      | 2015 | 45.5%      |

Table 2-4. Percentage of U.S. Crude Oil Supply Imported.

Source: Calculated based on EIA (2017b).

The following sections explain how avoided consumption of crude oil is calculated from avoided consumption of heating oil (for the flame-retention-head oil burner) and avoided electricity consumption (for residential refrigerators, heat pumps, and central air conditioners).

## 2.3.1 Calculating Avoided Crude Oil Consumption: Flame-Retention-Head Oil Burner

A 42-gallon (U.S.) barrel of crude oil yields about 45 gallons of petroleum products because of refinery processing gain. Therefore, we assume that 45 gallons of heating oil saved equates to one barrel of crude oil saved.

This is an appropriate assumption notwithstanding the small fraction of refinery output that is heating oil.<sup>14</sup> The relative composition of refinery output is not fixed. As demand for heating oil falls, relative to the demand for other products (e.g., gasoline, jet fuel, and ultra-low-sulfur distillates), so does its share of refinery output. Therefore, assuming that refinery gain for heating oil specifically is roughly the average 7% for all refinery output, refinery demand for crude will fall by 1 barrel for every 45 gallons of heating oil taken away from total refinery output.

## 2.3.2 Calculating Avoided Crude Oil Consumption: Residential Refrigerators, Heat Pumps, and Central Air Conditioners

Crude oil saved by improvements in the energy efficiency of residential refrigerators, heat pumps, and central air conditioners is calculated in two steps. First, electricity savings are converted into savings of petroleum liquids. Then, we again adjust for refinery processing gain by multiplying barrels of petroleum liquid saved by 42/45 to obtain saved barrels of crude.

Savings of petroleum liquids in a given year are calculated by multiplying the number of barrels of petroleum consumed for electric utility generation by the ratio of DOE-attributed electricity savings to total U.S. electric utility generation.

<sup>&</sup>lt;sup>14</sup> In 2016, heating oil (included in "other distillates") accounted for less than 1% of refinery output (EIA, 2017a).

## 2.4 APPROACH TO KNOWLEDGE BENEFITS ANALYSIS

In addition to energy and other resource impacts, environmental impacts, and energy security impacts, a fourth category of impacts treated by this evaluation is Knowledge Benefits. The nature of R&D is that it generates new knowledge, thereby adding to the knowledge base from which additional invention and innovation draw. This chapter assesses selected knowledge benefits resulting from BTO's funding of R&D in HVAC, Appliances, and Water Heating technologies by examining patents and patent citations. Advanced refrigeration is covered by appliance patents. Heat pump design model and alternative refrigerants research, given our focus for this technology area on heat pumps and central air conditioners, is covered by HVAC. The patent analysis also covered a fourth technology area, which was not included in the quantitative analysis but which is a promising area for future impact analysis: water heating technology and especially heat pump water heaters.

## 2.4.1 Background

Knowledge Outputs of BTO related to its funding of HVAC, Appliances, and Water Heating encompass both explicit knowledge outputs such as knowledge embedded in patents, publications, presentations, models, prototypes, technology demonstrations, databases, and research tools, as well as tacit knowledge outputs such as the knowledge embodied in trained and experienced people, amplified by the formation of networks of skilled people and institutions.

Though all of these knowledge outputs are potentially important to generating direct and spillover benefits from BTO's R&D program, patents and citations of patents are considered particularly effective indicators of innovation. Past studies have shown a strong positive relationship between the frequency of patent citations and the technological importance and commercial value of the patents. Further, patents have the advantage of being measurable quantitatively and their dissemination traceable using objectively derived data.

## 2.4.2 Scope and Goals

Due to budgets constraints on the scope of this evaluation, priority has been given in this assessment to the identification

The intent of knowledge benefits analysis is to determine the impact of BTO R&D on subsequent developments both within and outside the areas of HVAC, appliances and water heating technologies, thereby capturing both direct and spillover knowledge impacts. and analysis of patents and publications cited by patents explicit knowledge outputs attributed to BTO funding in the designated technology areas.

This analysis of knowledge benefits—with its focus on patents and publications cited by patents—serves three goals:

- To measure the extent of the dissemination of BTOfunded knowledge benefits within the three areas of technology focus—HVAC, appliances, and water heating—and knowledge spillovers to other technology areas.
- To assess the comparative influence of BTO-funded knowledge benefits on downstream innovations by the leading innovators in each of the three technology areas.
- To provide supporting information that complements the quantitative assessment of impacts attributable to BTO R&D.

## 2.4.3 Methods Overview

The intent of this analysis is to determine the impact of BTO R&D on subsequent developments both within and outside the areas of HVAC, Appliances and Water Heating technologies, thereby capturing both direct and spillover knowledge impacts. The processes employed require the construction of data sets, followed by forward and backward tracing using citation analysis.

The **forward tracing** starts with the BTO-attributed<sup>15</sup> set of patents in each technology and looks for where they lead in terms of influence. The **backward tracing** starts with the set of relevant patents owned by the leading innovative companies in each technology area, and compares the influence of the BTO-attributed patent set with the companies' patent sets.

<sup>&</sup>lt;sup>15</sup> The term "BTO-attributed" is used to indicated patents that resulted largely from BTO funding of R&D, whether the R&D was carried out by DOE, DOE-sponsored laboratories, universities, private companies, or other organizations funded by DOE/BTO. All of these patents are not assigned to DOE; it is unlikely that DOE paid for patent-filing costs; and DOE often has not have paid 100% of the R&D that led to the patented invention. Using the approach described in detail in Appendix B, a set of patents were identified as BTO-attributed. Note that short-hand designations are sometimes used in the text for BTO-attributed, such as "the BTO set", or, for the three technology areas, "BTO-HVAC patent families", "BTO-Appliances patent families", and "BTO-Hot Water patent families".

At the individual patent level, the analysis identifies those BTO patents that have been particularly influential. Citations Indexes are used to highlight these patents.

Patents include those filed with the U.S. Patent Office (USPO), the European Patent Office (EP), and the World Intellectual Property Organization (WO), and are assembled using several search mechanisms. The BTO set was verified with BTO staff as attributable to, or highly likely attributed to, BTO-funded R&D. The set of patents of the leading innovative companies in each technology area are found by identifying the companies in each area that have the largest number of relevant patents assigned to them and listing the patents in the portfolio of each company. Then patents assigned to BTO and those assigned to the companies are grouped into patent families, where a patent family contains all of the patents and patent applications that result from the same original patent application (named the 'priority application'). For more details on the construction of the patent sets for the analyses, see Appendix B.

Citation analysis is the tool used for tracing the influence of the identified patents and publications. It relies on the fact that the front page of a patent document contains a list of referencesincluding earlier patents, scientific papers, and various other types of documents such as technical reports-that establish "prior art", that is, the state of the art at the time of the patent application. Patent citation analysis focuses on the links between generations of patents that are made by these prior art references. The approach is based on the idea that earlier patents and other documents cited by later patents help form the technological basis of the later patents, and, further, that the more highly cited these earlier patents and other documents are, the more important they likely have been to subsequent innovation. Thus, patent citations analysis has been used extensively to trace the influence of research on technological developments over time.

## 2.5 MEASURES OF SOCIAL ECONOMIC RETURN

Zvi Griliches (1958) and Edwin Mansfield et al. (1977) pioneered the application of fundamental economic insight to the development of estimates of private and social rates of return to public and private investments in R&D. Streams of investment outlays through time—the costs—generate streams The reliance of this study on in-depth interviews with experts in industry and other relevant sectors is very much in the tradition and spirit of Edwin Mansfield, who pioneered this type of research and thereby made immense contributions to the economics of R&D, innovation, and technological change. of economic surplus through time—the benefits. Once identified and measured, these streams of costs and benefits are used to calculate rates of return, benefit-to-cost ratios, and other performance measures. Such analysis can answer the evaluation question: What is the social rate of return to the program's investments? And more simply: Has the program overall been worthwhile?

This evaluation builds on the Griliches/Mansfield model in terms of comparing, in a systematic way, public benefits of BTO's R&D investments with the costs of those investments (see Link and Scott, 2010). Our reliance on in-depth interviews with experts in industry and other relevant sectors is very much in the tradition and spirit of Edwin Mansfield, who pioneered this type of research and thereby made immense contributions to the economics of R&D, innovation, and technological change.<sup>16</sup>

Three investment performance measures are calculated:

- net present value (NPV),
- benefit-to-cost ratio (BCR), and
- internal rate of return (IRR).

NPV, according to Circular A-94 of the Office of Management and Budget (OMB) (OMB, 1992, p. 3), is a standard evaluation criterion for deciding whether a government program can be justified on economic principles—the discounted monetized value of expected net benefits (i.e., benefits minus costs). NPV is computed by assigning monetary values to benefits and costs, discounting future benefits and costs using an appropriate discount rate, and subtracting the sum total of discounted costs from the sum total of discounted benefits. Discounting benefits and costs transforms gains and losses occurring in different time periods to a common unit of measurement. Generally, projects with positive NPV should be undertaken and those with negative NPV should not. Among those projects with positive NPVs, the larger the value of NPV the greater the net benefits to society.

For this analysis, benefits and costs are discounted to the beginning of 1976. Benefits are discounted as if they accrued at the end of each year. Costs are discounted as if they accrued at the beginning of each year. For example, total monetary benefits accruing in 1976 would be discounted by one year,

<sup>&</sup>lt;sup>16</sup> See Link and Scherer (2005).

benefits accruing in 1977 would be discounted by two years, and so on. Investment costs incurred in 1976 are not discounted, costs incurred in 1977 are discounted one year, and so on. Thus, NPV is calculated as *PVB* – *PVC*, where *PVB* and *PVC* are the present-valued (i.e., 1976-valued) benefits and costs, calculated as follows:

$$PVB = \sum_{y=1976}^{2015} B_y (1+r)^{1976-y-1}$$

$$PVC = \sum_{y=1976}^{2015} C_y (1+r)^{1976-y}$$

In these formulas,  $B_y$  represents the real-valued benefits in year y,  $C_y$  represents the real-valued costs in year y, and r is the discount rate. Note the extra year by which benefits are discounted. By real-valued, we mean that nominal dollars are converted to the constant dollars of a reference year, in this case 2015. This is done using an inflation index, in this case the consumer price index (CPI).

BCR is the ratio of the present value of benefits to the present value of costs. A BCR greater than 1 indicates that the present value of quantified benefits outweighs the present value of calculated costs. The larger the value of a BCR, the greater the net benefits to society. Using the formulas given above, BCR is calculated as the ratio of *PVB* to *PVC*.

IRR is the discount rate that sets NPV equal to zero, or it is the discount rate that would result in a BCR equaling 1. The IRR's value can be compared with conventional rates of return for comparable or alternative investments. An IRR value greater than the return on an alternative investment (generally measured as equal to the discount rate) is interpreted to mean that the project was, in a comparative sense, socially valuable. By thinking of the formulas given above as functions of the discount rate, PVB(r) and PVC(r), the IRR is found by numerical methods. It is the value of r for which PVB(r) = PVC(r).

Fundamental to the calculation of NPV and a BCR is the discount rate used to reference all values to the initial time period in which investment costs began. Following OMB (1992) guidelines, a 7% real (i.e., adjusted for inflation) rate of discount was used. The use of a real discount rate means that

Benefits attributable to BTO's R&D investments in selected technology areas are compared to investment costs for the entire HVAC, water heating, and appliance R&D portfolio, yielding conservative estimates of the overall performance of the portfolio.

all measured benefits and all investment costs are first converted into real, constant dollars to account for inflation, before they are discounted. According to OMB (1992, p. 8): "Constant-dollar benefit-cost analyses of proposed investments and regulations should report net present value and other outcomes determined using a real discount rate of 7 percent."

For comparative purposes, and following the more recent suggestion in OMB Circular A-4 (OMB, 2003), a 3% real rate of discount was also used in the NPV and BCR calculations in Sections 7 and  $8.^{17}$ 

## 2.6 TECHNOLOGY SELECTION FOR PORTFOLIO APPROACH

As alluded to in the introduction, this study employs a portfolio approach as a cost-effective alternative to evaluating individual R&D projects. By focusing the quantitative analysis on a few technology areas within BTO's larger R&D portfolio, the analysis supports conclusions about the entire portfolio. The appropriateness of focusing on only a few projects relies on the fact that a relatively small share of projects in high-risk R&D portfolios typically account for most of the benefits. Projects destined for success cannot be identified at the time they are funded, and so a successful portfolio is one in which the rates of return on successes are large enough to cover the cost of projects that do not achieve technical or commercial success,

<sup>17</sup> For federal economic evaluations, OMB issues directives on discounting and discount rates for different types of evaluations. Circular A-94 (OMB, 1992) directs the use of a 7% real discount rate for federal benefit-cost analysis. More recent guidance is provided by Circular A-4 (OMB, 2003), which pertains to benefit-cost analysis used as a tool for regulatory analysis. It notes that Circular A-94 stated that a real discount rate of 7% should be used in benefit-cost analysis as an estimate of the average before-tax rate of return to private capital in the U.S. economy. This rate is an approximation of the opportunity cost of capital. Circular A-4 further notes that OMB found in a subsequent analysis that the average rate of return to capital remained near 7%. It also points out that Circular A-94 recommends using other discount rates to show the sensitivity of the estimates to the discount rate assumption and notes that the average real rate of return on long-term government debt has averaged about 3%. Circular A-4 requires the use of both a 7% and a 3% real discount rate for a benefit-cost analysis conducted for regulatory purposes. When regulation primarily and directly affects private consumption (e.g., through higher consumer prices for goods and services), a lower discount rate is appropriate, and OMB suggests a 3% real rate of time preference. For the purpose of discounting constant dollar cash flows in this study, both rates are used—a 7% and a 3% real discount rate even though the purpose is not regulatory.

Benefits are quantified for three technology areas within BTO's HVAC, water heating, and appliance R&D portfolio:

- 1. Flame-retention-head oil burners
- 2. Advanced refrigeration technology
- 3. Heat pump design model and alternative refrigerants research

endemic features high-risk R&D portfolios. A retrospective evaluation like this one can therefore select projects that are generally recognized to have been successful, quantify their benefits, and compare these benefits to the investment cost of the entire portfolio.

This analysis compares the entirety of BTO's HVAC, water heating, and appliances R&D portfolio costs, from 1976 through 2015, against the benefits, attributable to those BTO investments, in three technology areas:<sup>18</sup>

- 1. **flame-retention-head oil burners**, efforts known as Project Oilheat, in which BTO conducted technical research (testing fuel savings and verifying safety and reliability of retrofits) and market conditioning activities (disseminating test results, partnering with states' energy offices and oil dealer trade associations in communications campaigns and technician training), from 1979 to 1981;
- 2. **advanced refrigeration**, focusing on BTO's research related to the energy-efficiency of residential refrigerators;
- 3. heat pump design model and alternative refrigerants research, including BTO's R&D related to the energy-efficiency of heat pump and air conditioning technology.

These three technology areas were selected from BTO's HVAC, water heating, and appliances R&D portfolio, which was the focus of this study and which is one of four long-standing R&D portfolios within BTO's Emerging Technologies Program. The other three portfolios in the Emerging Technologies Program address the technology areas of 1) lighting, 2) windows and building envelope, and 3) building energy modeling.<sup>19</sup> In addition to the three technology areas selected for this evaluation, the HVAC, water heating, and appliance portfolio has included such other technology areas as thermally activated heat pumps, combustion and thermal distribution, and household appliances like dishwashers and clothes washers and dryers.

<sup>&</sup>lt;sup>18</sup> DOE was established on October 1, 1977. The analysis includes investments in building technologies made by DOE's predecessor agencies in 1976 and the beginning of 1977.

<sup>&</sup>lt;sup>19</sup> More recently, BTO has added R&D portfolios addressing sensors and controls and transactive energy.

In addition to the three technologies selected, heat pump water heating technology was initially considered for inclusion in the quantitative impact analysis and later dropped, because the technology's relatively recent introduction to the market made it so that its strictly retrospective impacts were significantly lower than those of the three selected technology areas. BTO contributions to heat pump water heating technology are described in Section 6, together with a knowledge impacts analysis.

## 2.6.1 Technologies Considered for Inclusion but not Selected

The following technologies were considered for inclusion but not selected.

#### **Condensing Furnace and Boiler Materials**

Condensing furnace models (having annual fuel utilization efficiency [AFUE] of at least 90%) have commanded an increasing share of the nonweatherized gas furnace market since the early 1980s, increasing from less than 10% to around 50%. In northern states, the market share of condensing models has risen from 12% to more than 65%. This change has contributed to shipments-weighted average AFUE of nonweatherized gas furnaces from under 70% to more than 85%, a trend that represents significant energy savings. That condensing gas furnaces have any market presence at all may be largely attributable to DOE research. At the very least, the diffusion of gas condensing furnaces would have been delayed by some years had DOE not been able to quickly offer a solution to corrosion problems with early models.

Beginning in 1979, DOE collaborated with the Gas Research Institute (GRI) to develop materials and furnace design techniques for condensing gas furnaces. DOE awarded four contracts through Brookhaven National Laboratory (BNL) and four through GRI. The work was performed in collaboration with the Canadian Gas Research Institute. Early work indicated that common stainless steels were adequate for gas condensing furnaces. DOE continued to research materials that could withstand the more corrosive environment of oil condensing furnaces and was therefore able to respond quickly when gas furnaces installed in homes experienced significant corrosion problems. (The corrosion was caused by a chloride ion mechanism; household cleaning products containing chlorine were discovered to cause the corrosion.) The stainless steel alloys DOE had been investigating for use in oil furnaces proved to be the answer for gas condensing furnaces.

#### Gas Condensing Water Heating

From 1999 to 2004, DOE, through NETL, funded A.D. Little/TIAX to develop a residential condensing gas water heater. The Vertex was first commercialized in the second quarter of 2006 by A.O. Smith. The design innovation in the product is a helical heat exchanger, which increases heat exchange by causing the exhaust gases to swirl and circulate. The first commercialized model achieved 90% thermal efficiency. Compared with a conventional, noncondensing gasfired water heater with 78% to 80% efficiency, the first model reduces energy consumption by about 30%. Additionally, the glass-lined carbon steel heat exchanger, in place of stainless alloy, made manufacture simpler and less costly.

A second model, the Vertex 100, with 96% efficiency, was commercialized in the second quarter of 2008. The heat exchanger technology has also been used in the Cyclone XHE line of commercial water heaters, commercialized in 2007. Cyclone BTH-300 and BTH-400 models achieve 99% efficiency.

## Gas Commercial Rooftop Heat Pump

The result of an R&D collaboration between ORNL and IntelliChoice, the NextAire Packaged Gas Heat Pump achieves the following advantages over electric rooftop heat pumps:

- Avoids the energy losses inherent in electrical energy generation, transmission, and conversion to mechanical energy by the heat pump motor.
- Reduces peak demand for electrical power for heating and air conditioning.
- By smoothing seasonal fluctuations in demand for natural gas, enables gas utilities to reduce costs by buying gas at annual instead of spot prices.

DOE made the following important contributions to the development of the NextAire, as expressed by industry experts familiar with its devleopment:

• For every product in every level of development at the IntelliChoice Las Vegas R&D center, there was a "sister unit" at ORNL.

- The psychrometric test chamber at ORNL was critical to development but was beyond IntelliChoice's capacity to reproduce independent of ORNL.
- ORNL personnel brought "priceless" experience and expertise to the table, especially for the development of many components and design elements such as the angle at which a coil sits, the type of coil, the material in the coil, the type of refrigerant, the number of fans for optimal airflow; electronics, and software development (algorithms and software).
- The complementary expertise of chemical engineers at ORNL was especially helpful (to complement the expertise of mechanical engineers—thermodynamic engineers—at IntelliChoice).

NextAire was first commercialized in a limited way in 2004, through field tests on military bases. All these units are still going strong. The NextAire was commercialized for public consumption in 2009 and 2010.

## Ground-Coupled Integrated Heat Pump

The major advance of this technology is the integration of yearround, on-demand water heating into a heat pump space conditioning system. (A family of four spends \$500 to \$600 per year for water heating, and the ClimateMaster Trilogy 45 can cut that in half, conservatively). In addition, with a variable speed compressor, the Trilogy has a cooling energy efficiency ratio of 45—greater than that of the Waterfurnace 7 Series (at 41, also with a variable speed compressor) or the best 2-speed compressor ground-coupled heat pumps (at 30).

The Trilogy was available in a limited release from 2012 to 2014; its full launch occurred in March 2014.

An even larger impact, still in part attributable to BTO, may come from efficiency gains in other ClimateMaster products. Many components looked at for the Trilogy were rolled into mature products well before the Trilogy was commercialized. One example was a variable-speed electronically commutated motor (ECM) driven pump, 50% more efficient than the next best alternative—still more efficiency is generated when tweaks are made on the control side to optimize for the new ECMdriven pumps.

#### Aerosol Duct Sealing and Research to Support ASHRAE Standard 152

DOE funded early R&D on the Aeroseal aerosol duct sealing technology, which is a more durable and cost-effective approach to duct sealing than the manual application of mastic (which is often impractical post-construction when the duct work is all but inaccessible).

The impacts go beyond the number of Aeroseal-treated homes and commercial buildings. The availability of the technology and ASHRAE Standard 152 (sealing test method for determining the seasonal efficiency of residential distribution systems, including forced air, hydronic, etc., developed by DOE researchers at BNL and LBNL) has given some impetus to states (California, certainly, Florida, and also others) to tighten building codes.

# 3

## Flame-Retention-Head Oil Burner

This section describes BTO R&D related to flame-retention-head oil burner technology and presents estimates of benefits attributable to this R&D. Our approach to impact estimation for this technology differs in important ways from our approach to the other two technology areas. Whereas impact estimates for advanced refrigeration and heat pump design model and alternative refrigerants were based on formal interviews using interview guides approved by the Office of Management and Budget (OMB) pursuant to the Paperwork Reduction Act, impact estimates for the flame-retention-head oil burner were based on preliminary scoping interviews with eight experts and a subsequent follow-up with these experts in which we shared a summary of our analysis and elicited further comments. In contrast, we conducted 44 formal interviews for advanced refrigeration and 39 for heat pump design model and alternative refrigerants.

Despite the small number of experts with whom we spoke, because of their depth of knowledge and the novelty of our approach to impact estimation, we believe we have made a useful contribution in the context of earlier attempts to quantify the impact of this technology, which we summarize at the end of Section 3.5.

## 3.1 TECHNOLOGY OVERVIEW

BTO conducted technical research (testing fuel savings and verifying safety and reliability of retrofits) on flame-retentionhead oil burners as part of a broader combustion research program from 1977 to 1979. BTO also conducted market conditioning activities (disseminating test results, partnering with states' energy offices and oil dealer trade associations in communications campaigns and technician training) through the Fuel Oil Marketing and Demonstration Program from 1979 to 1981. These activities have also been referred to as **Project Oilheat**, which comprises three related programs:

- 1977-1979. Combustion Research Program and Oil Heat R&D Program. Brookhaven National Laboratory (BNL) evaluated alternative energy-saving technologies in the lab and selected FRHOB for additional testing in the field. Tests demonstrated fuel savings ranging from 5% to 22%, and a payback period for a refit FRHOB of one to three years.<sup>20</sup>
- 1978-1981. Fuel Oil Conservation Marketing and Demonstration Program (FOCM). BTO, through BNL, partnered with 10 states (state energy offices, dealer associations, dealers) in dissemination of test findings, marketing campaigns, and technician training. NY and MA received grants for 1978-1979 heating season. CT, NH, NJ, WI, and PA received grants in 1979. RI, ME, and NC received grants in 1980.
- 1979-1981. Oil Refit Program and Oil Refit Option Qualification Field Test Program. BNL provided technical support to the FOCM pilot program which tested Long Island, NY homeowners' heating units for efficiency and offered suggestions for upgrading them. From 1980 to 1981, the Oil Refit Option Qualification Field Test Program investigated and evaluated additional options in the market.<sup>21</sup>

Flame-retention-head oil burners were commercially available by the mid-1970s as an energy saving device but had not achieved significant market penetration despite the first energy price shock in 1973; by 1986 flame-retention-head burners

<sup>&</sup>lt;sup>20</sup> See Batey et al. (1978), McDonald et al. (1979), and McDonald et al. (1980). Butcher et al. (1992) report average fuel savings of 15% when only the burner is replaced, increasing to as much as 40% savings when the entire heating unit is replaced.

<sup>&</sup>lt;sup>21</sup> See Brookhaven Bulletin, September 18, 1981 and June 18, 1982. Accessed at https://www.bnl.gov/bnlweb/pubaf/bulletin/1947-1995/1981/18091981.pdf and https://www.bnl.gov/bnlweb/pubaf/ bulletin/1947-1995/1982/18061982.pdf, most recently on June 26, 2017.

were standard on virtually all new furnace and boiler installations.<sup>22</sup>

#### **1980 Newspaper Advertisement for Project Oilheat**



To quantify the additionality of BTO R&D activities, it is necessary to characterize what would have happened without the BTO activities. Specifically, what would have been the diffusion trend of the flame-retention-head oil burner without Project Oilheat? By comparing this counterfactual diffusion trend with the actual diffusion trend, we can estimate that impact attributable to BTO.

## **3.2 SAMPLE OF INTERVIEWEES**

To construct realistic counterfactual diffusion trends, we spoke with experts familiar with BTO R&D activities, other contributing factors, and the oil heating market generally.

<sup>&</sup>lt;sup>22</sup> See Brown et al. (1989).

Initially, a set of eight preliminary scoping interviews were conducted for the flame-retention-head oil burner, to help design a formal interview guide for a larger number of interviews, as was done for the other two technology areas. However, a round of additional formal interviews was foregone for a number of reasons. The BTO activities and the impacts attributable to those activities were completed a relatively long time ago (36 to 40 years), the flame-retention-type burners accounting for 100% of all new burners by the late 1980s. The experts with whom we spoke, when asked for their recommendations of other individuals with first-hand knowledge of the program, frequently told us of colleagues from that time who had since retired. Several told us of colleagues who had passed away.

A summary of qualitative and quantitative findings from those eight scoping interviews was shared with those same eight individuals, which they were asked to confirm or revise. The following section summarizes qualitative insights gleaned from the original eight interviews and the round of follow-up conversations.

## 3.3 SUMMARY OF QUALITATIVE FINDINGS

The following qualitative statements are representative of the range of views shared by these experts in interviews:

- The lab testing was impactful. The field testing was extremely impactful. The field testing had a greater direct impact on the market, demonstrating that the FRHOB worked in realistic settings. The lab testing was crucial in that it identified the FRHOB as a promising technology from among several candidate technologies. A second crucial contribution of the lab testing was to explain where energy savings were coming from—to understand the mechanism of why the FRHOB had the impact it did.
- **Independent third-party testing was key**. The key thing that helped to accelerate adoption of the FRHOB technology was the thorough, independent, impartial testing, verification, and documentation of results by a national lab. The results were unassailable.

- **Collaboration among Brookhaven National** Laboratory, equipment manufacturers, and fuel oil marketers was a key to success. Equipment manufacturers provided equipment for testing and fed test results back into their product development to improve energy efficiency. BNL staff working directly with manufacturers and installers helped to overcome the industry's cautious tendencies toward adopting new technology. One question raised at the time was the best way to incentivize burner installers (who were typically connected with an oil supplier) to promote a higher efficiency burner, which would reduce the demand for oil and thus tend to reduce suppliers' revenues. The problem was ultimately solved by a combination of consumer demand for improved efficiency and the ability of dealers to address that demand by marketing the more efficient burners to consumers based on the impartial data produced by the national labs.
- **Oil price shocks undoubtedly played a role.** The second oil price shock in 1979-1981 is certainly part of the story, but it is not the whole story by any means. Without BTO, the transition to FRHOB would have been more gradual.

## 3.4 SUMMARY OF QUANTITATIVE FINDINGS

Figure 3-1 shows the market penetration trend for flameretention-head burners under three scenarios: the actual trend (scenario 1) and two possible counterfactual trends (scenarios 2 and 3) representing alternative diffusion paths that might have been observed without the BTO R&D contributions discussed above. Scenarios 2 and 3 reflect the range of responses experts shared in the scoping interviews when asked to describe what the adoption trend would have looked like without BTO. Most described the trend in words. Two drew the curves. The shaded bands indicate oil price shocks.



Figure 3-1. Percentage of New Burners Sold of Flame-Retention Type, Actual and Counterfactual (without BTO)

Note: Counterfactual trends are based on interviews with experts familiar with BTO's activities, other contributing factors, and the oil heating market generally. The actual trend is a best estimate, based on Brown et al. (1989) and input from the experts interviewed. Specifically, the actual trend line was drawn to hit 100% in 1986, based on Brown et al.: "As of 1986, the three major manufacturers of oil burners manufacture and sell only FRHOBs" (p. 55). This, combined with the fact that the "FRHOB is a low technology, standard item" (Brown et al., 1989, p. 57) led us to conclude that it was unlikely any manufacturers were still producing non-flame-retention burners by 1986. Experts interviewed agreed that flame-retention burners were the industry standard by 1986.

Scenario 1: Actual Percentage of New Burners Sold (black line). The black line reflects our best estimate of the percentage of new burner installations that were the flame-retention-head type.

Scenario 2: Low DOE Impact (orange line). This scenario represents the perspectives of experts who offered a more conservative assessment of the impact of the DOE contributions.

Scenario 3: High DOE Impact (gray line). This scenario represents the perspectives of experts who attributed greater impact to the DOE contributions.

The impact attributed to BTO is represented by the difference between the actual and counterfactual trends. Thus, the level of impact attributed to DOE becomes greater as the counterfactual trend is displaced farther from the actual, reflecting a more gradual hypothesized diffusion of flame-retention type burners hypothesized in the absence of BTO R&D. The actual and counterfactual trends do not diverge before 1977.

To validate the range of impacts attributed to BTO, a version of Figure 3-1 was shared back with the experts with whom we spoke. We asked these experts to weight all three scenarios according to their relative likelihood in the absence of the DOE research contributions. Although all of the experts thought that BTO had had at least some impact on the adoption of FRHOB technology, we allowed them to assign some weight to the Actual trend, to indicate a level of impact below that of the lowimpact scenario. For example, if one thought the most likely scenario, without BTO contributions, should lie half way between the "Actual" and the "Low DOE Impact" scenarios, one could allocate 50% weight to each of these two scenarios.

Six of the eight individuals responded and three of these provided weights. Two simply assigned 100% weight to the High DOE Impact scenario (essentially reiterating the points of view they had expressed in the first round of interviews). The third assigned 1% to Actual (or no DOE impact), 9% to Low Impact, and 90% to High Impact. The three who did not provide weights indicated that the high and low scenarios described a reasonable range of possibilities. Rather than use the weighted average of the scenarios, we keep the high and low scenarios as our upper and lower bounds; the fact that three respondents strongly favored the high-impact scenario gives us confidence that in doing so we are not overstating the BTO impact as perceived by these experts.

## 3.5 ENERGY AND RESOURCE BENEFITS

This section develops estimates for the amount of oil saved, attributable to BTO, based on the difference between actual and counterfactual trends summarized in Section 3.4. Estimates are developed in steps, explaining all assumptions, so that all calculations can be readily understood.

**Step 1.** First, the diffusion trends described in Figure 3-1 are converted into estimates of actual and counterfactual percentages of all operating residential oil burners that are the flame-retention type (Figure 3-2). We use the actual number of oil-heated households reported by EIA (2011, Table 2.7) and base estimates of new burner sales on the number of older burners reaching the end of their life in a given year and the

change in the number of oil-heated households between that year and the last. For example, if 1 million older burners are retired in a year when the number of oil-heated households falls by 600,000, then 400,000 new burners must be purchased. The number of burners retired in each year is not known and estimates were made based on assumptions about the typical life of a burner.

Complicating these assumptions, the number of households heating with oil peaked at 17.2 million in 1973 and fell to 12.4 by 1985 (EIA, 2011, Table 2.7). Simple assumptions about the life of a burner (such as attributing a constant life of anywhere between 15 and 20 years to all burners) therefore resulted in unrealistic outcomes, such as negative sales of new burners in some years and unrealistically high sales in other years. Brown et al. (1989) and Butcher et al. (1992) report new burner sales of roughly 400,000 to 500,000 per year in the 1980s. To approximate these figures, it was necessary to assume a distribution for burner life. For most years, all burners were assumed to last through 10 years, 99.5% survived at least 11 years; 98.5% survived at least 12 years, 96.5% survived at least 13 years, 92.5% survived at least 14 years, 84.5% survived at least 15 years, 72% survived at least 16 years, 57.5% survived at least 17 years, 42.5% survived at least 18 years, 28% survived at least 19 years, 15.5% survived at least 20 years, 7.5% survived at least 21 years, 3.5% survived at least 22 years, 1.5% survived at least 23 years, 0.5% survived 24 years and expired in their 25<sup>th</sup> year. To avoid unrealistically high or low numbers of new burners in some years, it was necessary to use somewhat more aggressive attrition rates for 1974 through 1985.<sup>23</sup>

Our assumptions produce total numbers of flame-retention burners in use that are consistent with Brown et al. (1989), namely "well over 2,000,000 in 1985" (p. 55), and Butcher et al. (1992), namely "5 million flame-retention oil burners in use today representing about 45% of the oil-heated homes in the U.S.A" (p. 1). We have 1.9 million flame retention burners in

<sup>&</sup>lt;sup>23</sup> Specifically, this was done to avoid negative numbers for 1980 and 1981, when the number of oil-heated homes fell most sharply (we estimate 240,000 and 170,000 new burners in those years), and to avoid unrealistically high numbers of new burners when the number of oil-heated homes levels off from 1984 to 1989 (we estimate 750,000 new burners in 1987, 630,000 in 1988, and 790,000 in 1989). Detailed figures are available from the authors.

1985 (15% of oil-heated homes), becoming 2.5 million in 1986, and 5.2 million in 1990 (43% of oil-heated homes).

Step 1 is summarized in Table 3-1 and Figure 3-2. Note that the actual and counterfactual trends do not diverge before 1977. The years 1971 to 1976 are included to show the percentage of new burners of the flame-retention type for all years for which it is assumed to be strictly positive.



Figure 3-2. Percentage of Operating Burners of Flame-Retention Type, Actual and Counterfactual (without DOE)

Note: Percentages of operating burners are based on the percentage of new burners of flame-retention type (Figure 3-1) and additional assumptions about the distribution of burners' lifespans. Our assumptions produce total numbers of flame-retention burners in use that are consistent with Brown et al. (1989), namely "well over 2,000,000 in 1985" (p. 55), and Butcher et al. (1992), namely "5 million flame-retention oil burners in use today representing about 45% of the oil-heated homes in the U.S.A" (p. 1). We have 1.9 million flame retention burners in 1985 (15% of oil-heated homes), becoming 2.5 million in 1986, and 5.2 million in 1990 (43% of oil-heated homes). Details are available from the authors.

|      | Percentage of New Burners |              |              | Percentage of Operating Burners |              |              |
|------|---------------------------|--------------|--------------|---------------------------------|--------------|--------------|
| Year | Actual                    | Low          | High         | Actual                          | Low          | High         |
|      |                           | Counterfact. | Counterfact. |                                 | Counterfact. | Counterfact. |
| 1971 | 0.50                      | 0.50         | 0.50         | 0.04                            | 0.04         | 0.04         |
| 1972 | 1.00                      | 1.00         | 1.00         | 0.13                            | 0.13         | 0.13         |
| 1973 | 1.60                      | 1.60         | 1.60         | 0.27                            | 0.27         | 0.27         |
| 1974 | 2.40                      | 2.40         | 2.40         | 0.49                            | 0.49         | 0.49         |
| 1975 | 3.60                      | 3.60         | 3.60         | 0.75                            | 0.75         | 0.75         |
| 1976 | 5.00                      | 5.00         | 5.00         | 1.07                            | 1.07         | 1.07         |
| 1977 | 6.50                      | 6.45         | 6.40         | 1.39                            | 1.39         | 1.38         |
| 1978 | 8.50                      | 8.20         | 7.80         | 1.77                            | 1.76         | 1.74         |
| 1979 | 12.00                     | 10.50        | 9.20         | 2.19                            | 2.13         | 2.06         |
| 1980 | 20.00                     | 14.00        | 11.00        | 2.61                            | 2.44         | 2.33         |
| 1981 | 40.00                     | 20.00        | 12.80        | 3.20                            | 2.78         | 2.58         |
| 1982 | 68.00                     | 29.00        | 14.80        | 5.26                            | 3.74         | 3.13         |
| 1983 | 86.00                     | 40.00        | 17.60        | 8.03                            | 5.11         | 3.83         |
| 1984 | 94.00                     | 52.00        | 22.00        | 11.06                           | 6.79         | 4.54         |
| 1985 | 98.00                     | 64.00        | 30.00        | 15.26                           | 9.53         | 5.83         |
| 1986 | 99.50                     | 75.00        | 40.00        | 19.67                           | 12.87        | 7.59         |
| 1987 | 100.0                     | 84.00        | 50.00        | 25.26                           | 17.60        | 10.40        |
| 1988 | 100.0                     | 90.00        | 60.00        | 30.50                           | 22.26        | 13.47        |
| 1989 | 100.0                     | 94.00        | 70.00        | 37.10                           | 28.39        | 17.99        |
| 1990 | 100.0                     | 96.00        | 80.00        | 43.12                           | 33.86        | 22.29        |
| 1991 | 100.0                     | 97.40        | 86.50        | 50.17                           | 40.38        | 27.73        |
| 1992 | 100.0                     | 98.20        | 91.00        | 59.09                           | 49.03        | 35.61        |
| 1993 | 100.0                     | 99.00        | 94.50        | 67.64                           | 57.38        | 43.44        |
| 1994 | 100.0                     | 99.60        | 96.50        | 75.52                           | 65.19        | 50.91        |
| 1995 | 100.0                     | 100.0        | 98.00        | 82.22                           | 71.89        | 57.40        |
| 1996 | 100.0                     | 100.0        | 99.00        | 87.23                           | 76.63        | 61.61        |
| 1997 | 100.0                     | 100.0        | 99.50        | 91.31                           | 80.50        | 64.97        |
| 1998 | 100.0                     | 100.0        | 100.0        | 94.85                           | 84.37        | 69.01        |
| 1999 | 100.0                     | 100.0        | 100.0        | 97.60                           | 87.53        | 72.46        |
| 2000 | 100.0                     | 100.0        | 100.0        | 99.80                           | 90.18        | 75.41        |
| 2001 | 100.0                     | 100.0        | 100.0        | 100.0                           | 92.70        | 78.39        |
| 2002 | 100.0                     | 100.0        | 100.0        | 100.0                           | 95.27        | 81.51        |
| 2003 | 100.0                     | 100.0        | 100.0        | 100.0                           | 98.09        | 85.01        |
| 2004 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 88.98        |
| 2005 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 93.07        |
| 2006 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 96.91        |
| 2007 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 100.0        |
| 2008 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 100.0        |
| 2009 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 100.0        |
| 2010 | 100.0                     | 100.0        | 100.0        | 100.0                           | 100.0        | 100.0        |

Table 3-1. Actual and Counterfactual Percentage of Burners of Flame-Retention Type

Notes: Percentages of new burners are the numbers underlying Figure 3-1. Percentages of operating burners (shown in Figure 3-2) are based on the percentages of new burners average and additional assumptions about the distribution of burners' lifespans. Our assumptions produce total numbers of flame-retention burners in use that are consistent with Brown et al. (1989), namely "well over 2,000,000 in 1985" (p. 55), and Butcher et al. (1992), namely "5 million flame-retention oil burners in use today representing about 45% of the oil-heated homes in the U.S.A" (p. 1). We have 1.9 million flame retention burners in 1985 (15% of oil-heated homes), becoming 2.5 million in 1986, and 5.2 million in 1990 (43% of oil-heated homes). Details are available from the authors. The actual and counterfactual trends do not diverge before 1977.

**Step 2.** Next, counterfactual consumption of No. 2 Heating Oil is derived from its actual consumption and the actual and counterfactual percentages of operating burners that are the flame-retention type. These calculations are based on the following assumptions:

Assumption 1: No. 2 heating oil sales account for 98% of U.S. total distillate sales to residential customers (EIA, 2016a).

Assumption 2: Average heating load is the same for burners of both types, flame-retention and not.

Assumption 3: On average, each flame-retention burner saves 16% of the fuel that would have been consumed by a non-flame-retention burner. Although Batey et al. (1978), McDonald et al. (1979), McDonald et al. (1980), and Butcher et al. (1992) cite wider ranges of estimated improvements, a range of 11% to 22% and an estimate of 16% has become generally accepted (Batey, 2013). Analysis of the sensitivity of the results to this assumption is provided in Section 9.1.

Under assumption 2, average fuel consumption (*C*) is related to the average fuel consumption of non-flame-retention burners (*X*), the percentage of operating burners that are the flame-retention type (*P*) and the average savings achieved by the flame-retention burners ( $\Delta$ ):

| Parameter | Definition                                                                      |
|-----------|---------------------------------------------------------------------------------|
| С         | = Average fuel consumption                                                      |
| Р         | <ul> <li>Percentage of burners that are flame-<br/>retention type</li> </ul>    |
| X         | <ul> <li>Average fuel consumed by non-flame-<br/>retention burner</li> </ul>    |
| Δ         | = Average percentage savings with flame-<br>retention burner, assumed to be 16% |

 $C = X(1 - P\Delta)$ 

Using the above formula, the counterfactual fuel consumption in a given year,  $C_{XFact}$ , is related to the actual consumption

and actual and counterfactual percentage of flame-retention type burners in that year by the following formula:<sup>24</sup>

$$C_{XFact} = C_{Actual} \left( \frac{1 - P_{XFact} \Delta}{1 - P_{Actual} \Delta} \right)$$

Table 3-2 shows the actual consumption of No. 2 heating oil and the counterfactual consumption, based on the above formula. The attributed savings, calculated as the difference between actual and counterfactual, and the real price of heating oil, which will be used in the next step, are also shown.

**Step 3.** Finally, attributed dollars saved are calculated by multiplying attributed fuel savings by the real price of heating oil year-by-year. Table 3-3 reports the amount of fuel and dollars saved in each year, together with undiscounted totals for all years. The middle counterfactual scenario is a simple average of the low and high counterfactual scenarios. Our estimates attribute savings to BTO of between 2.2 billion and 5.4 billion gallons of heating oil and between \$4.1 billion and \$10.0 billion undiscounted dollars.

Mainly because of the effort made here to quantify a counterfactual diffusion trend without BTO, the estimated impacts are lower than earlier studies have suggested. We briefly review these studies here.

Brown et al. (1989) provides an excellent overview of the technology and the BTO role and provides estimates of fuel savings. But these estimated savings are associated with the flame-retention-head burner itself, not with impacts specifically attributed to BTO (as if the counterfactual is, implicitly, that no flame-retention-type burners would have been installed). For example, whereas Brown et al. (1989, p. 56, Figure 4.3) estimate 300 million gallons of oil saved in 1984 and 550 million gallons saved in 1987, we have estimated only between 56 million and 85 million gallons saved in 1984 and between 102 million and 199 million gallons saved in 1987—*attributed to BTO*.

<sup>&</sup>lt;sup>24</sup> This relationship holds because the ratio of *C* to the quantity  $1 - P\Delta$  is always equal to X, which is assumed to be constant to simplify calculations.
|      |            |                | Attribute    | d Savings    |              |              |
|------|------------|----------------|--------------|--------------|--------------|--------------|
|      | Consumpt   | ion (thousands | (thousands   | Real price   |              |              |
| Year | Actual     | Low            | High         | Low          | High         | 2015 dollars |
|      |            | Counterfact.   | Counterfact. | Counterfact. | Counterfact. | per gallon   |
| 1977 | 10,204,014 | 10,204,051     | 10,204,088   | 37           | 74           | 2.15         |
| 1978 | 10,604,946 | 10,605,207     | 10,605,541   | 260          | 595          | 2.10         |
| 1979 | 9,831,008  | 9,832,049      | 9,833,054    | 1,042        | 2,046        | 2.65         |
| 1980 | 9,884,913  | 9,887,572      | 9,889,407    | 2,658        | 4,493        | 3.99         |
| 1981 | 9,273,708  | 9,279,880      | 9,282,961    | 6,173        | 9,254        | 5.32         |
| 1982 | 8,750,862  | 8,772,224      | 8,780,836    | 21,362       | 29,975       | 4.50         |
| 1983 | 8,016,334  | 8,054,290      | 8,071,025    | 37,956       | 54,691       | 4.01         |
| 1984 | 8,051,408  | 8,107,419      | 8,136,892    | 56,012       | 85,485       | 3.79         |
| 1985 | 7,573,496  | 7,644,728      | 7,690,673    | 71,232       | 117,177      | 3.41         |
| 1986 | 7,936,526  | 8,025,718      | 8,094,919    | 89,192       | 158,393      | 1.74         |
| 1987 | 8,015,551  | 8,117,911      | 8,214,209    | 102,360      | 198,658      | 2.07         |
| 1988 | 8,348,482  | 8,464,224      | 8,587,610    | 115,742      | 239,128      | 1.62         |
| 1989 | 8,475,656  | 8,601,251      | 8,751,244    | 125,594      | 275,588      | 1.95         |
| 1990 | 7,131,818  | 7,245,278      | 7,387,072    | 113,460      | 255,255      | 2.34         |
| 1991 | 6,640,077  | 6,753,228      | 6,899,353    | 113,151      | 259,276      | 1.87         |
| 1992 | 7,145,615  | 7,272,709      | 7,442,145    | 127,094      | 296,530      | 1.65         |
| 1993 | 7,141,452  | 7,272,864      | 7,451,542    | 131,412      | 310,090      | 1.57         |
| 1994 | 7,088,078  | 7,221,309      | 7,405,456    | 133,230      | 317,377      | 1.51         |
| 1995 | 6,722,590  | 6,850,552      | 7,029,924    | 127,961      | 307,333      | 1.44         |
| 1996 | 6,771,818  | 6,905,340      | 7,094,519    | 133,522      | 322,701      | 1.67         |
| 1997 | 6,400,788  | 6,530,351      | 6,716,614    | 129,564      | 315,826      | 1.59         |
| 1998 | 5,703,560  | 5,816,373      | 5,981,533    | 112,813      | 277,973      | 1.34         |
| 1999 | 6,176,417  | 6,294,355      | 6,470,810    | 117,938      | 294,393      | 1.36         |
| 2000 | 6,693,846  | 6,816,417      | 7,004,635    | 122,571      | 310,789      | 2.05         |
| 2001 | 6,510,082  | 6,600,569      | 6,778,041    | 90,487       | 267,959      | 1.78         |
| 2002 | 6,249,120  | 6,305,413      | 6,469,261    | 56,293       | 220,141      | 1.63         |
| 2003 | 6,788,529  | 6,813,188      | 6,982,405    | 24,660       | 193,877      | 1.95         |
| 2004 | 6,512,040  | 6,512,040      | 6,648,776    | 0            | 136,736      | 2.27         |
| 2005 | 6,031,372  | 6,031,372      | 6,111,015    | 0            | 79,643       | 2.77         |
| 2006 | 4,885,129  | 4,885,129      | 4,913,856    | 0            | 28,726       | 2.84         |

## Table 3-2. Actual and Counterfactual Residential Consumption of No. 2 Heating Oil, and Derived Savings Attributed to BTO.

Notes: Actual consumption based on 98% of U.S. total distillate sales to residential customers (EIA, 2016a). Counterfactual consumption is based on the percentage of operating burners (Table 3-1) according the formulas discussed in the text. The nominal price of heating oil (from EIA, 2016b<sup>25</sup>) is converted to constant 2015 dollars using the Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted.

<sup>&</sup>lt;sup>25</sup> The EIA Weekly U.S. No. 2 Heating Oil Residential Price (Dollars per Gallon) was only available from 1990-2016, However, when this price was annualized, the correlation coefficient with the U.S. Crude Oil First Purchase Price (Dollars per Barrel) was 0.98. Therefore, as an approximation of the No. 2 Heating Oil Residential price before 1990, we used the ratio of the crude oil price to the heating oil price in 1990 and scaled this back using the crude oil price in previous years.

|       |            |               |             |           | Cost Savings   |            |
|-------|------------|---------------|-------------|-----------|----------------|------------|
|       | Fuel Savin | gs (thousands | of gallons) | (thous    | ands of 2015 o | dollars)   |
| Year  | Low        | Middle        | High        | Low       | Middle         | High       |
| 1977  | 37         | 56            | 74          | 80        | 120            | 160        |
| 1978  | 260        | 427           | 595         | 547       | 899            | 1,250      |
| 1979  | 1,042      | 1544          | 2,046       | 2,764     | 4,097          | 5,430      |
| 1980  | 2,658      | 3576          | 4,493       | 10,617    | 14,281         | 17,946     |
| 1981  | 6,173      | 7713          | 9,254       | 32,866    | 41,068         | 49,269     |
| 1982  | 21,362     | 25668         | 29,975      | 96,182    | 115,570        | 134,959    |
| 1983  | 37,956     | 46324         | 54,691      | 152,127   | 185,664        | 219,202    |
| 1984  | 56,012     | 70748         | 85,485      | 212,552   | 268,473        | 324,394    |
| 1985  | 71,232     | 94205         | 117,177     | 243,039   | 321,419        | 399,799    |
| 1986  | 89,192     | 123792        | 158,393     | 155,017   | 215,154        | 275,290    |
| 1987  | 102,360    | 150509        | 198,658     | 211,437   | 310,895        | 410,352    |
| 1988  | 115,742    | 177435        | 239,128     | 187,609   | 287,608        | 387,607    |
| 1989  | 125,594    | 200591        | 275,588     | 244,923   | 391,174        | 537,426    |
| 1990  | 113,460    | 184357        | 255,255     | 265,071   | 430,705        | 596,338    |
| 1991  | 113,151    | 186214        | 259,276     | 211,887   | 348,704        | 485,521    |
| 1992  | 127,094    | 211812        | 296,530     | 209,129   | 348,530        | 487,931    |
| 1993  | 131,412    | 220751        | 310,090     | 206,639   | 347,120        | 487,601    |
| 1994  | 133,230    | 225304        | 317,377     | 201,688   | 341,071        | 480,454    |
| 1995  | 127,961    | 217647        | 307,333     | 183,855   | 312,716        | 441,577    |
| 1996  | 133,522    | 228112        | 322,701     | 222,415   | 379,978        | 537,541    |
| 1997  | 129,564    | 222695        | 315,826     | 206,423   | 354,802        | 503,180    |
| 1998  | 112,813    | 195393        | 277,973     | 151,060   | 261,637        | 372,214    |
| 1999  | 117,938    | 206165        | 294,393     | 160,210   | 280,060        | 399,911    |
| 2000  | 122,571    | 216680        | 310,789     | 251,545   | 444,679        | 637,813    |
| 2001  | 90,487     | 179223        | 267,959     | 161,349   | 319,576        | 477,802    |
| 2002  | 56,293     | 138217        | 220,141     | 91,674    | 225,089        | 358,503    |
| 2003  | 24,660     | 109268        | 193,877     | 48,157    | 213,384        | 378,612    |
| 2004  | 0          | 68368         | 136,736     | 0         | 154,950        | 309,899    |
| 2005  | 0          | 39821         | 79,643      | 0         | 110,320        | 220,640    |
| 2006  | 0          | 14363         | 28,726      | 0         | 40,793         | 81,587     |
| Total | 2,163,778  | 3,766,979     | 5,370,181   | 4,120,863 | 7,070,535      | 10,020,207 |

### Table 3-3. BTO-Attributed Fuel and Cost Savings

Notes: Attributed dollars saved are calculated by multiplying attributed fuel savings by the real price of heating oil year-by-year. Low and high estimates are based on low and high counterfactual scenarios. Middle estimates are based on a simple average of the low and high counterfactuals. Total dollars are undiscounted.

A 2002 Strategic Program Review (U.S. DOE, 2002, page 5-16, Table 5-4) estimates benefits of \$7.5 billion under a "5-year" rule and \$25 billion under a "10-year" rule. Both rules are based on ad hoc assumptions suggested by the National Research Council for benefits estimation. Although these rules are a creditable effort to limit BTO attribution to something less than 100%, they are ad hoc and may tend either to understate or overstate a reasonable level of attribution in any given situation. In this case, our estimates are lower, namely between \$4.1 billion and \$10.0 billion undiscounted 2015 dollars. Cutting off benefits after 2000 and converting to 2000 dollars to be more closely comparable to the Strategic Program Review, we would estimate between \$2.8 billion and \$6.0 billion dollars in consumer energy savings attributable to BTO.

In 1988, in testimony before Congress, C. Richard Cahoon, Vice President for Policy for the Petroleum Marketers Association of America, laid out rationale advocating for continuing DOE R&D programs focused on the conservation of home heating oil. In his testimony, Cahoon cited a \$10 million DOE investment in market demonstration for flame retention head oil burners carried out by Brookhaven National Laboratory (PMAA, 1988). Without providing specific assumptions, the testimony implies that DOE's (more specifically BTO's) program is responsible for \$10 billion in consumer energy savings through new equipment and retrofits through the end of the next decade, which we interpret to mean through the year 2000.

In 2001, David Nemtzow, president of the Alliance to Save Energy, in testimony before the U.S. Senate used the success of the flame-retention-head oil burner to illustrate the importance of market demonstration as a policy tool for DOE. In his testimony, Nemtzow cites a retrospective estimate of \$14 billion in consumer energy cost savings as of 1999 (Nemtzow, 2001).

A 1996 U.S. Governmental Accountability Office (GAO) review of a DOE report, *Success Stories: The Energy Mission in the Market Place*, released in May 1995. The GOA takes issue with the report's claim to \$5 billion in consumer energy savings, objecting to DOE being credited with "the total savings resulting from consumers' use of this technology" (GAO, 1996, p.5). Our approach corrects the problem by constructing counterfactual product adoption trends that assume only a slowing in the diffusion of the technology in the absence of BTO R&D. In comparison to the \$5 billion to which GAO objected, if we truncate our estimated stream of BTO-attributed benefits in 1994 and report undiscounted 1994 dollars, the benefits are between \$1.7 billion and \$3.3 billion.

## **3.6 ENVIRONMENTAL HEALTH BENEFITS**

This section develops estimates for the numbers of avoided adverse health events associated with the estimated reductions in residential heating oil consumption developed in Section 3.5. Estimates are again developed in steps, explaining all assumptions, so that all calculations can be readily understood. Unless otherwise noted, all assumptions described in this section come directly from the COBRA model, an overview of which is provided in Section 2.2.

**Step 1.** First, the fuel savings for each year, given in Table 3-3, are transformed into amounts of criteria pollutants abated. This is done by applying the following multipliers:

| Criteria Pollutant | Multiplier                |
|--------------------|---------------------------|
| PM 2.5             | · 0.83 lbs / 1000 gallons |
| S02                | · 42.6 lbs / 1000 gallons |
| NOx                | · 18 lbs / 1000 gallons   |
| VOC                | · 0.7 lbs / 1000 gallons  |

Source: Haneke, B. H. (2001) and EPA (2017a).

Tables 3-4 and 3-5 show the total amounts of these pollutants abated, based on low, middle, and high impact scenarios.

**Step 2.** Next, these amounts of abated pollutants are transformed into numbers of avoided adverse health outcomes, and associated dollar values, based on the assumptions of the COBRA model. Table 3-6 summarizes these assumptions, based on 2017 emissions (as will be explained, a population deflator is used to develop comparable numbers for all other years).

**Step 3.** Finally, the parameters in Table 3-6 are applied to the attributed abatements in Tables 3-4 and 3-5 to obtain estimates of attributed avoided adverse health events and associated values in each year. Because the parameters in Table 3-6 are based on the United States' population in 2017, a simple population deflator is applied to each year: the ratio of the U.S. population in the given year to the U.S. population in 2017. The estimated value of all avoided adverse health events is between \$2.6 billion and \$14.6 billion, without discounting (Table 3-7).

|       | PM 2.5 Abated (tons) |        |       |        | SO2 Abated (tons) |         |  |  |
|-------|----------------------|--------|-------|--------|-------------------|---------|--|--|
| Year  | Low                  | Middle | High  | Low    | Middle            | High    |  |  |
| 1977  | 0                    | 0      | 0     | 1      | 1                 | 2       |  |  |
| 1978  | 0                    | 0      | 0     | 6      | 9                 | 13      |  |  |
| 1979  | 0                    | 1      | 1     | 22     | 33                | 44      |  |  |
| 1980  | 1                    | 1      | 2     | 57     | 76                | 96      |  |  |
| 1981  | 3                    | 3      | 4     | 131    | 164               | 197     |  |  |
| 1982  | 9                    | 11     | 12    | 455    | 547               | 638     |  |  |
| 1983  | 16                   | 19     | 23    | 808    | 987               | 1,165   |  |  |
| 1984  | 23                   | 29     | 35    | 1,193  | 1,507             | 1,821   |  |  |
| 1985  | 30                   | 39     | 49    | 1,517  | 2,007             | 2,496   |  |  |
| 1986  | 37                   | 51     | 66    | 1,900  | 2,637             | 3,374   |  |  |
| 1987  | 42                   | 62     | 82    | 2,180  | 3,206             | 4,231   |  |  |
| 1988  | 48                   | 74     | 99    | 2,465  | 3,779             | 5,093   |  |  |
| 1989  | 52                   | 83     | 114   | 2,675  | 4,273             | 5,870   |  |  |
| 1990  | 47                   | 77     | 106   | 2,417  | 3,927             | 5,437   |  |  |
| 1991  | 47                   | 77     | 108   | 2,410  | 3,966             | 5,523   |  |  |
| 1992  | 53                   | 88     | 123   | 2,707  | 4,512             | 6,316   |  |  |
| 1993  | 55                   | 92     | 129   | 2,799  | 4,702             | 6,605   |  |  |
| 1994  | 55                   | 94     | 132   | 2,838  | 4,799             | 6,760   |  |  |
| 1995  | 53                   | 90     | 128   | 2,726  | 4,636             | 6,546   |  |  |
| 1996  | 55                   | 95     | 134   | 2,844  | 4,859             | 6,874   |  |  |
| 1997  | 54                   | 92     | 131   | 2,760  | 4,743             | 6,727   |  |  |
| 1998  | 47                   | 81     | 115   | 2,403  | 4,162             | 5,921   |  |  |
| 1999  | 49                   | 86     | 122   | 2,512  | 4,391             | 6,271   |  |  |
| 2000  | 51                   | 90     | 129   | 2,611  | 4,615             | 6,620   |  |  |
| 2001  | 38                   | 74     | 111   | 1,927  | 3,817             | 5,708   |  |  |
| 2002  | 23                   | 57     | 91    | 1,199  | 2,944             | 4,689   |  |  |
| 2003  | 10                   | 45     | 80    | 525    | 2,327             | 4,130   |  |  |
| 2004  | 0                    | 28     | 57    | 0      | 1,456             | 2,912   |  |  |
| 2005  | 0                    | 17     | 33    | 0      | 848               | 1,696   |  |  |
| 2006  | 0                    | 6      | 12    | 0      | 306               | 612     |  |  |
| Total | 898                  | 1,563  | 2,229 | 46,088 | 80,237            | 114,385 |  |  |

Table 3-4. BTO-Attributed PM 2.5 and SO2 Abated

Notes: Attributed pollution abatement based on fuel savings provided in Table 3-3.

|       | NOx Abated (tons) |        |        |     | OC Abated (ton | s)    |
|-------|-------------------|--------|--------|-----|----------------|-------|
| Year  | Low               | Middle | High   | Low | Middle         | High  |
| 1977  | 0                 | 1      | 1      | 0   | 0              | 0     |
| 1978  | 2                 | 4      | 5      | 0   | 0              | 0     |
| 1979  | 9                 | 14     | 18     | 0   | 1              | 1     |
| 1980  | 24                | 32     | 40     | 1   | 1              | 2     |
| 1981  | 56                | 69     | 83     | 2   | 3              | 3     |
| 1982  | 192               | 231    | 270    | 7   | 9              | 10    |
| 1983  | 342               | 417    | 492    | 13  | 16             | 19    |
| 1984  | 504               | 637    | 769    | 20  | 25             | 30    |
| 1985  | 641               | 848    | 1,055  | 25  | 33             | 41    |
| 1986  | 803               | 1,114  | 1,426  | 31  | 43             | 55    |
| 1987  | 921               | 1,355  | 1,788  | 36  | 53             | 70    |
| 1988  | 1,042             | 1,597  | 2,152  | 41  | 62             | 84    |
| 1989  | 1,130             | 1,805  | 2,480  | 44  | 70             | 96    |
| 1990  | 1,021             | 1,659  | 2,297  | 40  | 65             | 89    |
| 1991  | 1,018             | 1,676  | 2,333  | 40  | 65             | 91    |
| 1992  | 1,144             | 1,906  | 2,669  | 44  | 74             | 104   |
| 1993  | 1,183             | 1,987  | 2,791  | 46  | 77             | 109   |
| 1994  | 1,199             | 2,028  | 2,856  | 47  | 79             | 111   |
| 1995  | 1,152             | 1,959  | 2,766  | 45  | 76             | 108   |
| 1996  | 1,202             | 2,053  | 2,904  | 47  | 80             | 113   |
| 1997  | 1,166             | 2,004  | 2,842  | 45  | 78             | 111   |
| 1998  | 1,015             | 1,759  | 2,502  | 39  | 68             | 97    |
| 1999  | 1,061             | 1,855  | 2,650  | 41  | 72             | 103   |
| 2000  | 1,103             | 1,950  | 2,797  | 43  | 76             | 109   |
| 2001  | 814               | 1,613  | 2,412  | 32  | 63             | 94    |
| 2002  | 507               | 1,244  | 1,981  | 20  | 48             | 77    |
| 2003  | 222               | 983    | 1,745  | 9   | 38             | 68    |
| 2004  | 0                 | 615    | 1,231  | 0   | 24             | 48    |
| 2005  | 0                 | 358    | 717    | 0   | 14             | 28    |
| 2006  | 0                 | 129    | 259    | 0   | 5              | 10    |
| Total | 19,474            | 33,903 | 48,332 | 757 | 1,318          | 1,880 |

### Table 3-5. BTO-Attributed NOx and VOC Abated

Notes: Attributed pollution abatement based on fuel savings provided in Table 3-3.

|                                      | Number o | f events avo<br>of pollutan | oided per 1<br>It abated | ,000 tons | Assumed Monetary Value<br>(2015 dollars) |           |              |
|--------------------------------------|----------|-----------------------------|--------------------------|-----------|------------------------------------------|-----------|--------------|
| Adverse<br>Health Event              | PM 2.5   | S02                         | NOx                      | VOC       | 3%                                       | 7%        | Undiscounted |
| Adult Mortality<br>(low)             | 44.0     | 5.9                         | 1.6                      | 1.1       | 8,434,924                                | 7,512,853 | 9,126,478    |
| Adult Mortality<br>(high)            | 99.7     | 13.4                        | 3.7                      | 2.6       | 8,434,924                                | 7,512,853 | 9,126,478    |
| Infant<br>Mortality                  | 0.1      | 0.01                        | 0.003                    | 0.002     | 9,401,680                                | 9,401,680 | 9,401,680    |
| Non-fatal<br>Heart Attacks<br>(low)  | 5.3      | 0.7                         | 0.2                      | 0.1       | 122,181                                  | 118,759   | 124,748      |
| Non-fatal<br>Heart Attacks<br>(high) | 49.4     | 6.9                         | 1.9                      | 1.3       | 122,181                                  | 118,759   | 124,748      |
| Resp. Hosp.<br>Adm.                  | 14.2     | 1.7                         | 0.5                      | 0.4       | 25,663                                   | 25,663    | 25,663       |
| CVD Hosp.<br>Adm.                    | 17.7     | 2.2                         | 0.6                      | 0.4       | 38,860                                   | 38,860    | 38,860       |
| Acute<br>Bronchitis                  | 67.0     | 8.4                         | 2.5                      | 1.7       | 477                                      | 477       | 477          |
| Upper Res.<br>Symptoms               | 1,218    | 153.7                       | 44.7                     | 31.2      | 33                                       | 33        | 33           |
| Lower Res.<br>Symptoms               | 853.4    | 107.5                       | 31.3                     | 21.8      | 21                                       | 21        | 21           |
| Asthma ER<br>Visits                  | 40.2     | 3.8                         | 1.4                      | 1.0       | 426                                      | 426       | 426          |
| MRAD                                 | 37,642   | 4,607                       | 1,369                    | 961.9     | 68                                       | 68        | 68           |
| Work Loss<br>Days                    | 6,352    | 772.1                       | 230.4                    | 162.1     | 160                                      | 160       | 160          |
| Asthma<br>Exacerbations              | 1,291    | 163.5                       | 47.4                     | 33.1      | 57                                       | 57        | 57           |

### Table 3-6. COBRA parameters for Residential Distillate Oil Combustion (rounded)

Notes: Parameters have been rounded. Undiscounted monetary values are approximated based on simple linear extrapolation from the 3% and 7% values. MRAD, minor restricted activity day.

|       | Value base | d on low numb  | ers of adult | Value based                 | d on high numb | ers of adult |
|-------|------------|----------------|--------------|-----------------------------|----------------|--------------|
|       | (thous     | ands of 2015 c | iollars)     | (thousands of 2015 dollars) |                |              |
| Year  | Low        | Middle         | High         | Low                         | Middle         | High         |
| 1977  | 37         | 56             | 74           | 84                          | 126            | 168          |
| 1978  | 263        | 432            | 601          | 596                         | 978            | 1,360        |
| 1979  | 1,065      | 1,579          | 2,093        | 2,409                       | 3,571          | 4,733        |
| 1980  | 2,751      | 3,700          | 4,650        | 6,221                       | 8,368          | 10,515       |
| 1981  | 6,452      | 8,062          | 9,672        | 14,591                      | 18,232         | 21,873       |
| 1982  | 22,543     | 27,087         | 31,631       | 50,980                      | 61,257         | 71,534       |
| 1983  | 40,419     | 49,330         | 58,241       | 91,409                      | 111,560        | 131,712      |
| 1984  | 60,171     | 76,002         | 91,833       | 136,078                     | 171,880        | 207,681      |
| 1985  | 77,205     | 102,104        | 127,002      | 174,600                     | 230,909        | 287,217      |
| 1986  | 97,553     | 135,397        | 173,241      | 220,617                     | 306,202        | 391,787      |
| 1987  | 112,960    | 166,095        | 219,230      | 255,460                     | 375,625        | 495,791      |
| 1988  | 128,894    | 197,598        | 266,301      | 291,496                     | 446,869        | 602,243      |
| 1989  | 141,190    | 225,499        | 309,808      | 319,302                     | 509,968        | 700,634      |
| 1990  | 128,973    | 209,564        | 290,154      | 291,674                     | 473,930        | 656,186      |
| 1991  | 130,342    | 214,505        | 298,668      | 294,770                     | 485,105        | 675,441      |
| 1992  | 148,359    | 247,252        | 346,145      | 335,516                     | 559,163        | 782,810      |
| 1993  | 155,412    | 261,068        | 366,724      | 351,467                     | 590,408        | 829,349      |
| 1994  | 159,488    | 269,708        | 379,928      | 360,684                     | 609,948        | 859,212      |
| 1995  | 155,003    | 263,643        | 372,282      | 350,542                     | 596,230        | 841,919      |
| 1996  | 163,635    | 279,557        | 395,479      | 370,062                     | 632,220        | 894,379      |
| 1997  | 160,693    | 276,200        | 391,707      | 363,408                     | 624,628        | 885,848      |
| 1998  | 141,559    | 245,181        | 348,803      | 320,137                     | 554,479        | 788,820      |
| 1999  | 149,691    | 261,672        | 373,653      | 338,527                     | 591,773        | 845,020      |
| 2000  | 157,299    | 278,072        | 398,845      | 355,734                     | 628,862        | 901,991      |
| 2001  | 117,326    | 232,382        | 347,437      | 265,334                     | 525,533        | 785,732      |
| 2002  | 73,707     | 180,974        | 288,241      | 166,690                     | 409,275        | 651,860      |
| 2003  | 32,593     | 144,418        | 256,244      | 73,708                      | 326,603        | 579,498      |
| 2004  | 0          | 91,187         | 182,373      | 0                           | 206,219        | 412,439      |
| 2005  | 0          | 53,606         | 107,211      | 0                           | 121,230        | 242,459      |
| 2006  | 0          | 19,519         | 39,038       | 0                           | 44,142         | 88,284       |
| Total | 2,565,585  | 4,521,447      | 6,477,308    | 5,802,095                   | 10,225,293     | 14,648,492   |

### Table 3-7. Value of All BTO-Attributed Avoided Adverse Health Events

Notes: Attributed avoided mortalities based amounts of pollutants abated and COBRA model parameters. Within each block of three columns, Low/Middle/High refers to the scenarios in Tables 3-4 and 3-5. Lower values in the left block of Low/Middle/High scenarios are based on low numbers of adult mortality and non-fatal heart attacks in Table 3-6; higher values in the right block are based on high numbers for adult mortality and non-fatal heart attacks. Each year's estimates are deflated by the ratio of the U.S. population in the given year to the U.S. population in 2017. Totals are not discounted.

## 3.7 ENERGY SECURITY BENEFITS

DOE-attributed fuel savings (Table 3-3) are associated with between 23 million and 60 million avoided barrels of imported crude oil (Table 3-8). The approach used to convert fuel savings into avoided crude imports is described in Section 2.3.

|      | Percentage |           |             |           |         |             |         |
|------|------------|-----------|-------------|-----------|---------|-------------|---------|
|      | of U.S.    |           |             |           |         |             |         |
|      | Crude Oil  | F         | uel Savings | 5         | Avoided | l Crude Oil | Imports |
|      | Supply     | (thou     | sands of ga | llons)    | (thou   | sands of ba | rrels)  |
| Year | Imported   | Low       | Middle      | High      | Low     | Middle      | High    |
| 1977 | 44.9%      | 37        | 56          | 74        | 0       | 1           | 1       |
| 1978 | 42.9%      | 260       | 427         | 595       | 2       | 4           | 6       |
| 1979 | 44.2%      | 1,042     | 1,544       | 2,046     | 10      | 15          | 20      |
| 1980 | 39.1%      | 2,658     | 3,576       | 4,493     | 23      | 31          | 39      |
| 1981 | 35.3%      | 6,173     | 7,713       | 9,254     | 48      | 60          | 72      |
| 1982 | 29.6%      | 21,362    | 25,668      | 29,975    | 141     | 169         | 197     |
| 1983 | 28.5%      | 37,956    | 46,324      | 54,691    | 240     | 293         | 346     |
| 1984 | 28.4%      | 56,012    | 70,748      | 85,485    | 354     | 447         | 540     |
| 1985 | 26.7%      | 71,232    | 94,205      | 117,177   | 422     | 558         | 694     |
| 1986 | 32.9%      | 89,192    | 123,792     | 158,393   | 651     | 904         | 1,157   |
| 1987 | 36.4%      | 102,360   | 150,509     | 198,658   | 827     | 1,216       | 1,605   |
| 1988 | 38.6%      | 115,742   | 177,435     | 239,128   | 992     | 1,520       | 2,049   |
| 1989 | 43.6%      | 125,594   | 200,591     | 275,588   | 1,217   | 1,944       | 2,670   |
| 1990 | 44.0%      | 113,460   | 184,357     | 255,255   | 1,108   | 1,801       | 2,493   |
| 1991 | 43.5%      | 113,151   | 186,214     | 259,276   | 1,093   | 1,799       | 2,505   |
| 1992 | 45.4%      | 127,094   | 211,812     | 296,530   | 1,281   | 2,135       | 2,989   |
| 1993 | 49.9%      | 131,412   | 220,751     | 310,090   | 1,456   | 2,446       | 3,436   |
| 1994 | 50.9%      | 133,230   | 225,304     | 317,377   | 1,508   | 2,550       | 3,593   |
| 1995 | 51.7%      | 127,961   | 217,647     | 307,333   | 1,471   | 2,502       | 3,534   |
| 1996 | 52.9%      | 133,522   | 228,112     | 322,701   | 1,569   | 2,681       | 3,793   |
| 1997 | 56.1%      | 129,564   | 222,695     | 315,826   | 1,615   | 2,776       | 3,937   |
| 1998 | 58.5%      | 112,813   | 195,393     | 277,973   | 1,466   | 2,539       | 3,612   |
| 1999 | 59.0%      | 117,938   | 206,165     | 294,393   | 1,546   | 2,702       | 3,858   |
| 2000 | 60.2%      | 122,571   | 216,680     | 310,789   | 1,640   | 2,899       | 4,158   |
| 2001 | 61.7%      | 90,487    | 179,223     | 267,959   | 1,240   | 2,456       | 3,672   |
| 2002 | 61.2%      | 56,293    | 138,217     | 220,141   | 765     | 1,878       | 2,992   |
| 2003 | 63.2%      | 24,660    | 109,268     | 193,877   | 346     | 1,533       | 2,721   |
| 2004 | 65.2%      | 0         | 68,368      | 136,736   | 0       | 990         | 1,981   |
| 2005 | 66.5%      | 0         | 39,821      | 79,643    | 0       | 589         | 1,177   |
| 2006 | 66.4%      | 0         | 14,363      | 28,726    | 0       | 212         | 424     |
| 1    | Fotal      | 2,163,778 | 3,766,979   | 5,370,181 | 23,033  | 41,652      | 60,270  |

| Table 3-8. BTO-Attributed Avoided | <b>Crude Oil Imports:</b> | : Flame-Retention-Head Oil Burner |
|-----------------------------------|---------------------------|-----------------------------------|
|-----------------------------------|---------------------------|-----------------------------------|

Notes: Avoided barrels of imported crude are obtained by multiplying the percentage of U.S. crude oil supply imported by the DOE-attributed fuel savings and then dividing by 45 (to convert gallons to barrels). A detailed explanation is provided in Section 2.5.

# Advanced Refrigeration

This section describes BTO R&D related to advanced refrigeration technology and presents estimates of benefits attributable to this R&D derived from estimated impacts on residential refrigerator energy performance trends.

### 4.1 TECHNOLOGY OVERVIEW

The energy efficiency improvement in residential refrigerators since the first national standard was established in 1987 is remarkable: average energy use has decreased substantially, even as the average price of refrigerators has fallen, the average volume has increased, and new features have been added. In addition, refrigerants and insulating materials have been replaced by environmentally friendlier alternatives. DOE has contributed to these trends through its funding of an ongoing refrigeration R&D program at ORNL. Specific accomplishments include the following:

- Development of a more efficient compressor by Columbus Products engineers, under subcontract to ORNL in 1981. Design changes to the motor, suction muffler, and compressor valve assembly achieved a 44% reduction in energy use
- DOE funded A.D. Little to optimize the entire residential refrigerator-freezer system, including the refrigeration circuit, case design, insulation and controls. A.D. Little developed a product between 1977 and 1981, and it was introduced to the market by Amana. This product used 60% less energy than comparable conventional units.
- Under a CRADA with the Appliance Industry-Government CFC Replacement Consortium (a subsidiary of

Association of Home Appliance Manufacturers [AHAM]), from 1993 to 1998, engineers from ORNL and industry explored new technical options to improve refrigerator energy efficiency using non-CFC refrigerants. R&D addressed highly efficient variable-speed compressors, dual-evaporator designs, compact heat exchanger designs, advanced insulations, and refrigerant blends.

DOE also contributed research support to increasingly demanding energy efficiency standards and developed test methods for the energy efficiency of refrigerators.

The average energy efficiency of commercial refrigerators/freezers and supermarket refrigeration has also improved over time. Multiple unequal parallel compressors, now the industry standard for supermarket refrigeration systems, can be traced to R&D at ORNL that demonstrated potential energy savings of 15% to 26% in 1982.<sup>26</sup> A 1984 collaboration between ORNL and Foster-Miller Associates, H. E. Butt Grocery, and Friedrich Commercial Refrigeration led to the commercialization of an advanced system, which by the late 1990s was used by about 80% of supermarkets.

The development, with National Energy Technology Laboratory (NETL), A.D. Little, and Delfield, of a commercial refrigerator was technically successful, improving energy efficiency and reducing production cost, but was commercially disappointing in 2001 to 2003. However, by demonstrating that efficiency improvements on the order of 70% were feasible, this effort served as a model for improving commercial refrigerator efficiency and may have given impetus to the California standards adopted in 2002 and the standards subsequently adopted by Maryland, Connecticut, New York, Oregon, Rhode Island, Arizona, Washington, and New Jersey. Related with the proliferation of state standards, the first federal standard was adopted by Congress in 2005 and went into effect in 2010. The second federal standard was adopted by DOE in 2009 and went into effect in 2012. A third federal standard was adopted by DOE in 2014 and will take effect in 2017.

<sup>&</sup>lt;sup>26</sup> See Baxter, 'Advances in Supermarket Refrigeration Systems, http://www.arb.ca.gov/cc/commref/adv\_supmkt\_ref\_syst.pdf.

## 4.2 SAMPLE OF INTERVIEWEES

Table 4-1 summarizes the number of organizations contacted and interviewed, the number of persons contacted and interviewed, and our respective response rates; we interviewed 44 experts from 36 organizations.

To anticipate a concern, the source of contacts was not significantly correlated with attribution of impacts to BTO R&D. We also looked for correlations between BTO attribution and other respondent characteristics, including affiliation with a national laboratory, professional involvement in technical R&D efforts, an index of their familiarity with specific BTO R&D activities, and their having ever worked in manufacturing. Only one of these characteristics was found to be significant. Respondents who had worked for a manufacturer (OEM, component, or fluid manufacturing company) tended to attribute lower impact to DOE. Despite this correlation, our main quantitative findings are fairly robust to a reweighting of responses more heavily toward industry. Section 9.2 provides details.

| Stakeholder<br>Group                          | Number of<br>Organizations<br>Contacted | Number of<br>Organizations<br>Represented in<br>Interviews | Number of<br>Individuals<br>Contacted | Number of<br>Interviews<br>Conducted | Response<br>Rate |
|-----------------------------------------------|-----------------------------------------|------------------------------------------------------------|---------------------------------------|--------------------------------------|------------------|
| Advocacy Group                                | 10                                      | 5                                                          | 21                                    | 7                                    | 33%              |
| Federal Agency                                | 4                                       | 3                                                          | 7                                     | 4                                    | 57%              |
| Industry/Trade<br>Association<br>Manufacturer | 5<br>30                                 | 3<br>9                                                     | 10<br>48                              | 4<br>10                              | 40%<br>21%       |
| National<br>Laboratory                        | 6                                       | 4                                                          | 13                                    | 6                                    | 46%              |
| Other                                         | 20                                      | 5                                                          | 25                                    | 6                                    | 24%              |
| University                                    | 15                                      | 7                                                          | 20                                    | 7                                    | 35%              |
| Total                                         | 90                                      | 36                                                         | 144                                   | 44                                   | 31%              |

#### Table 4-1. Distribution of Experts Contacted and Interviewed

Our highest response rate came from current employees of federal agencies and DOE national laboratories with 57% and 46% response rates respectively. We had the lowest overall response rate from manufacturers at only 21%.

We also tried to capture the career experiences of interviewees across various sectors as well as involvement in public and private technical efforts which is summarized in Figure 4-1. Nearly half of interviewees had participated in some kind of public or private technical efforts during their careers. We found that there was a fairly low degree mobility across the various sectors we asked about during our interviewees' careers; only 21% of individuals that we interviewed had held positions in at least two of the sectors answer choices during their careers. Nevertheless, many interviewees were generally familiar with the Department of Energy; 50% of all interviewees had received some DOE funding or in-kind support (such as under a CRADA) for their work over the years.



### Figure 4-1. Career Experience of Interviewees

Note: A single respondent can be included in multiple categories.

For the specific set of BTO R&D projects in this part of the evaluation, we asked respondents whether they were directly involved, very familiar, somewhat familiar, or unaware. Figure 4-2 summarizes these responses. Although the figure shows that many respondents were unfamiliar with one or more of these specific DOE projects, there are several important caveats. These specific projects were highly specialized, so that respondents who had been involved in or very familiar with one were often not involved in others. More than half of our respondents were directly involved in or very familiar with at least one of these specific projects. Most respondents were at least somewhat familiar with at least one project, and all respondents were aware of DOE's role in refrigeration research and had relevant insight to share based on their experiences. People were most aware of the CRADA with the Appliance Industry-Government CFC Replacement Consortium and the R&D at ORNL on multiple unequal parallel compressors.

To some extent, individuals' lack of familiarity with these specific projects may reflect the fact that decades have passed since these projects occurred and some of the key individuals who may have been more familiar with these projects have since retired and become less accessible.



### Figure 4-2. Interviewee Familiarity with Specific BTO Projects

## 4.3 SUMMARY OF QUALITATIVE FINDINGS

We posed a series of structured and semi-structured questions to interviewees to understand their perceptions about the ways in which DOE research has influenced private R&D related to improving energy efficiency. Respondents in our sample rated DOE's contributions to the knowledge base and provision of scientific and engineering data as most significant. Figure 4-3 illustrates the range of opinions.

## Figure 4-3. In what ways has private R&D (or your R&D work specifically) been influenced by BTO?



Note: Sorted in descending order by the combined percentage of "moderate" and "major" contribution.

Respondents expressed a variety of perspectives on how the BTO activities impact private R&D and the degree of that impact. Interviewees described direct impacts on energy efficiency that ranged from establishing credible estimates of technical potential that feeds into the standards-setting process, better-equipping refrigerator manufacturers to meet the new standards, directly improving component technologies such as compressors through collaborative research, and reducing the risk for refrigerator manufacturers to develop and adopt more efficient component technologies. Interviewees also described indirect impacts on energy efficiency such as providing knowledge and aggregating useful engineering and cost-benefit data that advocacy groups and utilities use to better design rebate and market transformation programs.

Experts in our sample considered access to scientific and engineering data produced by DOE laboratories to be highly influential, with 81% of respondents rating this a moderate or major contribution. DOE's contributions to the knowledge base were also broadly perceived as influential; 78% of respondents assigned it a moderate or major contribution. Comments typically centered around how DOE contributions to the scientific and technical literature contributed to the knowledge base upon which standards are derived.

Among experts in our sample, 64% assigned CRADAs a moderate or major contribution. Anecdotally, there were substantial differences in the influence attributed to CRADAs for those respondents who had experience engaging in a CRADA and those that did not. Individuals who had been directly involved in a CRADA gave high rating to their importance and impact.

Asked how BTO R&D influenced either the timing or levels of energy performance standards, only a few experts characterized the counterfactual in terms of a delay in the introduction of a new standard, although most thought it not unreasonable that new standards would have been delayed in the absence of BTO R&D. Most respondents thought that the standards would have been less stringent without BTO R&D and characterized the counterfactual trends in shipments-weighted energy performance accordingly. These results are discussed in greater detail in Sections 4.4 and 4.5.

## 4.4 SUMMARY OF QUANTITATIVE FINDINGS

Interviewees were asked to consider how BTO R&D influenced the evolution of average energy efficiency of residential refrigerators on the market. Using interviewee input, we developed counterfactual scenarios, describing how residential refrigerator energy efficiency would have progressed in the

absence of BTO R&D efforts. Many interviewees were comfortable discussing how the energy performance trend for residential refrigerators, depicted on the interview guide, would have been different without BTO R&D. These respondents described in words how the trend would have been different. If the conversation started this way, we referred back to this part of the discussion when we reached Question 14 in the interview guide (Appendix A), which asks whether average energy performance would have been different, and if so in what direction and by how much. In some cases the interviews got to Question 14 first, and in those cases we would pivot from that question to the graph of the energy efficiency trend line. To have a practicable way to combine responses, we averaged answers to Question 14 and used that average (and a range around it, based on the variability of responses) to construct the counterfactual trendline in a formulaic way, described below. We compared the range of constructed trend lines with the counterfactual trends respondents described and were satisfied that by this procedure we were not losing any meaningful information.

Figure 4-4 illustrates the range of responses. Some respondents expressed the opinion that the observed trend in average energy use would not be any different without DOE research. At the opposite end of the spectrum, some respondents believed that DOE research deserved credit for more than half the reduction in average energy use since 1980. This high-impact end of the range is represented by the orange trendline, falling only to 1,000 kWh by 2015.

The impact attributed to DOE is represented by the difference between the actual and counterfactual trends. Thus, the level of impact attributed to DOE becomes greater as the counterfactual trend is displaced farther from the actual, reflecting a more gradual hypothesized decline in average energy consumption in the absence of DOE research.

On average, responses put the counterfactual energy use at 650 kWh in 2015 (based on answers to Question 15 on the interview guide, Appendix A), shown by the blue trendline. This trendline was drawn as follows. First, we calculated the percentage of the drop that occurred from 1980 to 2015 attributed to DOE, based on a 2015 counterfactual value of 650: (650 - 498)/(1437 - 498) = 16%. Then, we applied the

same 16% attribution to every year, attributing to DOE 16% of the difference between 1,437 kWh (the actual average usage in 1980) and the actual average usage in each year. Thus, the attributable impact in 1980 is zero, and it increases gradually, reaching (650 – 498), or 16% of (1,437 – 498), in 2015.

The shaded band around the blue trendline represents plus or minus one standard deviation of all 31 quantitative responses on which the 650 average value is based (not all interviewees provided quantitative responses).

Figure 4-4. Shipments-Weighted Average Energy Consumption of Residential Refrigerators (kWh/year), Actual and Counterfactual (without DOE)



Notes: These are shipments-weighted averages, applying only to new refrigerators purchased in each year. The high scenario reflects the opinions of those interviewees who attributed the highest impact to DOE research. The actual trendline represents the opinions of those who attributed no impact to DOE research. In between these extremes, the middle (counterfactual) scenario represents the average of all responses. The shaded band around it shows one standard deviation on either side.

The energy and resource benefits estimates developed in Section 4.5 are based on this average counterfactual trendline. The high and low bounds are based on the average, plus or minus 2.75 times the standard error (i.e., times the estimated standard deviation of the sample average), which yields a 99% confidence interval based on a *t* distribution with 30 degrees of freedom. The sample average of 650 kWh has an estimated standard deviation of 29 kWh (obtained by dividing the sample standard deviation, which is 162.9 kWh, by the square root of 31). This yields a 99% confidence interval of 570 kWh to 730 kWh in 2015. The confidence interval for the counterfactual in all other years is obtained in the same way as the average counterfactual, by holding constant the attributed percentage difference from 1,437 kWh.

## 4.5 ENERGY AND RESOURCE BENEFITS

This section develops estimates for the amount of energy saved, attributable to DOE, based on the difference between actual and counterfactual trends summarized in Section 4.4. Estimates are developed in steps, explaining all assumptions, so that all calculations can be readily understood.

**Step 1.** First, the actual and counterfactual shipmentsweighted average energy usage trends described in Figure 4-4 are converted into estimates of first-year energy savings by multiplying the difference between actual and counterfactual average usage by the number of refrigerators shipped in each year. Step 1 is summarized in Table 4-2.

**Step 2**. Next, the cumulative energy savings in each year are calculated by summing first-year energy savings over 15-year intervals. This calculation assumes that a refrigerator is operated for 15 years and that the attributed energy savings are the same in every year. For example, the total savings in 2000 will be equal to the sum of the first-year savings in 1986 (representing the savings attributed to refrigerators purchased in 1986 that are being operated for their 15<sup>th</sup> and final year in 2000), in 1987 (representing the savings attributed to refrigerators purchased in 1986 and penultimate year), in 1988, ..., and in 2000.

Note that this calculation assumes that refrigerators shipped in a given year were operated for that entire year, which will tend to overstate the savings. The overestimation is relatively small.

**Step 3.** Finally, cumulative energy savings are converted into energy cost savings by multiplying by the real price of electricity in each year.

Steps 2 and 3 are summarized in Table 4-3. Our estimates attribute savings to DOE of between 170.5 billion and 554.3 billion kWh and between \$21 billion and \$68 billion undiscounted dollars.

|      |        |        |        |        |         | Low     | Mid     | High    |
|------|--------|--------|--------|--------|---------|---------|---------|---------|
|      |        | Low-   | Mid-   | High-  |         | First-  | First-  | First-  |
|      | Actual | Impact | Impact | Impact |         | Year    | Year    | Year    |
|      | Avg.   | Avg.   | Avg.   | Avg.   | Refrig. | Energy  | Energy  | Energy  |
|      | Usage  | Usage  | Usage  | Usage  | Shipped | Savings | Savings | Savings |
| Year | (kWh)  | (kWh)  | (kWh)  | (kWh)  | (thous) | (GWh)   | (GWh)   | (GWh)   |
| 1980 | 1,437  | 1,437  | 1,437  | 1,437  | 5,124   | 0       | 0       | 0       |
| 1981 | 1,338  | 1,346  | 1,354  | 1,363  | 4,944   | 37      | 79      | 121     |
| 1982 | 1,340  | 1,347  | 1,355  | 1,364  | 4,364   | 32      | 69      | 105     |
| 1983 | 1,305  | 1,315  | 1,327  | 1,338  | 5,477   | 55      | 117     | 179     |
| 1984 | 1,282  | 1,294  | 1,307  | 1,320  | 5,994   | 71      | 150     | 230     |
| 1985 | 1,192  | 1,210  | 1,231  | 1,252  | 6,081   | 114     | 242     | 370     |
| 1986 | 1,210  | 1,227  | 1,247  | 1,266  | 6,510   | 113     | 240     | 366     |
| 1987 | 1,097  | 1,123  | 1,152  | 1,181  | 6,972   | 180     | 383     | 586     |
| 1988 | 1,086  | 1,113  | 1,143  | 1,173  | 7,227   | 193     | 410     | 628     |
| 1989 | 1,053  | 1,082  | 1,115  | 1,148  | 7,099   | 208     | 442     | 675     |
| 1990 | 1,033  | 1,064  | 1,098  | 1,133  | 7,101   | 219     | 465     | 711     |
| 1991 | 966    | 1,002  | 1,043  | 1,083  | 7,273   | 261     | 554     | 847     |
| 1992 | 926    | 965    | 1,009  | 1,052  | 7,761   | 302     | 642     | 982     |
| 1993 | 745    | 797    | 857    | 916    | 8,109   | 428     | 909     | 1,390   |
| 1994 | 737    | 790    | 850    | 910    | 8,652   | 461     | 981     | 1,500   |
| 1995 | 732    | 786    | 846    | 907    | 8,671   | 465     | 989     | 1,513   |
| 1996 | 746    | 799    | 858    | 917    | 9,045   | 476     | 1,012   | 1,547   |
| 1997 | 755    | 807    | 866    | 924    | 9,015   | 468     | 995     | 1,522   |
| 1998 | 768    | 819    | 876    | 933    | 9,741   | 497     | 1,055   | 1,614   |
| 1999 | 779    | 829    | 886    | 942    | 10,045  | 503     | 1,070   | 1,636   |
| 2000 | 795    | 844    | 899    | 954    | 10,169  | 497     | 1,057   | 1,616   |
| 2001 | 638    | 699    | 768    | 836    | 10,262  | 624     | 1,327   | 2,030   |
| 2002 | 587    | 652    | 725    | 798    | 10,754  | 696     | 1,479   | 2,262   |
| 2003 | 580    | 646    | 719    | 793    | 11,014  | 719     | 1,527   | 2,336   |
| 2004 | 565    | 631    | 706    | 781    | 11,953  | 794     | 1,688   | 2,581   |
| 2005 | 554    | 621    | 697    | 772    | 12,180  | 820     | 1,742   | 2,664   |
| 2006 | 574    | 640    | 714    | 788    | 12,173  | 800     | 1,701   | 2,601   |
| 2007 | 565    | 632    | 706    | 781    | 11,523  | 765     | 1,626   | 2,487   |
| 2008 | 549    | 617    | 693    | 769    | 10,312  | 697     | 1,482   | 2,267   |
| 2009 | 523    | 593    | 671    | 749    | 9,196   | 640     | 1,361   | 2,081   |
| 2010 | 517    | 587    | 666    | 745    | 10,235  | 717     | 1,524   | 2,330   |
| 2011 | 514    | 584    | 663    | 742    | 10,235  | 720     | 1,529   | 2,339   |
| 2012 | 516    | 586    | 665    | 744    | 9,493   | 666     | 1,415   | 2,164   |
| 2013 | 505    | 576    | 656    | 736    | 10,081  | 716     | 1,521   | 2,326   |
| 2014 | 500    | 571    | 652    | 732    | 10,081  | 720     | 1,529   | 2,339   |
| 2015 | 498    | 570    | 650    | 730    | 10,081  | 721     | 1,532   | 2,344   |

| Table 4-2. Actual and Counterfactual Average Ener | gy Consumption and First-Year Savings |
|---------------------------------------------------|---------------------------------------|
|---------------------------------------------------|---------------------------------------|

Notes: First-year energy savings is obtained by multiplying the number of refrigerators shipped by the difference between the actual (shipments-weighted) average usage by the counterfactual average usage. Refrigerator shipments obtained from Association of Home Appliance Manufacturers (2013).

|       | Low      | Mid            | High           | Real<br>Price | Low Cost<br>Savings | Mid Cost<br>Savings | High<br>Savings |
|-------|----------|----------------|----------------|---------------|---------------------|---------------------|-----------------|
|       | Energy   | Energy         | Energy         | (2015         | (Millions           | (Millions           | (Millions       |
| Mara  | Savings  | Savings        | Savings        | dollars       | of 2015             | of 2015             | of 2015         |
| 1090  |          |                |                | /GWN)         | dollars)            | dollars)            | dollars)        |
| 1960  | 0<br>27  | 70             | 121            | 155,344       | 6                   | 12                  | 20              |
| 1901  | 37<br>70 | 1/9            | 121            | 160,000       | 12                  | 15                  | 20              |
| 1902  | 125      | 140            | 220            | 171 251       | 12                  | 25                  | 50              |
| 1905  | 125      | 203            | 403            | 162 020       | 21                  | 43                  | 102             |
| 1904  | 193      | 415            | 1 004          | 162,039       | 52                  | 107                 | 162             |
| 1965  | 309      | 007            | 1,004          | 160 212       | 50                  | 107                 | 105             |
| 1960  | 422      | 1 200          | 1,371          | 155 400       | 00                  | 144                 | 220             |
| 1000  | 705      | 1,200          | 1,937          | 1/0 001       | 94<br>110           | 199                 | 204             |
| 1900  | 1 002    | 2 1 2 1        | 2,303          | 149,001       | 147                 | 233                 | 207<br>477      |
| 1000  | 1,003    | 2,151          | 3,200          | 140,279       | 174                 | 360                 | 477<br>564      |
| 1001  | 1 / 97   | 2,590          | J,971<br>A 919 | 130 034       | 207                 | JUJ<br>441          | 674             |
| 1002  | 1 785    | 3,150          | 5 800          | 139,934       | 207                 | 526                 | 804             |
| 1992  | 2 212    | J,792<br>4 701 | 7 101          | 136,070       | 302                 | 520<br>642          | 004             |
| 100/  | 2,212    | 5 682          | 8 600          | 133 087       | 358                 | 761                 | 1 164           |
| 1005  | 2,074    | 6 671          | 10 203         | 130 642       | 410                 | 872                 | 1 333           |
| 1995  | 3 578    | 7 604          | 11 630         | 126 310       | 452                 | 960                 | 1 469           |
| 1997  | 4 014    | 8 530          | 13 046         | 120,510       | 500                 | 1 062               | 1 624           |
| 1997  | 4,014    | 9 468          | 14 481         | 124,450       | 535                 | 1 1 3 7             | 1 739           |
| 1999  | 4 888    | 10 388         | 15 888         | 116 091       | 567                 | 1 206               | 1 844           |
| 2000  | 5 272    | 11 203         | 17 134         | 113 411       | 598                 | 1 271               | 1 943           |
| 2000  | 5 783    | 12 290         | 18 797         | 114 855       | 664                 | 1 412               | 2 1 5 9         |
| 2001  | 6 299    | 13 386         | 20 473         | 111 206       | 700                 | 1 489               | 2,135           |
| 2002  | 6 824    | 14 503         | 20,473         | 112 315       | 766                 | 1 629               | 2,277           |
| 2005  | 7 411    | 15 749         | 24 087         | 112,313       | 832                 | 1 768               | 2,705           |
| 2005  | 8.012    | 17.026         | 26.041         | 114.694       | 919                 | 1,953               | 2,987           |
| 2005  | 8.551    | 18,173         | 27,794         | 122,285       | 1.046               | 2,222               | 3,399           |
| 2007  | 9.014    | 19,157         | 29,299         | 121,730       | 1.097               | 2,332               | 3,567           |
| 2008  | 9,284    | 19,730         | 30,176         | 123,973       | 1,151               | 2,446               | 3,741           |
| 2009  | 9,463    | 20,110         | 30.757         | 127.132       | 1.203               | 2.557               | 3.910           |
| 2010  | 9.714    | 20,644         | 31,574         | 125,411       | 1,218               | 2.589               | 3,960           |
| 2011  | 9,958    | 21,162         | 32,366         | 123,490       | 1,230               | 2.613               | 3,997           |
| 2012  | 10,156   | 21,582         | 33,008         | 122.628       | 1,245               | 2,647               | 4,048           |
| 2013  | 10.375   | 22,048         | 33,721         | 123.399       | 1,280               | 2,721               | 4,161           |
| 2014  | 10,591   | 22,507         | 34,423         | 125.348       | 1,328               | 2.821               | 4,315           |
| 2015  | 10,815   | 22,983         | 35,151         | 126,700       | 1,370               | 2,912               | 4,454           |
| Total | 170,529  | 362,396        | 554,263        | .,            | 20,950              | 44,521              | 68,092          |

| Table 4-3 | . Cumulative | <b>Energy and</b> | Energy | <b>Cost Savings</b> |
|-----------|--------------|-------------------|--------|---------------------|
|-----------|--------------|-------------------|--------|---------------------|

Notes: Nominal energy prices are "Average Retail Price of Electricity, Residential" (dollars per kWh, including taxes) from the U.S. Energy Information Administration. Nominal prices are converted to constant 2015 dollars using the Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted.

National Research Council (NRC, 2001) estimated the energy savings attributable to DOE (specifically BTO) R&D investments in refrigerator and freezer compressor technology from 1978 to 1981 at \$7 billion, using a "5-year rule" which limits benefits to the period 1981 through 1990, with attributable impacts attenuating over time. In contrast, our approach has DOE impacts building over time, consistent with the importance, emphasized by interviewees, of the accumulation of knowledge generated by BTO R&D. To put our results in perspective, if we look only at the years 1981 through 1990, and convert to constant 1999 dollars to be consistent with NRC (2001), we estimate impacts of \$0.5 billion to \$1.6 billion; from 1981 through 1999, we estimate impacts of \$3.0 billion to \$9.8 billion. Our objective is different from that of the NRC study. While that study set out to quantify the impact of a discrete R&D project, our remit involved estimation of the cumulative impact of many formal R&D projects, as well as formal and informal interactions between DOE laboratory scientists and industry, from 1976 through 2015. Still it is interesting to note the similarity in the magnitude of impact estimates over similar timeframes.<sup>27</sup>

## 4.6 ENVIRONMENTAL HEALTH BENEFITS

This section develops estimates for the numbers of avoided adverse health events associated with the estimates of energy savings developed in Section 4.5. Estimates are again developed in steps, explaining all assumptions, so that all calculations can be readily understood. Unless otherwise noted, all assumptions described in this section come directly from the COBRA model, an overview of which is provided in Section 2.4.

**Step 1.** First, the energy savings for each year, given in Table 4-3, are transformed into amounts of criteria pollutants abated. This is done by applying the multipliers in Table 4-4, which are specific to the year in which the electricity was generated.

Tables 4-5 and 4-6 show the total amounts of these pollutants abated, based on low, middle, and high impact scenarios.

<sup>&</sup>lt;sup>27</sup> Other studies have considered the impact of standards on energy efficiency improvements in refrigeration technology. See for example, Meyers et al. (2003) and McMahon et al. (2000). In contrast to these, we look at the impact of BTO R&D, holding the standards-setting environment constant. We thus recognize the importance of standards without explicitly measuring their impact.

| Year | PM 2.5 | SO2    | NOx    | NH3    | VOC    |
|------|--------|--------|--------|--------|--------|
| 1980 | 0.0000 | 7.6297 | 3.0678 | 0.0000 | 0.0197 |
| 1981 | 0.0000 | 7.4977 | 2.9785 | 0.0000 | 0.0185 |
| 1982 | 0.0000 | 7.5701 | 2.9697 | 0.0000 | 0.0177 |
| 1983 | 0.0000 | 7.2406 | 2.8035 | 0.0000 | 0.0161 |
| 1984 | 0.0000 | 6.8244 | 2.6065 | 0.0000 | 0.0143 |
| 1985 | 0.0000 | 6.5799 | 2.4776 | 0.0000 | 0.0129 |
| 1986 | 0.0000 | 6.5046 | 2.5032 | 0.0000 | 0.0141 |
| 1987 | 0.0000 | 6.2621 | 2.4624 | 0.0000 | 0.0148 |
| 1988 | 0.0000 | 5.9297 | 2.3818 | 0.0000 | 0.0151 |
| 1989 | 0.0000 | 5.3862 | 2.2095 | 0.0000 | 0.0148 |
| 1990 | 0.0398 | 5.2370 | 2.1933 | 0.0000 | 0.0155 |
| 1991 | 0.0342 | 5.1350 | 2.1208 | 0.0000 | 0.0143 |
| 1992 | 0.0344 | 4.9989 | 2.1090 | 0.0000 | 0.0143 |
| 1993 | 0.0350 | 4.7507 | 2.0803 | 0.0000 | 0.0141 |
| 1994 | 0.0333 | 4.5847 | 2.0215 | 0.0000 | 0.0139 |
| 1995 | 0.0319 | 3.6022 | 1.9037 | 0.0000 | 0.0131 |
| 1996 | 0.0455 | 3.7069 | 1.7897 | 0.0017 | 0.0144 |
| 1997 | 0.0460 | 3.7785 | 1.7973 | 0.0017 | 0.0150 |
| 1998 | 0.0359 | 3.7058 | 1.7215 | 0.0022 | 0.0156 |
| 1999 | 0.1681 | 3.4057 | 1.5484 | 0.0030 | 0.0146 |
| 2000 | 0.1545 | 2.9973 | 1.4019 | 0.0029 | 0.0163 |
| 2001 | 0.1563 | 2.9038 | 1.3159 | 0.0029 | 0.0162 |
| 2002 | 0.1312 | 2.7047 | 1.2205 | 0.0075 | 0.0128 |
| 2003 | 0.1312 | 2.6635 | 1.1175 | 0.0072 | 0.0127 |
| 2004 | 0.1291 | 2.5814 | 0.9997 | 0.0067 | 0.0123 |
| 2005 | 0.1272 | 2.5655 | 0.9351 | 0.0063 | 0.0119 |
| 2006 | 0.1101 | 2.3484 | 0.8827 | 0.0065 | 0.0115 |
| 2007 | 0.0913 | 2.0898 | 0.8139 | 0.0066 | 0.0109 |
| 2008 | 0.0751 | 1.8916 | 0.7631 | 0.0068 | 0.0106 |
| 2009 | 0.0695 | 1.7118 | 0.7134 | 0.0069 | 0.0108 |
| 2010 | 0.0582 | 1.3809 | 0.5958 | 0.0064 | 0.0101 |
| 2011 | 0.0501 | 1.1281 | 0.5098 | 0.0062 | 0.0099 |
| 2012 | 0.0484 | 1.1423 | 0.4854 | 0.0062 | 0.0098 |
| 2013 | 0.0459 | 1.1369 | 0.4524 | 0.0062 | 0.0095 |
| 2014 | 0.0433 | 0.7876 | 0.4187 | 0.0062 | 0.0091 |
| 2015 | 0.0435 | 0.5518 | 0.3578 | 0.0063 | 0.0092 |

Table 4-4. Average Amounts of Criteria Pollutants Released from Fuel Combustion by Electric Utilities in the United States (tons per GWh)

Notes: Quantities of pollutants are drawn from EPA (2017b). U.S. electric utility outputs are drawn from EIA (2017c).

| PM2.5 |        |        |        | NH3 |       |       | VOC   |       |       |
|-------|--------|--------|--------|-----|-------|-------|-------|-------|-------|
| Year  | Low    | Mid    | High   | Low | Mid   | High  | Low   | Mid   | High  |
| 1980  | 0      | 0      | 0      | 0   | 0     | 0     | 0     | 0     | 0     |
| 1981  | 0      | 0      | 0      | 0   | 0     | 0     | 1     | 1     | 2     |
| 1982  | 0      | 0      | 0      | 0   | 0     | 0     | 1     | 3     | 4     |
| 1983  | 0      | 0      | 0      | 0   | 0     | 0     | 2     | 4     | 7     |
| 1984  | 0      | 0      | 0      | 0   | 0     | 0     | 3     | 6     | 9     |
| 1985  | 0      | 0      | 0      | 0   | 0     | 0     | 4     | 8     | 13    |
| 1986  | 0      | 0      | 0      | 0   | 0     | 0     | 6     | 13    | 19    |
| 1987  | 0      | 0      | 0      | 0   | 0     | 0     | 9     | 19    | 29    |
| 1988  | 0      | 0      | 0      | 0   | 0     | 0     | 12    | 26    | 39    |
| 1989  | 0      | 0      | 0      | 0   | 0     | 0     | 15    | 32    | 48    |
| 1990  | 49     | 103    | 158    | 0   | 0     | 0     | 19    | 40    | 61    |
| 1991  | 51     | 108    | 165    | 0   | 0     | 0     | 21    | 45    | 69    |
| 1992  | 61     | 130    | 199    | 0   | 0     | 0     | 25    | 54    | 83    |
| 1993  | 77     | 165    | 252    | 0   | 0     | 0     | 31    | 66    | 101   |
| 1994  | 89     | 189    | 289    | 0   | 0     | 0     | 37    | 79    | 120   |
| 1995  | 100    | 213    | 326    | 0   | 0     | 0     | 41    | 88    | 134   |
| 1996  | 163    | 346    | 530    | 6   | 13    | 20    | 52    | 110   | 168   |
| 1997  | 185    | 393    | 600    | 7   | 15    | 22    | 60    | 128   | 195   |
| 1998  | 160    | 340    | 519    | 10  | 21    | 32    | 69    | 147   | 225   |
| 1999  | 822    | 1,746  | 2,671  | 15  | 31    | 47    | 72    | 152   | 232   |
| 2000  | 815    | 1,731  | 2,647  | 15  | 32    | 50    | 86    | 182   | 279   |
| 2001  | 904    | 1,921  | 2,938  | 17  | 36    | 55    | 94    | 199   | 304   |
| 2002  | 826    | 1,756  | 2,686  | 47  | 100   | 153   | 81    | 172   | 262   |
| 2003  | 895    | 1,902  | 2,910  | 49  | 104   | 159   | 86    | 184   | 281   |
| 2004  | 957    | 2,033  | 3,109  | 50  | 106   | 161   | 91    | 193   | 295   |
| 2005  | 1,019  | 2,165  | 3,311  | 50  | 107   | 163   | 95    | 202   | 309   |
| 2006  | 942    | 2,001  | 3,060  | 55  | 118   | 180   | 98    | 209   | 320   |
| 2007  | 823    | 1,749  | 2,674  | 59  | 126   | 192   | 99    | 209   | 320   |
| 2008  | 697    | 1,481  | 2,266  | 64  | 135   | 207   | 98    | 209   | 319   |
| 2009  | 658    | 1,398  | 2,138  | 65  | 139   | 212   | 102   | 217   | 332   |
| 2010  | 565    | 1,201  | 1,837  | 62  | 131   | 201   | 98    | 208   | 318   |
| 2011  | 499    | 1,059  | 1,620  | 61  | 130   | 200   | 99    | 209   | 320   |
| 2012  | 492    | 1,045  | 1,598  | 63  | 135   | 206   | 99    | 211   | 322   |
| 2013  | 476    | 1,012  | 1,548  | 65  | 137   | 210   | 98    | 208   | 319   |
| 2014  | 459    | 975    | 1,491  | 66  | 140   | 214   | 97    | 205   | 314   |
| 2015  | 470    | 999    | 1,529  | 68  | 144   | 220   | 99    | 211   | 322   |
| Total | 13,252 | 28,162 | 43,072 | 894 | 1,900 | 2,906 | 1,999 | 4,249 | 6,499 |

Table 4-5. BTO-Attributed PM 2.5, NH3, and VOC Abated (tons)

·

| 1     |         | SO2     |           |         | NOx     |         |
|-------|---------|---------|-----------|---------|---------|---------|
| Year  | Low     | Mid     | High      | Low     | Mid     | High    |
| 1980  | 0       | 0       | 0         | 0       | 0       | 0       |
| 1981  | 279     | 592     | 906       | 111     | 235     | 360     |
| 1982  | 526     | 1,119   | 1,711     | 207     | 439     | 671     |
| 1983  | 902     | 1,916   | 2,931     | 349     | 742     | 1,135   |
| 1984  | 1,333   | 2,832   | 4,332     | 509     | 1,082   | 1,654   |
| 1985  | 2,033   | 4,321   | 6,609     | 766     | 1,627   | 2,488   |
| 1986  | 2,743   | 5,829   | 8,916     | 1,056   | 2,243   | 3,431   |
| 1987  | 3,771   | 8,013   | 12,255    | 1,483   | 3,151   | 4,819   |
| 1988  | 4,715   | 10,021  | 15,326    | 1,894   | 4,025   | 6,156   |
| 1989  | 5,402   | 11,481  | 17,559    | 2,216   | 4,709   | 7,203   |
| 1990  | 6,398   | 13,596  | 20,795    | 2,680   | 5,694   | 8,709   |
| 1991  | 7,612   | 16,177  | 24,742    | 3,144   | 6,681   | 10,219  |
| 1992  | 8,921   | 18,958  | 28,995    | 3,764   | 7,998   | 12,233  |
| 1993  | 10,510  | 22,335  | 34,160    | 4,602   | 9,780   | 14,958  |
| 1994  | 12,259  | 26,051  | 39,843    | 5,405   | 11,487  | 17,568  |
| 1995  | 11,308  | 24,031  | 36,754    | 5,976   | 12,700  | 19,424  |
| 1996  | 13,263  | 28,186  | 43,109    | 6,404   | 13,609  | 20,814  |
| 1997  | 15,166  | 32,231  | 49,295    | 7,214   | 15,331  | 23,448  |
| 1998  | 16,511  | 35,088  | 53,665    | 7,670   | 16,299  | 24,929  |
| 1999  | 16,647  | 35,378  | 54,108    | 7,569   | 16,085  | 24,601  |
| 2000  | 15,801  | 33,579  | 51,356    | 7,390   | 15,705  | 24,020  |
| 2001  | 16,793  | 35,688  | 54,583    | 7,611   | 16,173  | 24,736  |
| 2002  | 17,037  | 36,206  | 55,375    | 7,688   | 16,338  | 24,988  |
| 2003  | 18,177  | 38,629  | 59,080    | 7,627   | 16,208  | 24,788  |
| 2004  | 19,131  | 40,655  | 62,179    | 7,408   | 15,744  | 24,079  |
| 2005  | 20,555  | 43,681  | 66,808    | 7,492   | 15,921  | 24,351  |
| 2006  | 20,082  | 42,677  | 65,272    | 7,548   | 16,040  | 24,533  |
| 2007  | 18,839  | 40,034  | 61,230    | 7,337   | 15,592  | 23,847  |
| 2008  | 17,562  | 37,321  | 57,080    | 7,085   | 15,056  | 23,028  |
| 2009  | 16,198  | 34,423  | 52,649    | 6,751   | 14,346  | 21,941  |
| 2010  | 13,414  | 28,507  | 43,600    | 5,788   | 12,299  | 18,811  |
| 2011  | 11,233  | 23,872  | 36,511    | 5,076   | 10,788  | 16,499  |
| 2012  | 11,601  | 24,654  | 37,706    | 4,929   | 10,476  | 16,022  |
| 2013  | 11,795  | 25,066  | 38,336    | 4,693   | 9,974   | 15,254  |
| 2014  | 8,341   | 17,726  | 27,111    | 4,434   | 9,424   | 14,413  |
| 2015  | 5,967   | 12,682  | 19,396    | 3,870   | 8,224   | 12,578  |
| Total | 382,826 | 813,555 | 1,244,283 | 165,744 | 352,227 | 538,710 |

Table 4-6. BTO-Attributed SO2 and NOx (tons)

**Step 2.** Next, these amounts of abated pollutants are transformed into numbers of avoided adverse health outcomes, and associated dollar values, based on the assumptions of the COBRA model. Table 4-7 summarizes these assumptions, based on 2017 emissions (as will be explained, a population deflator is used to develop comparable numbers for all other years).

.

|                                      | Number of events avoided per 1000 tons of pollutant abated |       |      |       | Assumed Monetary Value<br>(2015 dollars) |           |           |              |
|--------------------------------------|------------------------------------------------------------|-------|------|-------|------------------------------------------|-----------|-----------|--------------|
| Adverse                              |                                                            |       |      |       |                                          |           | <b>`</b>  | ,            |
| Health Event                         | PM 2.5                                                     | S02   | NOx  | NH3   | VOC                                      | 3%        | 7%        | Undiscounted |
| Adult<br>Mortality<br>(low)          | 8.8                                                        | 3.3   | 0.8  | 1.3   | 0.1                                      | 8,434,924 | 7,512,853 | 9,126,478    |
| Adult<br>Mortality<br>(high)         | 19.9                                                       | 7.6   | 1.8  | 3.0   | 0.2                                      | 8,434,924 | 7,512,853 | 9,126,478    |
| Infant<br>Mortality                  | 0.02                                                       | 0.01  | 0.00 | 0.00  | 0.00                                     | 9,401,680 | 9,401,680 | 9,401,680    |
| Non-fatal<br>Heart Attacks<br>(low)  | 1.1                                                        | 0.4   | 0.1  | 0.2   | 0.01                                     | 122,181   | 118,759   | 124,748      |
| Non-fatal<br>Heart Attacks<br>(high) | 10.0                                                       | 3.9   | 0.9  | 1.4   | 0.1                                      | 122,181   | 118,759   | 124,748      |
| Resp. Hosp.<br>Adm.                  | 2.6                                                        | 1.0   | 0.2  | 0.3   | 0.03                                     | 25,663    | 25,663    | 25,663       |
| CVD Hosp.<br>Adm.                    | 3.2                                                        | 1.2   | 0.3  | 0.4   | 0.04                                     | 38,860    | 38,860    | 38,860       |
| Acute<br>Bronchitis                  | 12.8                                                       | 4.8   | 1.2  | 2.1   | 0.2                                      | 477       | 477       | 477          |
| Upper Res.<br>Symptoms               | 232.7                                                      | 87.6  | 21.0 | 38.8  | 3.0                                      | 33        | 33        | 33           |
| Lower Res.<br>Symptoms               | 162.9                                                      | 61.3  | 14.7 | 27.2  | 2.1                                      | 21        | 21        | 21           |
| Asthma ER<br>Visits                  | 5.1                                                        | 1.8   | 0.4  | 0.7   | 0.1                                      | 426       | 426       | 426          |
| MRAD                                 | 6,610                                                      | 2,462 | 581  | 1,186 | 82.4                                     | 68        | 68        | 68           |
| Work Loss<br>Days                    | 1,109                                                      | 412.5 | 97.4 | 199.9 | 13.8                                     | 160       | 160       | 160          |
| Asthma<br>Exacerbations              | 246.2                                                      | 92.7  | 22.2 | 41.4  | 3.1                                      | 57        | 57        | 57           |

| Table 4-7. COBRA | parameters fo | r Electric Utility | <b>Fuel Combustion</b> | (rounded) |
|------------------|---------------|--------------------|------------------------|-----------|
|------------------|---------------|--------------------|------------------------|-----------|

Notes: Parameters have been rounded. Undiscounted monetary values are approximated based on simple linear extrapolation from the 3% and 7% values. MRAD = minor restricted activity day.

**Step 3.** Finally, the parameters in Table 4-7 are applied to the attributed abatements in Tables 4-5 and 4-6 to obtain estimates of attributed avoided adverse health events and associated values in each year. Because the parameters in Table 4-7 are based on the United States' population in 2017, a simple population deflator is applied to each year: the ratio of

the U.S. population in the given year to the U.S. population in 2017. Table 4-8 reports the estimated value of all avoided adverse health events at between \$12 billion and \$92 billion, without discounting.

|       | Value based on low numbers of adult   |                 |         | Value based on high numbers of adult  |        |        |  |
|-------|---------------------------------------|-----------------|---------|---------------------------------------|--------|--------|--|
|       | mortality and non-fatal heart attacks |                 |         | mortality and non-fatal heart attacks |        |        |  |
|       | (milli                                | ions of 2015 do | ollars) | (millions of 2015 dollars)            |        |        |  |
| Year  | Low                                   | Middle          | High    | Low                                   | Middle | High   |  |
| 1980  | 0                                     | 0               | 0       | 0                                     | 0      | 0      |  |
| 1981  | 7                                     | 14              | 22      | 15                                    | 32     | 49     |  |
| 1982  | 13                                    | 27              | 41      | 29                                    | 61     | 93     |  |
| 1983  | 22                                    | 47              | 71      | 50                                    | 105    | 161    |  |
| 1984  | 33                                    | 69              | 106     | 74                                    | 157    | 240    |  |
| 1985  | 50                                    | 107             | 163     | 113                                   | 241    | 369    |  |
| 1986  | 68                                    | 145             | 222     | 155                                   | 329    | 503    |  |
| 1987  | 95                                    | 202             | 309     | 215                                   | 457    | 699    |  |
| 1988  | 120                                   | 255             | 390     | 272                                   | 578    | 883    |  |
| 1989  | 139                                   | 296             | 452     | 315                                   | 669    | 1,024  |  |
| 1990  | 170                                   | 361             | 553     | 385                                   | 818    | 1,250  |  |
| 1991  | 204                                   | 434             | 664     | 462                                   | 982    | 1,502  |  |
| 1992  | 243                                   | 517             | 790     | 550                                   | 1,169  | 1,788  |  |
| 1993  | 292                                   | 620             | 948     | 660                                   | 1,402  | 2,144  |  |
| 1994  | 344                                   | 732             | 1,119   | 779                                   | 1,656  | 2,532  |  |
| 1995  | 328                                   | 698             | 1,067   | 743                                   | 1,579  | 2,415  |  |
| 1996  | 389                                   | 827             | 1,265   | 881                                   | 1,872  | 2,863  |  |
| 1997  | 450                                   | 956             | 1,462   | 1,018                                 | 2,162  | 3,307  |  |
| 1998  | 491                                   | 1,044           | 1,597   | 1,112                                 | 2,363  | 3,614  |  |
| 1999  | 546                                   | 1,161           | 1,775   | 1,236                                 | 2,627  | 4,017  |  |
| 2000  | 528                                   | 1,122           | 1,716   | 1,195                                 | 2,539  | 3,883  |  |
| 2001  | 568                                   | 1,207           | 1,846   | 1,286                                 | 2,732  | 4,178  |  |
| 2002  | 576                                   | 1,223           | 1,871   | 1,302                                 | 2,768  | 4,233  |  |
| 2003  | 617                                   | 1,312           | 2,006   | 1,397                                 | 2,968  | 4,539  |  |
| 2004  | 653                                   | 1,387           | 2,121   | 1,477                                 | 3,138  | 4,799  |  |
| 2005  | 704                                   | 1,496           | 2,288   | 1,593                                 | 3,385  | 5,177  |  |
| 2006  | 692                                   | 1,470           | 2,249   | 1,565                                 | 3,327  | 5,088  |  |
| 2007  | 653                                   | 1,387           | 2,121   | 1,477                                 | 3,138  | 4,800  |  |
| 2008  | 611                                   | 1,297           | 1,984   | 1,381                                 | 2,936  | 4,490  |  |
| 2009  | 571                                   | 1,213           | 1,855   | 1,291                                 | 2,744  | 4,197  |  |
| 2010  | 479                                   | 1,019           | 1,558   | 1,085                                 | 2,305  | 3,525  |  |
| 2011  | 408                                   | 867             | 1,326   | 923                                   | 1,962  | 3,001  |  |
| 2012  | 420                                   | 893             | 1,366   | 951                                   | 2,022  | 3,092  |  |
| 2013  | 426                                   | 906             | 1,386   | 965                                   | 2,050  | 3,136  |  |
| 2014  | 322                                   | 683             | 1,045   | 728                                   | 1,546  | 2,365  |  |
| 2015  | 248                                   | 528             | 807     | 562                                   | 1,194  | 1,826  |  |
| Total | 12,480                                | 26,521          | 40,562  | 28,239                                | 60,011 | 91,784 |  |

### Table 4-8. Value of All BTO-Attributed Avoided Adverse Health Events

Notes: Attributed avoided mortalities based amounts of pollutants abated and COBRA model parameters. Within each block of three columns, Low/Middle/High refers to the scenarios in Tables 4-5 and 4-6. Lower values in the left block of Low/Middle/High scenarios are based on low numbers of adult mortality and non-fatal heart attacks in Table 4-7; higher values in the right block are based on high numbers for adult mortality and non-fatal heart attacks. Each year's estimates are deflated by the ratio of the U.S. population in the given year to the U.S. population in 2017. Totals are not discounted.

## 4.7 ENERGY SECURITY BENEFITS

DOE-attributed energy savings (Table 4-3) are associated with between 3 million and 10 million avoided barrels of imported crude oil (Table 4-9). The approach used to convert fuel savings into avoided crude imports is described in Section 2.3.

|      |            | Petroleum    |             |        |               |        |
|------|------------|--------------|-------------|--------|---------------|--------|
|      | Percentage | Consumed for |             |        |               |        |
|      | of U.S.    | Electricity  | Total       |        |               |        |
|      | Crude Oil  | Generation   | Electricity | Avoide | d Crude Oil I | mports |
|      | Supply     | (thousands   | Generation  | (thou  | usands of bai | rels)  |
| Year | Imported   | of barrels)  | (GWh)       | Low    | Middle        | High   |
| 1980 | 39.1%      | 421,110      | 2,289,600   | 0      | 0             | 0      |
| 1981 | 35.3%      | 351,806      | 2,297,973   | 2      | 4             | 6      |
| 1982 | 29.6%      | 250,517      | 2,244,372   | 2      | 5             | 7      |
| 1983 | 28.5%      | 246,804      | 2,313,446   | 4      | 8             | 11     |
| 1984 | 28.4%      | 205,736      | 2,419,465   | 4      | 9             | 14     |
| 1985 | 26.7%      | 174,571      | 2,473,002   | 5      | 12            | 18     |
| 1986 | 32.9%      | 232,046      | 2,490,471   | 12     | 26            | 39     |
| 1987 | 36.4%      | 201,116      | 2,575,288   | 16     | 34            | 52     |
| 1988 | 38.6%      | 250,141      | 2,707,411   | 26     | 56            | 86     |
| 1989 | 43.6%      | 280,986      | 2,967,146   | 39     | 82            | 126    |
| 1990 | 44.0%      | 218,800      | 3,037,827   | 36     | 77            | 117    |
| 1991 | 43.5%      | 203,669      | 3,073,799   | 40     | 85            | 130    |
| 1992 | 45.4%      | 172,241      | 3,083,882   | 42     | 90            | 137    |
| 1993 | 49.9%      | 192,462      | 3,197,191   | 62     | 132           | 201    |
| 1994 | 50.9%      | 183,618      | 3,247,522   | 72     | 153           | 234    |
| 1995 | 51.7%      | 132,578      | 3,353,487   | 60     | 127           | 195    |
| 1996 | 52.9%      | 144,626      | 3,444,188   | 74     | 158           | 241    |
| 1997 | 56.1%      | 159,715      | 3,492,172   | 96     | 204           | 312    |
| 1998 | 58.5%      | 222,640      | 3,620,295   | 150    | 318           | 486    |
| 1999 | 59.0%      | 207,871      | 3,694,810   | 151    | 322           | 492    |
| 2000 | 60.2%      | 195,228      | 3,802,105   | 152    | 323           | 494    |
| 2001 | 61.7%      | 216,672      | 3,736,644   | 193    | 410           | 627    |
| 2002 | 61.2%      | 168,597      | 3,858,452   | 157    | 334           | 511    |
| 2003 | 63.2%      | 206,653      | 3,883,185   | 214    | 455           | 696    |
| 2004 | 65.2%      | 203,494      | 3,970,555   | 231    | 491           | 751    |
| 2005 | 66.5%      | 206,785      | 4,055,423   | 254    | 539           | 824    |
| 2006 | 66.4%      | 110,634      | 4,064,702   | 144    | 306           | 469    |
| 2007 | 66.2%      | 112,615      | 4,156,745   | 151    | 321           | 490    |
| 2008 | 66.8%      | 80,932       | 4,119,388   | 114    | 242           | 370    |
| 2009 | 62.9%      | 67,668       | 3,950,331   | 95     | 202           | 309    |
| 2010 | 62.6%      | 65,071       | 4,125,060   | 89     | 190           | 291    |
| 2011 | 60.3%      | 52,387       | 4,100,141   | 72     | 152           | 233    |
| 2012 | 56.8%      | 40,977       | 4,047,765   | 55     | 116           | 177    |
| 2013 | 50.5%      | 47,492       | 4,065,964   | 57     | 121           | 186    |
| 2014 | 46.3%      | 53,593       | 4,093,606   | 60     | 127           | 195    |
| 2015 | 45.5%      | 49,145       | 4,077,601   | 55     | 118           | 180    |
|      | Total      | •            | •           | 2 987  | 6 347         | 9 707  |

### Table 4-9. BTO-Attributed Avoided Crude Oil Imports: Residential Refrigeration

Notes: Avoided barrels of imported crude in a given year are obtained by taking the product of (1) the percentage of U.S. crude oil supply imported, (2) the number of barrels of petroleum liquids consumed in electricity generation, and (3) the percentage reduction in electricity consumption attributed to DOE, and then multiplying by 42/45 (to convert barrels of refined petroleum liquids to barrels of crude). A detailed explanation is provided in Section 2.5. Percentage savings is calculated by dividing DOE-attributed savings (Table 4-3) by U.S. electric utility outputs (EIA, 2017c).

## 4.8 KNOWLEDGE BENEFITS

This section assesses selected knowledge benefits resulting from BTO's funding of R&D in appliances technologies, including but not limited to advanced refrigeration.

### 4.8.1 Trends in Attributed Patenting

Figure 4-5 shows the number of BTO-attributed appliance patent family births by year of birth. The bulk of activity occurred in the 1980s and early 1990s. Of the 47 BTOappliance patent families, 27 were born between 1981 and 1995; only 11 families were born in 2001 or after, and there are none from 2011 on.



### Figure 4-5. Trend in BTO-Attributed Appliance Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.

The number of appliance patent family births springing from all organizations has steadily increased over the same period (Figure 4-6).<sup>28</sup>

Similar to HVAC patenting trends, in tracing the influence of BTO-Appliances patents, the impact examined is largely of older, possibly foundational, BTO-attributed technologies, rather than more recent innovations. This likely impact of early

<sup>&</sup>lt;sup>28</sup> The number of patent family births in 2011-2015 is biased downward by time lags in the patenting process; most patent families filed in 2015, and possibly in 2014, had not yet been issued when this analysis was carried out.

BTO-Appliance patents is supported by the forward and backward patent analysis in presented in the following sections.



Figure 4-6. Trend in All Appliance Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.

### 4.8.2 Assignees of Attributed Patents

DOE is the most prolific assignee with 16 patent families, followed by DOE lab managers Lockheed Martin (9 families), and Battelle Memorial Institute and Midwest Research Institute (3 each). Other assignees that have one or two of the BTOattributed patents include MIT, UT-Battelle, Spauschus Associates, Sonic Compressor Systems, Varitec Thermal, Procter & Gamble, ADA Technologies, Colorado State University, Brookhaven Science Associates, and Astronautics Corp.

It was found that most of the Appliance research funded by DOE has been carried out in DOE labs. As in the case of HVAC, the assignees include none of the top companies leading in downstream appliance patenting.

### 4.8.3 Influence of Attributed Patents: Forward Tracing

This section traces forward from BTO-Appliances patents to examine the breadth of influence of the Appliances research funded by BTO. To facilitate the analysis, primary International Patent Classifications (IPCs) are used. Figure 4-7 shows the 4digit IPCs with the largest number of patent families that cite BTO-Appliance patents directly and indirectly as prior art. Refrigeration Systems (IPC F25B) is dominant, followed by Layered Products and Electric Heating. Adding the second level of citations increases the prominence of two other IPCs – Semiconductor Devices (H01L) and Earth Drilling (E21B)– demonstrating a knowledge spillover effect.

Figure 4-7. Patent Families Linked to BTO-Attributed Prior Appliance Patents by IPC



Note: IPC = International Patent Classification.

The organizations with the largest number of patent families linked directly or indirectly to earlier BTO-Appliances patents are shown in Figure 4-8. This figure includes patent families assigned to all organizations, not just the leading Appliances companies. It also includes all patent families from these organizations, not just patent families describing Appliances technology. This figure reveals that the company with the most patent families linked to BTO-Appliances patents is Shell (170 families). These Shell patents are mainly concerned with fluid heating, either for wellbores, or for hydrocarbon extraction through fracturing (often referred to as 'fracking'). They reference earlier patents related to fluid heating, which in turn reference a BTO-appliance patent (US#4,459,811) that describes heat exchange in magnetic refrigeration. This illustrates how, over just two patent generations, the influence of a patent can extend well beyond its targeted area.

The influence of BTO-Appliances patents extending beyond Appliances technology can also be seen in the identity of the companies that follow Shell in Figure 4-8. The second-placed company is Guardian Industries, whose patents linked to BTO-Appliances patents describe insulated window panels. The next three companies are iRobot, Corning and Medtronic, whose patents linked to BTO-Appliances patents that respectively describe automated vacuum cleaners, laser sealed glass packages for thin films, and use of microwave energy in medical procedures.

Only three of the leading innovative Appliances companies appear in Figure 4-8 (i.e., General Electric, Whirlpool and Panasonic). This suggests that much of the impact of BTO's Appliances patents has been on technological developments beyond those associated with the leading Appliances companies.

Figure 4-8. Organizations with the Greatest Numbers of Patent Families Linked to BTO-Attributed Prior Appliance Patents by IPC



### 4.8.4 Influence of Attributed Patents: Backward Tracing

The 10 companies with the largest number of Appliances patent families are shown in Figure 4-9, where the analysis covers the following types of Appliances: refrigerators, dishwashers, washing machines, clothes dryers, stoves, and microwaves, but is not extended to cover smaller appliances due to resource requirements and complexity in assessing a very large number of appliances. The backward tracing for Appliances begins with the Appliances patent family portfolios of these companies.



Figure 4-9. Companies with the Ten Largest Appliance Patent Portfolios

After adjusting for the large differences in the size of patent portfolios among the organizations by using the mean number of linked patent families, and after also removing self-citations, DOE (BTO) is at the bottom of the list in Figure 4-10, with an average of 0.51 per patent family. It is interesting to note that this is a comparable average to the two companies with the largest Appliances patent portfolios – BSH and LG Electronics.

Note: For derivation of this list of companies, see Appendix B.



Figure 4-10. Average Number of Appliance Patent Families of Leading Companies and DOE Linked to the Appliance Patent Portfolios owned by Leading Organizations

While Figure 4-10 compares the impact of DOE (BTO) Appliances patents against the impact of patents owned by leading Appliances companies, Figure 4-11 counts the total number of citation links of patent families of leading companies to DOE (BTO). Whirlpool stands out when counting total citation links to DOE (BTO), but this count is relatively low, with a total of 19 links between Whirlpool and DOE. Not all patents have equal impact, and so these results should not be interpreted to mean DOE's small Appliances patent portfolio has not had a large impact on leading companies in this technology area. Indeed, as described below, several of the Whirlpool patents were identified as high-impact patents.



Figure 4-11. Total Number of Citation Links from Leading Companies' Appliance Patent Families to Earlier BTO-Appliance Patent Families

Note: Companies without citation links to BTO-Appliance families are omitted.

Table 4-10 shows the DOE-attributed Appliances patent families linked directly or indirectly to the largest number of subsequent patent families owned by leading companies in this technology. They are relatively older patents that have had a longer time period to become connected to subsequent generations of technology. Thus, the patent families in Table 4-10 represent older foundation technologies that are linked to subsequent developments made by leading companies in the Appliances industry.

The patent family at the head of Table 4-10 (with anchor patent<sup>29</sup> US #5032439) is assigned to MIT. It describes thermal insulation vacuum panels for use in refrigerators, and is linked to nine patent families assigned to leading Appliances patent families. These include Whirlpool patent families describing vacuum insulated cabinets for refrigerators, and General Electric and BSH patent families detailing vacuum panels for refrigerators. Also prominent in Table 4-10 are patent families describing microwave heating. These include Lockheed Martin families (anchor patents US #5521360 and US #5321222) related to variable frequency microwave heating, and a DOE

<sup>&</sup>lt;sup>29</sup> The anchor patent for each patent family is a single patent from the family, generally the first patent issued, but it is not necessarily the priority filing (which may, for example, be a Japanese application).
patent family (anchor patent US #4996403) detailing control systems for microwave ovens.

|                        |                     |            | Number of<br>Linked<br>Leading |                                     |                                                                                        |
|------------------------|---------------------|------------|--------------------------------|-------------------------------------|----------------------------------------------------------------------------------------|
| DOE Anchor<br>Patent # | Application<br>Date | Issue Date | Company<br>Families            | Assignee                            | Title                                                                                  |
| 5032439                | 25-08-89            | 7/16/1991  | 9                              | Massachusetts Inst<br>of Technology | Thermal insulations using vacuum panels                                                |
| 5521360                | 9/14/1994           | 5/28/1996  | 5                              | Lockheed Martin<br>Corp.            | Apparatus and method<br>for microwave<br>processing of materials                       |
| 4683154                | 19-08-85            | 7/28/1987  | 4                              | US Dept of Energy                   | Laser sealed vacuum<br>insulation window                                               |
| 5321222                | 14-11-91            | 6/14/1994  | 3                              | Lockheed Martin<br>Corp.            | Variable frequency<br>microwave furnace<br>system                                      |
| 4996403                | 05-02-90            | 2/26/1991  | 3                              | US Dept of Energy                   | Acoustic emission<br>feedback control for<br>control of boiling in a<br>microwave oven |
| 4485638                | 22-02-83            | 12/4/1984  | 3                              | US Dept of Energy                   | Heat exchanger bypass<br>system for an absorption<br>refrigeration system              |

 Table 4-10. BTO-Appliances Patent Families Linked to the Most Appliance Patent Families of

 Leading Companies.

The backward tracing also identified high-impact Appliances patents owned by leading companies that have links back to BTO-attributed Appliances patents. Examples are US #7513132 assigned to Whirlpool, which describes a dry cleaning machine designed for domestic use. It has been cited by 17 subsequent patents since it was issued in 2009, which, based on its Citation Index is more than three times as many citations as expected given its age and technology. It is one of two high-impact Whirlpool patents related to dry-cleaning, the other being US #7739891. Whirlpool also has high-impact patents related to microwave cooking (US #6680467) and refrigerators designed for storing fruits and vegetables (US #7296422) that link to earlier BTO-Appliances patents. Panasonic has a high-impact patent (US #7316125) linked to the BTO Appliance set describing a recyclable insulation box for refrigerators.

#### 4.8.5 Most Influential Attributed Patents

Table 4-11 lists highly cited BTO-Appliances patents. These are mainly older patents that have attracted large numbers of

citations from subsequent generations of patents. There are also a few recent patents that have attracted more citations than expected given their relatively recent issue dates.

The patent at the head of Table 4-11 is US #5,521,360, assigned to Lockheed Martin, and describing variable frequency microwave heating. This patent was also noted as being among the BTO-Appliances patents with the most links to patent families owned by leading Appliances companies. Overall, it has been cited as prior art by 84 subsequent patents, and has a Citation Index of 5.61, which means that this is more than five times as many citations as expected given its age and technology. There is also another highly-cited Lockheed Martin patent related to microwave technology near the head of Table 4-11, namely US #5,321,222; Citation Count = 64; Citation Index = 3.77). Thus, it appears that the Appliances microwave research funded by BTO has formed part of the foundation for many subsequent technological developments.

Beyond these patents related to microwave technology, Table 4-11 is dominated by patents describing refrigeration, especially magnetic refrigeration. There are a series of patents assigned to DOE (e.g., US #4,332,135 and US #4,459,811) and to Astronautics Corp (e.g., US #4,408,463 and US #7,148,777) that describe magnetic refrigeration. These patents have all been cited more frequently than expected given their age and technology, especially the older foundational patents assigned to these organizations.

One other patent of note in Table 4-11 is US #4,683,154, granted in 1987 to DOE, and describing a laser sealed insulated window. It has been cited as prior art by 98 subsequent patents, which is more than any other of the BTO-Appliances patents. It is linked to subsequent innovations by the Guardian Industries and Corning outside the three targeted technology areas.

| DOE<br>Patent # | Application<br>Date | Issue Date | Number of<br>Citations<br>Received | Citation<br>Index | Assignee                               | Title                                                                                                                      |
|-----------------|---------------------|------------|------------------------------------|-------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 5521360         | 9/14/1994           | 5/28/1996  | 84                                 | 5.61              | Lockheed<br>Martin Corp.               | Apparatus and<br>method for<br>microwave<br>processing of<br>materials                                                     |
| 4683154         | 19-08-85            | 7/28/1987  | 98                                 | 4.79              | US Dept of<br>Energy                   | Laser sealed<br>vacuum insulation<br>window                                                                                |
| 4332135         | 27-01-81            | 6/1/1982   | 65                                 | 4.03              | US Dept of<br>Energy                   | Active magnetic<br>regenerator                                                                                             |
| 5321222         | 11/14/1991          | 6/14/1994  | 64                                 | 3.77              | Lockheed<br>Martin Corp.               | Variable frequency<br>microwave furnace<br>system                                                                          |
| 4398398         | 14-08-81            | 8/16/1983  | 47                                 | 3.41              | US Dept of<br>Energy                   | Acoustical heat pumping engine                                                                                             |
| 4107935         | 10-03-77            | 8/22/1978  | 49                                 | 3.39              | US Dept of<br>Energy                   | High temperature<br>refrigerator                                                                                           |
| 4408463         | 20-01-82            | 10/11/1983 | 42                                 | 2.84              | Astronautics<br>Corp                   | Wheel type<br>magnetic<br>refrigerator                                                                                     |
| 5622055         | 3/22/1995           | 4/22/1997  | 33                                 | 2.37              | Lockheed<br>Martin Corp.               | Liquid over-feeding<br>refrigeration system<br>and method with<br>integrated<br>accumulator-<br>expander-heat<br>exchanger |
| 7148777         | 2/3/2005            | 12/12/2006 | 16                                 | 2.33              | Astronautics<br>Corp                   | Permanent magnet<br>assembly                                                                                               |
| 5689966         | 3/22/1996           | 11/25/1997 | 32                                 | 2.33              | Battelle<br>Memorial<br>Institute      | Method and<br>apparatus for<br>desuperheating<br>refrigerant                                                               |
| 5270092         | 8/8/1991            | 12/14/1993 | 43                                 | 2.29              | University of<br>California            | Gas filled panel<br>insulation                                                                                             |
| 4459811         | 28-03-83            | 7/17/1984  | 28                                 | 1.86              | US Dept of<br>Energy                   | Magnetic<br>refrigeration<br>apparatus and<br>method                                                                       |
| 5174130         | 3/14/1990           | 12/29/1992 | 27                                 | 1.78              | Sonic<br>Compressor<br>Systems Inc     | Refrigeration<br>system having<br>standing wave<br>compressor                                                              |
| 5032439         | 25-08-89            | 7/16/1991  | 28                                 | 1.55              | Massachusetts<br>Inst of<br>Technology | Thermal insulations<br>using vacuum<br>panels                                                                              |
| 4542629         | 05-11-84            | 9/24/1985  | 20                                 | 1.48              | US Dept of<br>Energy                   | Variable effect<br>desorber-resorber<br>absorption cycle                                                                   |
| 7076959         | 3/7/2005            | 7/18/2006  | 9                                  | 1.44              | Brookhaven<br>Sci Associates           | Enhanced<br>magnetocaloric<br>effect material                                                                              |

•

#### 4.8.6 Summary of Findings

The patent analysis produced the following principal findings attributed to BTO's funding of Appliances R&D:

- A total of 67 Appliances patents attributed to BTO funding—comprised of 50 US patents, 6 EPO patents, and 11 WIPO patents--were grouped into 47 patent families.
- BTO-Appliances patent families with a priority date between 1981 and 1995 numbered 27, while only 11 families had a priority date from 2001 on, and none from 2011 on. This suggests that much of the innovative activity in Appliances technology associated with BTO R&D funding dates back more than a decade, with relatively little such activity in recent years—a pattern like that for HVAC patents attributed to BTO.
- Forward tracing revealed that BTO's Appliances patents are linked particularly extensively to subsequent patents classified as being related to Refrigeration Systems.
- Forward tracing also revealed a spillover influence of BTO's Appliances patents in the areas of Electric Heating, Layered Products (mainly composite materials) and Closures (such as doors and windows).
- Preparation for tracing backwards from the leading innovators in Appliances technology to the BTO patent set showed the BTO-appliance patent portfolio (47 families) to be dwarfed by those associated with the leading companies in the industry. BSH Hausgeräte has the largest Appliances patent portfolio (2,893 families), followed by LG Electronics (1,980), AB Electrolux (1,955), Whirlpool (1,798), Samsung (1,054), Koc Holding (821), Panasonic (766), Miele & Cie (553), General Electric (466), and Sharp, (290).
- The backward patent citation tracing revealed that BTO's 47 Appliances families are linked to 24 Appliances patent families owned by the leading companies, for an average of 0.51 linkages per BTO patent family. This average citation rate is much lower than Sharp's (4.21 links per family, not including self-citations), as well as General Electric's (4.15) -- putting BTO in last place when

ranked against the leading companies. At the same time, the BTO-Appliance family of patents is cited at a rate comparable to the two companies with the largest Appliances patent portfolios – BSH (0.60) and LG Electronics (0.81).

- The backward tracing also showed that among the leading companies, Whirlpool's Appliance patent families are linked particularly extensively to earlier BTO-Appliances patents, and the two areas where BTO-Appliances patents have had most of their influence on leading companies' patents are in vacuum insulated structures for refrigerators, and in microwave heating.
- None of the five companies found by forward tracing to have the most patent families linked to BTO's Appliances patents are among the 10 leading Appliances companies examined in the backward tracing, suggesting that much of the impact of DOE's Appliances patents has been on technological developments beyond those associated with the leading Appliances companies. In particular, the BTO-Appliance patents related to refrigeration and microwave heating appear to have had a notable influence on technologies outside the Appliance focus of this study.
- In terms of particularly influential BTO-appliance patents overall, two assigned to Lockheed Martin were identified as related to microwave technology.

# Heat Pump Design Model and Alternative Refrigerants

This section describes BTO R&D related to the heat pump design model and alternative refrigerants research and presents estimates of benefits attributable to this R&D derived from estimated impacts on residential heat pump and central air conditioner energy performance trends.

### 5.1 TECHNOLOGY OVERVIEW

5

BTO has maintained an active program in alternative refrigerants research since 1981. Their research played an important role in transitioning toward more environmentally friendly fluids (first in terms of ozone depletion and more recently in terms of global warming potential) and improving the energy efficiency of all vapor compression systems refrigerators, freezers, air conditioners for homes and automobiles, chillers, and heat pumps. A brief timeline of BTO activities follows:

- 1981-1992: Research in heat transfer characteristics, system performance, design and operability of zeotropic refrigerant mixtures at ORNL, NIST, and the University of Illinois.
- 1986-1991: Basic research on replacements for CFC refrigerants and insulation blowing agents.
- 1989-1997: Participation in Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), testing alternatives to CFC refrigerants.
- 1991-1999: Participation in the Materials Compatibility and Lubricants Research (MCLR) program, researching

refrigerant and lubricant properties and related system design issues.

The 1987 Montreal Protocol limited the production and sale of CFC refrigerants and established a timetable for phasing out CFCs altogether. The Protocol was strengthened in 1990 and again in 1992, bringing forward the phase-out of CFCs in economically-developed countries to the end of 1995. The Clean Air Act Amendments of 1990 regulated the production and consumption of CFCs in the United States.<sup>30</sup>

The introduction of new refrigerants was to some extent at odds with improved efficiency. Some of the refrigerants were not inherently as efficient and implementing them meant that manufacturers lost decades of optimization experience and were forced to develop new technologies to achieve comparable efficiency with new refrigerants. BTO's research efforts focused on developing robust data on the characteristics of alternative refrigerants, which helped manufacturers to understand how to design and optimize new product lines which met environmental standards during the transitions from CFCs and HCFCs to HFCs, while maintaining and improving efficiencies.

An important tool for the design of vapor compression equipment—including and especially designing systems to work with new refrigerants—is the Heat Pump Design Model (HPDM). Oak Ridge National Laboratory (ORNL) developed the first version of the HPDM in the mid-1970s. A steady-state, vaporcompression equipment design tool, the HPDM has since been used by ORNL and industry (often in collaboration) to develop next-generation products. HPDM is a hardware-based model, which allows users to choose specific real world hardware as model inputs (e.g., heat exchangers, air flow control devices, and compressors) to run realistic simulations.

Like DOE's alternative refrigerants research, the HPDM cuts across all systems that utilize a vapor compression cycle. The HPDM played a role in transitioning to alternative refrigerants, particularly in modeling alternative system designs to accommodate the new fluids, then to optimize for them, leading to efficiency improvements.

The HPDM was expanded in 1988 to model variable-speed designs, and in 1995 to model non-chlorinated refrigerant

<sup>&</sup>lt;sup>30</sup> The EPA provides details at http://www.epa.gov/ozone/title6/ phaseout/

mixtures. These expansions paralleled industry's trend towards more advanced heat pumps and provided the optimization tools needed to maximize efficiency of increasingly complex systems. In addition to its use within ORNL, industry has adopted the model as well. Expert interviewees noted that, because HPDM software is distributed as open source, the core functionality of the HPDM provides a robust foundation upon which manufacturers can add feature sets and capabilities to tailor it to their research priorities.

Notably, ClimateMaster used the model in the design and development of the Trilogy 45 ground-coupled integrated heat pump, and NORDYNE used the model in the design and development of its iQ Drive compressor for air conditioners and heat pumps. Manufacturers also use HPDM to model the performance of new fluids that are being researched.

The HPDM was also included as part of the certification and compliance process for energy conservation standards air conditioners and heat pumps. The HPDM helped industry simulate the performance of its products and thereby lower the cost and reduce the time of product certification.

### 5.2 SAMPLE OF INTERVIEWEES

Table 5-1 summarizes the number of organizations contacted and interviewed, the number of persons contacted and interviewed, and our respective response rates; we interviewed 39 experts from 23 organizations.

To anticipate a concern, the source of contacts was not significantly correlated with attribution of impacts to BTO R&D, nor did we find correlations between BTO attribution and other respondent characteristics, including affiliation with a national laboratory, professional involvement in technical R&D efforts, and an index of their familiarity with specific BTO R&D activities. Respondents who had worked for a manufacturer (OEM, component, or fluid manufacturing company) tended to attribute lower impact to DOE. Despite this correlation, our main quantitative findings are fairly robust to a reweighting of responses more heavily toward industry. Section 9.2 provides details.

| Stakeholder<br>Group          | Number of<br>Organizations<br>Contacted | Number of<br>Organizations<br>Represented in<br>Interviews | Number of<br>Individuals<br>Contacted | Number of<br>Interviews<br>Conducted | Response<br>Rate |
|-------------------------------|-----------------------------------------|------------------------------------------------------------|---------------------------------------|--------------------------------------|------------------|
| Manufacturers                 | 22                                      | 12                                                         | 44                                    | 22                                   | 50%              |
| Consulting                    | 5                                       | 2                                                          | 5                                     | 2                                    | 40%              |
| University                    | 13                                      | 3                                                          | 13                                    | 4                                    | 31%              |
| National Lab                  | 1                                       | 1                                                          | 8                                     | 6                                    | 75%              |
| Industry/Trade<br>Association | 2                                       | 2                                                          | 6                                     | 2                                    | 33%              |
| Advocacy                      | 2                                       | 1                                                          | 2                                     | 1                                    | 50%              |
| Other<br>Government           | 3                                       | 2                                                          | 8                                     | 4                                    | 50%              |
| Total                         | 47                                      | 23                                                         | 84                                    | 39                                   | 46%              |

Of the individuals contacted, 39, or 46%, agreed to participate in an interview. Every effort was made to interview a diverse sample of experts to represent different perspectives on BTO's research investments. The group most heavily represented in the sample was private sector HVAC, heat pump, and refrigerant manufacturers (n=22). Interviewees from these companies were research engineers, R&D managers, product managers, and in one case, a legal counsel with experience in regulatory affairs.

Interviewee career experience is presented in Figure 5-1. The majority of respondents have experience participating in public-private collaborations and have worked on heat pump projects in some capacity.

For the specific set of BTO R&D projects in this part of the evaluation, we asked respondents whether they were directly involved, very familiar, somewhat familiar, or unaware. Figure 5-2 summarizes their responses. More respondents were either very familiar with or directly involved in the MCLR program than any of the other activities, while the AFEAS CRADA was the least commonly known project to among experts in our sample.



#### Figure 5-1. Career Experience of Interviewees

Note: A single respondent can be included in multiple categories.



Figure 5-2. Interviewee Familiarity with Specific BTO Projects

### 5.3 SUMMARY OF QUALITATIVE FINDINGS

Interviewees were asked how their R&D work was influenced by BTO research investments in the areas of heat pumps and alternative refrigerants. Experts in our sample rated DOE's contributions to the knowledge base and provision of scientific and engineering data as most significant. Figure 5-3 illustrates the range of opinions.





Note: Sorted in descending order by the combined percentage of "moderate" and "major" contribution.

Participants identified DOE's contribution to the knowledge base on which R&D work drew and access to DOE-generated data as its two most significant contributions to R&D in the HVAC sector. These factors include tools that DOE has developed and made available to the industry, including the Heat Pump Design Model (HPDM) and building efficiency models, which interviewees reported were regularly used and added significant value to private-sector research. Interviewees also emphasized the importance of DOE's role as a trusted third party providing high quality data, independent of any company or companies.

In discussing alternative refrigerants, interviewees identified DOE as an important contributor of test facilities and data on fluid properties that proved valuable to managing the transition to new fluids. DOE's research into alternative refrigerants in the 1990s was regarded as having made for more efficient work and avoided duplication of effort. In the absence of DOE research, interviewees generally agreed that the transition to alternative refrigerants would still have been feasible, but would have been substantially more expensive and timeconsuming for industry. DOE investments funded research on fluid properties that the entire industry needed and saved individual manufacturers from having to conduct the research independently.

Asked how BTO R&D influenced either the timing or levels of energy performance standards, only a few experts characterized the counterfactual in terms of a delay in the introduction of a new standard, although most thought it not unreasonable that new standards would have been delayed in the absence of BTO R&D. Most respondents thought that the standards would have been less stringent without BTO R&D and characterized the counterfactual trends in shipments-weighted energy performance accordingly. These results are discussed in greater detail in Sections 5.4 and 5.5.

### 5.4 SUMMARY OF QUANTITATIVE FINDINGS

Interviewees were asked to consider how BTO R&D influenced the evolution of average energy efficiency of residential heat pumps and central air conditioners. Using interviewee input, we developed counterfactual scenarios, describing how energy efficiency would have progressed in the absence of BTO R&D. Many interviewees were comfortable discussing how the energy performance trend for heat pumps and central air conditioners, depicted on the interview guide, would have been different without BTO R&D. These respondents described in words how the trend would have been different. If the conversation started this way, we referred back to this part of the discussion when we reached Question 15 in the interview guide (Appendix A), which asks whether average energy performance would have been different, and if so in what direction and by how much. In some cases, the interviews got to Question 15 first, and in those cases we would pivot from that question to the graph of the energy efficiency trend line. To have a practicable way to combine responses, we averaged answers to Question 15 and used that average (and a range around it, based on the variability of responses) to construct the counterfactual trendline in a formulaic way, described below. We compared the range of constructed trend lines with the counterfactual trends respondents described and were satisfied that by this procedure we were not losing any meaningful information.

Heat pumps and central air conditioners are rated according to their seasonal energy efficiency ratio (SEER), which indicates the relative amount of energy needed to provide a specific heating or cooling output. Specifically, SEER is the ratio of heating or cooling output to the amount of energy consumed. Thus, a higher SEER represents greater energy-efficiency.

Heat pumps and central air conditioners are subject to the same minimum-SEER standards and their respective shipments-weighted average SEER levels move in lock-step, although heat pumps have slightly higher average SEER levels (the difference is less than 3%). For purposes of developing the counterfactual, we combined heat pumps and central air conditioners into one combined trendline for actual shipmentsweighted average SEER, and we developed combined counterfactual trendlines to capture the DOE contribution.

Figure 5-4 illustrates the range of responses quantifying the relative DOE contribution to efficiency improvements. Some respondents expressed the opinion that the observed trend in shipments-weighted average SEER would not be any different without the DOE research. At the opposite end of the spectrum, some respondents believed that DOE research deserved credit for much if not all of the increase in shipments-weighted average SEER since 1990. This high-impact end of the range is represented by the orange trendline, which rises only to 11.0 SEER by 2015.

The impact attributed to DOE is represented by the difference between the actual and counterfactual trends. Thus, the level of impact attributed to DOE becomes greater as the counterfactual trend is displaced farther from the actual, reflecting a more gradual hypothesized improvement in average energy efficiency in the absence of DOE.

On average, responses put the counterfactual energy use at 13.2 SEER in 2015 (based on answers to Question 15 on the interview guide, Appendix A), shown by the blue trendline. This trendline was drawn as follows. First, we calculated the percentage of the increase that occurred from 1990 to 2015 that respondents attributed to DOE, based on a 2015 value of 13.2 SEER: (14.7 - 13.2)/(14.7 - 9.3) = 28%. Then, we applied the same 28% attribution to every year, attributing 28% of the difference between 9.3 SEER (the actual average SEER in 1990) and the actual average usage in each year to DOE. Thus, the attributable impact in 1990 is zero, and it increases gradually, reaching (14.7 - 13.2), or 28% of (14.7 -9.3), in 2015. The shaded band around this trendline represents plus or minus one standard deviation of all 19 quantitative responses on which the 13.2 SEER average value is based (not all interviewees provided quantitative responses).

Figure 5-4. Shipments-Weighted Average SEER, Actual and Counterfactual (without DOE)



Notes: These are shipments-weighted averages, applying only to new air conditioners purchased in each year. The high scenario reflects the opinions of those interviewees who attributed the highest impact to DOE research. The actual trendline (Baxter et al., 2015) represents the opinions of those who attributed no impact to DOE research. In between these extremes, the middle scenario represents the average of all responses. The shaded band around it shows one standard deviation on either side.

The energy and resource benefits estimates developed in Section 5.5 are based on this average counterfactual trendline. The high and low bounds are based on the average, plus or minus 2.88 times the standard error (i.e., times the estimated standard deviation of the sample average), which yields a 99% confidence interval based on a *t* distribution with 18 degrees of freedom. The sample average of 13.2 SEER has an estimated standard deviation of 0.32 SEER (obtained by dividing the sample standard deviation, which is 1.4 SEER, by the square root of 19, which is the number of responses). This yields a 99% confidence interval of 12.3 SEER to 14.1 SEER in 2015. The confidence interval for the counterfactual in all other years is obtained in the same way as the average counterfactual, by holding constant the attributed percentage difference from 14.7 SEER.

### 5.5 ENERGY AND RESOURCE BENEFITS

This section develops estimates for the amount of energy saved, attributable to BTO R&D, based on the difference between actual and counterfactual trends summarized in Section 5.4. Estimates are developed in steps, explaining all assumptions, so that all calculations can be readily understood.

**Step 1.** First, the actual and counterfactual shipmentsweighted average SEER in Figure 5-4 are converted into estimates of first-year energy savings. This is done by calculating the average energy saved by each new heat pump or central air conditioner and then multiplying by the number shipped in each year.

SEER is the ratio of heating or cooling output (measured in BTU/hour) to the amount of energy consumed (measured in watts), and its units are BTU/Wh. SEER is converted to energy savings based on the following simplifying assumptions:

- Each heat pump heats or cools 108 million BTUs per year, consistent with a capacity of 36,000 BTU/hour operated for 3,000 hours each year.
- Each central air conditioner cools 39.6 million BTUs per year, consistent with a capacity of 36,000 BTUs/hour operated for 1,100 hours each year.

These assumptions are based on average hours of operation (Energy Star, 2013) and average capacity (AHRI, 2017). Under

these assumptions, annual energy consumption, in kWh, per heat pump or central air conditioner is given by the following formulas:

|                         | Average Energy Consumption (kWh) |  |  |  |  |
|-------------------------|----------------------------------|--|--|--|--|
| System                  | per Unit                         |  |  |  |  |
| Heat pump               | 108,000,000 BTU<br>1,000 × SEER  |  |  |  |  |
| Central air conditioner | 39,600,000 BTU<br>1,000 × SEER   |  |  |  |  |

Note: Because the units of SEER are BTU/Wh, 1,000 times SEER yields BTU/kWh, and dividing a number of BTUs by 1,000 times SEER yields kWh.

Therefore, annual energy savings, in kWh, per heat pump or central air conditioner is given by the following formulas:

|                         | Average Energy Savings (kWh)<br>per Unit    |                                             |  |  |  |
|-------------------------|---------------------------------------------|---------------------------------------------|--|--|--|
| System                  |                                             |                                             |  |  |  |
| Heat pump               | $\frac{108,000 \text{ BTU}}{SEER_{C/Fact}}$ | $\frac{108,000 \text{ BTU}}{SEER_{Actual}}$ |  |  |  |
| Central air conditioner | $\frac{39,600 \text{ BTU}}{SEER_{C/Fact}}$  | $\frac{39,600 \text{ BTU}}{SEER_{Actual}}$  |  |  |  |

Note: Actual SEER (part of which is attributed to DOE) is greater than counterfactual SEER (from which the DOE contribution is assumed away). Therefore, actual energy consumption is less than counterfactual energy consumption, and the savings attributed to DOE are obtained by subtracting the actual from the counterfactual.

The first-year savings for all heat pumps or central air conditioners shipped is therefore obtained by multiplying the average savings per unit by the number of units shipped.

Step 1 is summarized in Tables 5-2 and 5-3. Table 5-2 shows actual and counterfactual shipments-weighted average SEER (assumed to be the same for heat pumps and air conditioners) and the numbers of heat pumps and central air conditioners shipped. Table 5-3 shows the calculated first-year energy savings for heat pumps and central air conditioners.

**Step 2**. Next, the cumulative energy savings in each year are calculated by summing first-year energy savings (for both heat pumps and central air conditioners) over 15-year intervals. This

calculation assumes that a heat pump or central air conditioner is operated for 15 years and that the attributed energy savings are the same in every year. For example, the total savings in 2000 will be equal to the sum of the first-year savings in 1986 (representing the savings attributable to heat pumps and central air conditioners purchased in 1986 that are being operated for their 15<sup>th</sup> and final year in 2000), in 1987 (representing the savings attributable to units purchased in 1987 and being operated for their 14<sup>th</sup> and penultimate year), in 1988, ..., and in 2000.

Note that this calculation assumes that heat pumps and central air conditioners shipped in a given year were operated for that entire year, which will tend to overstate the savings. The overestimation is relatively small.

**Step 3.** Finally, cumulative energy savings are converted into energy cost savings by multiplying by the real price of electricity in each year.

Steps 2 and 3 are summarized in Table 5-4. Our estimates attribute savings to DOE of between 154 billion and 682 billion kWh and between \$19 billion and \$83 billion undiscounted dollars.

|      | Ship   | oments-Weight | SEER,   | Shipr<br>(thou | nents |        |
|------|--------|---------------|---------|----------------|-------|--------|
|      |        |               | Mid DOF | High DOF       | Heat  | sanusj |
| Year | Actual | Impact        | Impact  | Impact         | Pumps | CACs   |
| 1990 | 9.3    | 9.3           | 9.3     | 9.3            | 809   | 2,920  |
| 1991 | 9.5    | 9.5           | 9.5     | 9.5            | 764   | 3,006  |
| 1992 | 10.5   | 10.4          | 10.2    | 10.0           | 799   | 2,914  |
| 1993 | 10.6   | 10.5          | 10.3    | 10.0           | 882   | 3,188  |
| 1994 | 10.7   | 10.5          | 10.3    | 10.1           | 1,008 | 3,888  |
| 1995 | 10.7   | 10.6          | 10.3    | 10.1           | 1,025 | 4,063  |
| 1996 | 10.7   | 10.6          | 10.3    | 10.1           | 1,148 | 4,523  |
| 1997 | 10.7   | 10.6          | 10.3    | 10.1           | 1,131 | 4,229  |
| 1998 | 11.0   | 10.8          | 10.5    | 10.2           | 1,260 | 4,980  |
| 1999 | 11.0   | 10.8          | 10.6    | 10.3           | 1,293 | 5,354  |
| 2000 | 11.0   | 10.8          | 10.5    | 10.3           | 1,339 | 5,346  |
| 2001 | 11.1   | 10.9          | 10.6    | 10.3           | 1,442 | 4,835  |
| 2002 | 11.1   | 10.9          | 10.6    | 10.3           | 1,484 | 5,263  |
| 2003 | 11.3   | 11.0          | 10.7    | 10.4           | 1,626 | 5,181  |
| 2004 | 11.4   | 11.2          | 10.8    | 10.5           | 1,886 | 5,515  |
| 2005 | 11.4   | 11.2          | 10.8    | 10.5           | 2,137 | 6,471  |
| 2006 | 13.2   | 12.7          | 12.1    | 11.4           | 2,118 | 4,951  |
| 2007 | 13.8   | 13.3          | 12.5    | 11.8           | 1,903 | 4,456  |
| 2008 | 13.8   | 13.3          | 12.6    | 11.8           | 1,865 | 3,968  |
| 2009 | 14.0   | 13.5          | 12.7    | 11.9           | 1,642 | 3,516  |
| 2010 | 14.5   | 13.9          | 13.0    | 12.1           | 1,748 | 3,420  |
| 2011 | 14.3   | 13.7          | 12.9    | 12.0           | 1,765 | 3,745  |
| 2012 | 14.3   | 13.7          | 12.9    | 12.0           | 1,698 | 3,916  |
| 2013 | 14.4   | 13.8          | 12.9    | 12.1           | 1,969 | 4,201  |
| 2014 | 14.6   | 14.0          | 13.1    | 12.2           | 2,354 | 4,500  |
| 2015 | 14.7   | 14.1          | 13.2    | 12.3           | 2,269 | 4,546  |

Table 5-2. Actual and Counterfactual Shipments-Weighted Average SEER, and Numbers ofHeat Pumps and Central Air Conditioners Shipped

Notes: CACs = central air conditioners. Shipments data from AHRI (2017).

|      | Heat Pumps |       |       | Central Air Conditioners |       |       |
|------|------------|-------|-------|--------------------------|-------|-------|
| Year | Low        | Mid   | High  | Low                      | Mid   | High  |
| 1990 | 0          | 0     | 0     | 0                        | 0     | 0     |
| 1991 | 20         | 52    | 85    | 30                       | 76    | 122   |
| 1992 | 101        | 262   | 429   | 135                      | 350   | 573   |
| 1993 | 121        | 316   | 519   | 161                      | 418   | 687   |
| 1994 | 143        | 372   | 612   | 202                      | 526   | 866   |
| 1995 | 150        | 392   | 645   | 218                      | 569   | 937   |
| 1996 | 169        | 440   | 725   | 244                      | 636   | 1,047 |
| 1997 | 165        | 429   | 706   | 226                      | 588   | 968   |
| 1998 | 209        | 547   | 903   | 303                      | 793   | 1,310 |
| 1999 | 217        | 569   | 940   | 330                      | 863   | 1,427 |
| 2000 | 223        | 583   | 964   | 326                      | 854   | 1,411 |
| 2001 | 252        | 661   | 1,094 | 310                      | 813   | 1,345 |
| 2002 | 259        | 680   | 1,126 | 337                      | 885   | 1,464 |
| 2003 | 299        | 784   | 1,301 | 349                      | 916   | 1,519 |
| 2004 | 362        | 952   | 1,581 | 388                      | 1,021 | 1,695 |
| 2005 | 414        | 1,090 | 1,812 | 460                      | 1,211 | 2,012 |
| 2006 | 576        | 1,548 | 2,632 | 494                      | 1,327 | 2,255 |
| 2007 | 549        | 1,485 | 2,541 | 472                      | 1,275 | 2,182 |
| 2008 | 542        | 1,467 | 2,512 | 423                      | 1,144 | 1,959 |
| 2009 | 484        | 1,311 | 2,249 | 380                      | 1,029 | 1,766 |
| 2010 | 532        | 1,446 | 2,492 | 381                      | 1,037 | 1,787 |
| 2011 | 530        | 1,439 | 2,475 | 412                      | 1,119 | 1,925 |
| 2012 | 510        | 1,384 | 2,380 | 431                      | 1,170 | 2,013 |
| 2013 | 595        | 1,617 | 2,784 | 466                      | 1,265 | 2,178 |
| 2014 | 720        | 1,960 | 3,382 | 505                      | 1,374 | 2,370 |
| 2015 | 701        | 1,912 | 3,304 | 515                      | 1,404 | 2,427 |

| Table 5-3. First-Year Energy | Savings for Heat Pumps | s and Central Air Conditioners | (GWh) |
|------------------------------|------------------------|--------------------------------|-------|
|------------------------------|------------------------|--------------------------------|-------|

Notes: First-year energy savings is obtained by multiplying the number of heat pumps or central air conditioners shipped by the average energy savings per unit, calculated from the actual and counterfactual SEER using the formula given above. 1 GWh = 1,000,000 kWh.

|       | Low              | Mid              | High             | Real<br>Price    | Low Cost<br>Savings | Mid Cost<br>Savings<br>(Millions | High<br>Savings<br>(Millions |
|-------|------------------|------------------|------------------|------------------|---------------------|----------------------------------|------------------------------|
| Year  | Savings<br>(GWh) | Savings<br>(GWh) | Savings<br>(GWh) | dollars<br>/GWh) | of 2015<br>dollars) | of 2015<br>dollars)              | of 2015<br>dollars)          |
| 1990  | 0                | 0                | 0                | 142,025          | 0                   | 0                                | 0                            |
| 1991  | 50               | 128              | 207              | 139,934          | 7                   | 18                               | 29                           |
| 1992  | 285              | 739              | 1,209            | 138,676          | 40                  | 103                              | 168                          |
| 1993  | 567              | 1,473            | 2,414            | 136,480          | 77                  | 201                              | 329                          |
| 1994  | 912              | 2,372            | 3,892            | 133,987          | 122                 | 318                              | 521                          |
| 1995  | 1,281            | 3,333            | 5,474            | 130,642          | 167                 | 435                              | 715                          |
| 1996  | 1,694            | 4,410            | 7,245            | 126,310          | 214                 | 557                              | 915                          |
| 1997  | 2,084            | 5,427            | 8,920            | 124,458          | 259                 | 675                              | 1,110                        |
| 1998  | 2,596            | 6,767            | 11,133           | 120,091          | 312                 | 813                              | 1,337                        |
| 1999  | 3,143            | 8,199            | 13,500           | 116,091          | 365                 | 952                              | 1,567                        |
| 2000  | 3,693            | 9,637            | 15,875           | 113,411          | 419                 | 1,093                            | 1,800                        |
| 2001  | 4,255            | 11,111           | 18,314           | 114,855          | 489                 | 1,276                            | 2,103                        |
| 2002  | 4,852            | 12,676           | 20,904           | 111,206          | 540                 | 1,410                            | 2,325                        |
| 2003  | 5,499            | 14,376           | 23,724           | 112,315          | 618                 | 1,615                            | 2,665                        |
| 2004  | 6,249            | 16,348           | 27,001           | 112,282          | 702                 | 1,836                            | 3,032                        |
| 2005  | 7,123            | 18,649           | 30,825           | 114,694          | 817                 | 2,139                            | 3,535                        |
| 2006  | 8,143            | 21,396           | 35,505           | 122,285          | 996                 | 2,616                            | 4,342                        |
| 2007  | 8,929            | 23,545           | 39,225           | 121,730          | 1,087               | 2,866                            | 4,775                        |
| 2008  | 9,613            | 25,422           | 42,491           | 123,973          | 1,192               | 3,152                            | 5,268                        |
| 2009  | 10,132           | 26,864           | 45,028           | 127,132          | 1,288               | 3,415                            | 5,725                        |
| 2010  | 10,676           | 28,385           | 47,725           | 125,411          | 1,339               | 3,560                            | 5,985                        |
| 2011  | 11,205           | 29,866           | 50,353           | 123,490          | 1,384               | 3,688                            | 6,218                        |
| 2012  | 11,755           | 31,403           | 53,072           | 122,628          | 1,442               | 3,851                            | 6,508                        |
| 2013  | 12,304           | 32,945           | 55,822           | 123,399          | 1,518               | 4,065                            | 6,888                        |
| 2014  | 12,982           | 34,847           | 59,207           | 125,348          | 1,627               | 4,368                            | 7,421                        |
| 2015  | 13,649           | 36,725           | 62,563           | 126,700          | 1,729               | 4,653                            | 7,927                        |
| Total | 153,671          | 407,046          | 681,628          |                  | 18,748              | 49,675                           | 83,209                       |

Table 5-4. Cumulative Energy and Energy Cost Savings

Notes: Nominal energy prices are "Average Retail Price of Electricity, Residential" (dollars per kWh, including taxes) from the U.S. Energy Information Administration. Nominal prices are converted to constant 2015 dollars using the Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted.

### 5.6 ENVIRONMENTAL HEALTH BENEFITS

This section develops estimates for the numbers of avoided adverse health events associated with the estimates of energy savings developed in Section 5.5. Estimates are again developed in steps, explaining all assumptions, so that all calculations can be readily understood. Unless otherwise noted, all assumptions described in this section come directly from the COBRA model, an overview of which is provided in Section 2.2. **Step 1.** First, the energy savings for each year, given in Table 5-4, are transformed into amounts of criteria pollutants abated. This is done by applying the multipliers in Table 5-5, which are specific to the year in which the electricity was generated.

Tables 5-6 and 5-7 show the total amounts of these pollutants abated, based on low, middle, and high impact scenarios.

| Year | PM 2.5 | SO2    | NOx    | NH3    | VOC    |
|------|--------|--------|--------|--------|--------|
| 1990 | 0.0398 | 5.2370 | 2.1933 | 0.0000 | 0.0155 |
| 1991 | 0.0342 | 5.1350 | 2.1208 | 0.0000 | 0.0143 |
| 1992 | 0.0344 | 4.9989 | 2.1090 | 0.0000 | 0.0143 |
| 1993 | 0.0350 | 4.7507 | 2.0803 | 0.0000 | 0.0141 |
| 1994 | 0.0333 | 4.5847 | 2.0215 | 0.0000 | 0.0139 |
| 1995 | 0.0319 | 3.6022 | 1.9037 | 0.0000 | 0.0131 |
| 1996 | 0.0455 | 3.7069 | 1.7897 | 0.0017 | 0.0144 |
| 1997 | 0.0460 | 3.7785 | 1.7973 | 0.0017 | 0.0150 |
| 1998 | 0.0359 | 3.7058 | 1.7215 | 0.0022 | 0.0156 |
| 1999 | 0.1681 | 3.4057 | 1.5484 | 0.0030 | 0.0146 |
| 2000 | 0.1545 | 2.9973 | 1.4019 | 0.0029 | 0.0163 |
| 2001 | 0.1563 | 2.9038 | 1.3159 | 0.0029 | 0.0162 |
| 2002 | 0.1312 | 2.7047 | 1.2205 | 0.0075 | 0.0128 |
| 2003 | 0.1312 | 2.6635 | 1.1175 | 0.0072 | 0.0127 |
| 2004 | 0.1291 | 2.5814 | 0.9997 | 0.0067 | 0.0123 |
| 2005 | 0.1272 | 2.5655 | 0.9351 | 0.0063 | 0.0119 |
| 2006 | 0.1101 | 2.3484 | 0.8827 | 0.0065 | 0.0115 |
| 2007 | 0.0913 | 2.0898 | 0.8139 | 0.0066 | 0.0109 |
| 2008 | 0.0751 | 1.8916 | 0.7631 | 0.0068 | 0.0106 |
| 2009 | 0.0695 | 1.7118 | 0.7134 | 0.0069 | 0.0108 |
| 2010 | 0.0582 | 1.3809 | 0.5958 | 0.0064 | 0.0101 |
| 2011 | 0.0501 | 1.1281 | 0.5098 | 0.0062 | 0.0099 |
| 2012 | 0.0484 | 1.1423 | 0.4854 | 0.0062 | 0.0098 |
| 2013 | 0.0459 | 1.1369 | 0.4524 | 0.0062 | 0.0095 |
| 2014 | 0.0433 | 0.7876 | 0.4187 | 0.0062 | 0.0091 |
| 2015 | 0.0435 | 0.5518 | 0.3578 | 0.0063 | 0.0092 |

| Table 5-5. Average Amounts of Criteria Pollutants Released from Fuel Combustion by |
|------------------------------------------------------------------------------------|
| Electric Utilities in the United States (tons per GWh)                             |

Notes: Quantities of pollutants are drawn from EPA (2017b). U.S. electric utility outputs are drawn from EIA (2017c).

|       | PM2.5 NH3 |        |        |     |       |       |       | VOC   |       |
|-------|-----------|--------|--------|-----|-------|-------|-------|-------|-------|
| Year  | Low       | Mid    | High   | Low | Mid   | High  | Low   | Mid   | High  |
| 1990  | 0         | 0      | 0      | 0   | 0     | 0     | 0     | 0     | 0     |
| 1991  | 2         | 4      | 7      | 0   | 0     | 0     | 1     | 2     | 3     |
| 1992  | 10        | 25     | 42     | 0   | 0     | 0     | 4     | 11    | 17    |
| 1993  | 20        | 52     | 85     | 0   | 0     | 0     | 8     | 21    | 34    |
| 1994  | 30        | 79     | 129    | 0   | 0     | 0     | 13    | 33    | 54    |
| 1995  | 41        | 106    | 175    | 0   | 0     | 0     | 17    | 44    | 72    |
| 1996  | 77        | 201    | 330    | 3   | 8     | 13    | 24    | 64    | 105   |
| 1997  | 96        | 250    | 411    | 4   | 9     | 15    | 31    | 81    | 133   |
| 1998  | 93        | 243    | 399    | 6   | 15    | 25    | 40    | 105   | 173   |
| 1999  | 528       | 1,379  | 2,270  | 9   | 24    | 40    | 46    | 120   | 198   |
| 2000  | 571       | 1,489  | 2,453  | 11  | 28    | 46    | 60    | 157   | 258   |
| 2001  | 665       | 1,737  | 2,862  | 13  | 33    | 54    | 69    | 180   | 297   |
| 2002  | 636       | 1,663  | 2,742  | 36  | 95    | 156   | 62    | 162   | 268   |
| 2003  | 721       | 1,886  | 3,112  | 39  | 103   | 170   | 70    | 182   | 301   |
| 2004  | 807       | 2,110  | 3,485  | 42  | 110   | 181   | 77    | 200   | 331   |
| 2005  | 906       | 2,371  | 3,920  | 45  | 117   | 194   | 85    | 222   | 366   |
| 2006  | 897       | 2,356  | 3,909  | 53  | 139   | 230   | 94    | 246   | 409   |
| 2007  | 815       | 2,149  | 3,580  | 59  | 155   | 258   | 98    | 257   | 429   |
| 2008  | 722       | 1,909  | 3,191  | 66  | 174   | 291   | 102   | 269   | 450   |
| 2009  | 704       | 1,868  | 3,130  | 70  | 185   | 310   | 109   | 290   | 486   |
| 2010  | 621       | 1,651  | 2,776  | 68  | 181   | 304   | 108   | 286   | 481   |
| 2011  | 561       | 1,495  | 2,521  | 69  | 184   | 310   | 111   | 296   | 498   |
| 2012  | 569       | 1,520  | 2,569  | 73  | 196   | 331   | 115   | 306   | 518   |
| 2013  | 565       | 1,512  | 2,562  | 77  | 205   | 347   | 116   | 311   | 528   |
| 2014  | 562       | 1,510  | 2,565  | 81  | 217   | 369   | 118   | 318   | 540   |
| 2015  | 594       | 1,597  | 2,721  | 85  | 230   | 391   | 125   | 336   | 573   |
| Total | 11,813    | 31,161 | 51,946 | 907 | 2,407 | 4,036 | 1,702 | 4,500 | 7,521 |

Table 5-6. BTO-Attributed PM 2.5, NH3, and VOC Abated (tons)

.

|       |         | S02     |           |         | NOx     |         |
|-------|---------|---------|-----------|---------|---------|---------|
| Year  | Low     | Mid     | High      | Low     | Mid     | High    |
| 1990  | 0       | 0       | 0         | 0       | 0       | 0       |
| 1991  | 257     | 657     | 1,060     | 106     | 271     | 438     |
| 1992  | 1,427   | 3,696   | 6,042     | 602     | 1,559   | 2,549   |
| 1993  | 2,695   | 6,999   | 11,469    | 1,180   | 3,065   | 5,022   |
| 1994  | 4,183   | 10,875  | 17,843    | 1,844   | 4,795   | 7,868   |
| 1995  | 4,615   | 12,007  | 19,718    | 2,439   | 6,345   | 10,420  |
| 1996  | 6,279   | 16,346  | 26,858    | 3,032   | 7,892   | 12,967  |
| 1997  | 7,875   | 20,507  | 33,703    | 3,746   | 9,754   | 16,031  |
| 1998  | 9,621   | 25,077  | 41,256    | 4,469   | 11,649  | 19,165  |
| 1999  | 10,705  | 27,925  | 45,977    | 4,867   | 12,696  | 20,904  |
| 2000  | 11,068  | 28,884  | 47,582    | 5,177   | 13,510  | 22,255  |
| 2001  | 12,355  | 32,263  | 53,181    | 5,599   | 14,621  | 24,101  |
| 2002  | 13,122  | 34,284  | 56,540    | 5,922   | 15,471  | 25,514  |
| 2003  | 14,647  | 38,291  | 63,190    | 6,146   | 16,066  | 26,513  |
| 2004  | 16,131  | 42,203  | 69,701    | 6,247   | 16,343  | 26,992  |
| 2005  | 18,275  | 47,845  | 79,083    | 6,661   | 17,439  | 28,825  |
| 2006  | 19,124  | 50,248  | 83,380    | 7,188   | 18,886  | 31,339  |
| 2007  | 18,661  | 49,205  | 81,974    | 7,268   | 19,164  | 31,926  |
| 2008  | 18,183  | 48,088  | 80,375    | 7,336   | 19,400  | 32,426  |
| 2009  | 17,343  | 45,985  | 77,078    | 7,228   | 19,164  | 32,123  |
| 2010  | 14,742  | 39,196  | 65,903    | 6,360   | 16,911  | 28,433  |
| 2011  | 12,640  | 33,692  | 56,803    | 5,712   | 15,225  | 25,668  |
| 2012  | 13,429  | 35,873  | 60,626    | 5,706   | 15,243  | 25,761  |
| 2013  | 13,988  | 37,454  | 63,462    | 5,566   | 14,904  | 25,252  |
| 2014  | 10,224  | 27,445  | 46,631    | 5,435   | 14,590  | 24,790  |
| 2015  | 7,531   | 20,265  | 34,521    | 4,884   | 13,142  | 22,388  |
| Total | 279,120 | 735,310 | 1,223,956 | 120,718 | 318,106 | 529,669 |

Table 5-7. BTO-Attributed SO2 and NOx (tons)

**Step 2.** Next, these amounts of abated pollutants are transformed into numbers of avoided adverse health outcomes, and associated dollar values, based on the assumptions of the COBRA model. Table 5-8 summarizes these assumptions, based on 2017 emissions (as will be explained, a population deflator is used to develop comparable numbers for all other years).

.

|                                      | Number of events avoided per 1000 tons of<br>pollutant abated |       |      |       | Assumed Monetary Value<br>(2015 dollars) |           |           |              |
|--------------------------------------|---------------------------------------------------------------|-------|------|-------|------------------------------------------|-----------|-----------|--------------|
| Adverse                              |                                                               |       |      |       |                                          |           | <b>,</b>  | - /          |
| Health Event                         | PM 2.5                                                        | SO2   | NOx  | NH3   | VOC                                      | 3%        | 7%        | Undiscounted |
| Adult<br>Mortality<br>(low)          | 8.8                                                           | 3.3   | 0.8  | 1.3   | 0.1                                      | 8,434,924 | 7,512,853 | 9,126,478    |
| Adult<br>Mortality<br>(high)         | 19.9                                                          | 7.6   | 1.8  | 3.0   | 0.2                                      | 8,434,924 | 7,512,853 | 9,126,478    |
| Infant<br>Mortality                  | 0.02                                                          | 0.01  | 0.00 | 0.00  | 0.00                                     | 9,401,680 | 9,401,680 | 9,401,680    |
| Non-fatal<br>Heart Attacks<br>(low)  | 1.1                                                           | 0.4   | 0.1  | 0.2   | 0.01                                     | 122,181   | 118,759   | 124,748      |
| Non-fatal<br>Heart Attacks<br>(high) | 10.0                                                          | 3.9   | 0.9  | 1.4   | 0.1                                      | 122,181   | 118,759   | 124,748      |
| Resp. Hosp.<br>Adm.                  | 2.6                                                           | 1.0   | 0.2  | 0.3   | 0.03                                     | 25,663    | 25,663    | 25,663       |
| CVD Hosp.<br>Adm.                    | 3.2                                                           | 1.2   | 0.3  | 0.4   | 0.04                                     | 38,860    | 38,860    | 38,860       |
| Acute<br>Bronchitis                  | 12.8                                                          | 4.8   | 1.2  | 2.1   | 0.2                                      | 477       | 477       | 477          |
| Upper Res.<br>Symptoms               | 232.7                                                         | 87.6  | 21.0 | 38.8  | 3.0                                      | 33        | 33        | 33           |
| Lower Res.<br>Symptoms               | 162.9                                                         | 61.3  | 14.7 | 27.2  | 2.1                                      | 21        | 21        | 21           |
| Asthma ER<br>Visits                  | 5.1                                                           | 1.8   | 0.4  | 0.7   | 0.1                                      | 426       | 426       | 426          |
| MRAD                                 | 6,610                                                         | 2,462 | 581  | 1,186 | 82.4                                     | 68        | 68        | 68           |
| Work Loss<br>Days                    | 1,109                                                         | 412.5 | 97.4 | 199.9 | 13.8                                     | 160       | 160       | 160          |
| Asthma<br>Exacerbations              | 246.2                                                         | 92.7  | 22.2 | 41.4  | 3.1                                      | 57        | 57        | 57           |

#### Table 5-8. COBRA parameters for Electric Utility Fuel Combustion (rounded)

Notes: Parameters have been rounded. Undiscounted monetary values are approximated based on simple linear extrapolation from the 3% and 7% values. MRAD = minor restricted activity day.

**Step 3.** Finally, the parameters in Table 5-8 are applied to the attributed abatements in Tables 5-6 and 5-7 to obtain estimates of attributed avoided adverse health events and associated values in each year. Because the parameters in Table 5-8 are based on the United States' population in 2017, a simple population deflator is applied to each year: the ratio of

the U.S. population in the given year to the U.S. population in 2017. Table 5-9 reports the estimated value of all avoided adverse health events at between \$10 billion and \$95 billion, without discounting.

|       | Value base  | d on low numb   | Value based on high numbers of adult  |        |        |        |
|-------|-------------|-----------------|---------------------------------------|--------|--------|--------|
|       | mortality a | nd non-fatal he | mortality and non-fatal heart attacks |        |        |        |
|       | (milli      | ons of 2015 do  | (millions of 2015 dollars)            |        |        |        |
| Year  | Low         | Middle          | High                                  | Low    | Middle | High   |
| 1990  | 0           | 0               | 0                                     | 0      | 0      | 0      |
| 1991  | 7           | 18              | 28                                    | 16     | 40     | 64     |
| 1992  | 39          | 101             | 165                                   | 88     | 228    | 373    |
| 1993  | 75          | 194             | 318                                   | 169    | 439    | 720    |
| 1994  | 117         | 305             | 501                                   | 266    | 691    | 1,134  |
| 1995  | 134         | 349             | 573                                   | 303    | 789    | 1,296  |
| 1996  | 184         | 480             | 788                                   | 417    | 1,086  | 1,784  |
| 1997  | 234         | 608             | 999                                   | 528    | 1,376  | 2,261  |
| 1998  | 286         | 746             | 1,228                                 | 648    | 1,689  | 2,778  |
| 1999  | 351         | 916             | 1,509                                 | 795    | 2,073  | 3,414  |
| 2000  | 370         | 965             | 1,590                                 | 837    | 2,184  | 3,597  |
| 2001  | 418         | 1,091           | 1,799                                 | 946    | 2,470  | 4,071  |
| 2002  | 443         | 1,158           | 1,910                                 | 1,003  | 2,621  | 4,322  |
| 2003  | 497         | 1,300           | 2,146                                 | 1,125  | 2,942  | 4,855  |
| 2004  | 550         | 1,440           | 2,378                                 | 1,245  | 3,257  | 5,380  |
| 2005  | 626         | 1,638           | 2,708                                 | 1,416  | 3,708  | 6,128  |
| 2006  | 659         | 1,731           | 2,872                                 | 1,491  | 3,917  | 6,500  |
| 2007  | 646         | 1,705           | 2,840                                 | 1,463  | 3,857  | 6,426  |
| 2008  | 632         | 1,672           | 2,794                                 | 1,430  | 3,783  | 6,323  |
| 2009  | 611         | 1,620           | 2,716                                 | 1,383  | 3,666  | 6,145  |
| 2010  | 527         | 1,401           | 2,355                                 | 1,192  | 3,169  | 5,328  |
| 2011  | 459         | 1,224           | 2,063                                 | 1,039  | 2,769  | 4,668  |
| 2012  | 487         | 1,300           | 2,197                                 | 1,101  | 2,942  | 4,972  |
| 2013  | 506         | 1,354           | 2,294                                 | 1,144  | 3,063  | 5,191  |
| 2014  | 394         | 1,058           | 1,797                                 | 892    | 2,394  | 4,067  |
| 2015  | 313         | 843             | 1,436                                 | 709    | 1,908  | 3,250  |
| Total | 9,566       | 25,216          | 42,004                                | 21,646 | 57,060 | 95,046 |

#### Table 5-9. Value of All BTO-Attributed Avoided Adverse Health Events

Notes: Attributed avoided mortalities based amounts of pollutants abated and COBRA model parameters. Within each block of three columns, Low/Middle/High refers to the scenarios in Tables 5-5 and 5-6. Lower values in the left block of Low/Middle/High scenarios are based on low numbers of adult mortality and non-fatal heart attacks in Table 5-7; higher values in the right block are based on high numbers for adult mortality and non-fatal heart attacks. Each year's estimates are deflated by the ratio of the U.S. population in the given year to the U.S. population in 2017. Totals are not discounted.

### 5.7 ENERGY SECURITY BENEFITS

DOE-attributed energy savings (Table 5-4) are associated with between 2 million and 10 million avoided barrels of imported crude oil (Table 5-10). The approach used to convert fuel savings into avoided crude imports is described in Section 2.5.

|      |            | Petroleum    |             |        |               |        |
|------|------------|--------------|-------------|--------|---------------|--------|
|      | Percentage | Consumed for |             |        |               |        |
|      | of U.S.    | Electricity  | Total       |        |               |        |
|      | Crude Oil  | Generation   | Electricity | Avoide | d Crude Oil I | mports |
|      | Supply     | (thousands   | Generation  | (thou  | usands of bai | rels)  |
| Year | Imported   | of barrels)  | (GWh)       | Low    | Middle        | High   |
| 1990 | 44.0%      | 218,800      | 3,037,827   | 0      | 0             | 0      |
| 1991 | 43.5%      | 203,669      | 3,073,799   | 1      | 3             | 6      |
| 1992 | 45.4%      | 172,241      | 3,083,882   | 7      | 17            | 29     |
| 1993 | 49.9%      | 192,462      | 3,197,191   | 16     | 41            | 68     |
| 1994 | 50.9%      | 183,618      | 3,247,522   | 25     | 64            | 105    |
| 1995 | 51.7%      | 132,578      | 3,353,487   | 24     | 64            | 104    |
| 1996 | 52.9%      | 144,626      | 3,444,188   | 35     | 91            | 150    |
| 1997 | 56.1%      | 159,715      | 3,492,172   | 50     | 130           | 214    |
| 1998 | 58.5%      | 222,640      | 3,620,295   | 87     | 227           | 374    |
| 1999 | 59.0%      | 207,871      | 3,694,810   | 97     | 254           | 418    |
| 2000 | 60.2%      | 195,228      | 3,802,105   | 107    | 278           | 458    |
| 2001 | 61.7%      | 216,672      | 3,736,644   | 142    | 371           | 611    |
| 2002 | 61.2%      | 168,597      | 3,858,452   | 121    | 316           | 521    |
| 2003 | 63.2%      | 206,653      | 3,883,185   | 173    | 451           | 744    |
| 2004 | 65.2%      | 203,494      | 3,970,555   | 195    | 510           | 842    |
| 2005 | 66.5%      | 206,785      | 4,055,423   | 226    | 590           | 976    |
| 2006 | 66.4%      | 110,634      | 4,064,702   | 137    | 361           | 599    |
| 2007 | 66.2%      | 112,615      | 4,156,745   | 149    | 394           | 656    |
| 2008 | 66.8%      | 80,932       | 4,119,388   | 118    | 311           | 520    |
| 2009 | 62.9%      | 67,668       | 3,950,331   | 102    | 270           | 453    |
| 2010 | 62.6%      | 65,071       | 4,125,060   | 98     | 262           | 440    |
| 2011 | 60.3%      | 52,387       | 4,100,141   | 81     | 215           | 362    |
| 2012 | 56.8%      | 40,977       | 4,047,765   | 63     | 169           | 285    |
| 2013 | 50.5%      | 47,492       | 4,065,964   | 68     | 181           | 307    |
| 2014 | 46.3%      | 53,593       | 4,093,606   | 74     | 197           | 335    |
| 2015 | 45.5%      | 49,145       | 4,077,601   | 70     | 188           | 320    |
|      | Total      |              |             | 2,264  | 5,956         | 9,897  |

## Table 5-10. BTO-Attributed Avoided Crude Oil Imports: Heat Pumps and Central Air Conditioners

Notes: Avoided barrels of imported crude in a given year are obtained by taking the product of (1) the percentage of U.S. crude oil supply imported, (2) the number of barrels of petroleum liquids consumed in electricity generation, and (3) the percentage reduction in electricity consumption attributed to DOE, and then multiplying by 42/45 (to convert barrels of refined petroleum liquids to barrels of crude). A detailed explanation is provided in Section 2.5. Percentage savings is calculated by dividing DOE-attributed savings (Table 5-4) by U.S. electric utility outputs (EIA, 2017c).

### 5.8 KNOWLEDGE BENEFITS

This section assesses selected knowledge benefits resulting from BTO's funding of R&D in HVAC technologies, including but not limited to residential heat pumps and central air conditioners.

#### 5.8.1 Trends in Attributed Patenting

Figure 5-5 shows the number of BTO-attributed HVAC patent families by priority year, which is the year of the first application in each patent family, and in that sense it is the

year in which the patent family was "born." Between 1976 and 2005, the number of BTO-HVAC patent family births fluctuated between 13 and 22, but since 2005, the number has declined. In 2006-2010, only three patent families were born, followed by four in 2011-2015. The decline presumably reflects a shift in BTO investments away from HVAC toward other technology areas.



Figure 5-5. Trend in BTO-Attributed HVAC Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.

The number of HVAC patent family births springing from all organizations has steadily increased over the same period (Figure 5-6).<sup>31</sup>

A comparison of the patterns in Figures 6-1 and 6-2 suggests that in tracing the influence of BTO-attributed HVAC patents, it is the impact of older, possibly foundational, technologies resulting from BTO R&D funding that is seen rather than the impact of more recent innovations. This interpretation is consistent with BTO's mission of supporting early stage R&D which can be leveraged by all industry stakeholders to improve the efficiency of follow-on R&D and eventual product offerings.

<sup>&</sup>lt;sup>31</sup> The number of patent family births in 2011-2015 is biased downward by time lags in the patenting process; most patent families filed in 2015, and possibly in 2014, had not yet been issued when this analysis was carried out.



Figure 5-6. Trend in All HVAC Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.

#### 5.8.2 Assignees of Attributed Patents

DOE is the most prolific assignee with 20 patent families, followed by DOE lab managers Lockheed Martin (9 families), UT-Battelle (7 families), and Midwest Research Institute (6 families). The next three assignees are all companies, namely Phillips Engineering (5 families), Westinghouse (5) and Consolidated Natural Gas (4). The University of California, Climate Master, Gas Technology Institute, AIL Research, and Battelle Memorial Institution each are assigned several of the patents.

DOE has funded research carried out in its own labs and, to a lesser extent, at commercial organizations. However, it was not found to have funded extensive HVAC research at any of the top companies identified as leading in downstream HVAC innovation. One reason this is not especially surprising is that only two of the leading companies are based in the United States.

#### 5.8.3 Influence of Attributed Patents: Forward Tracing

Forward tracing of BTO-HVAC patents shows the influence of BTO-funded HVAC research both on the HVAC industry and on other areas of technology, thereby revealing the breadth of influence of the HVAC research funded by BTO. This analysis is facilitated by identification of the primary International Patent Classifications (IPCs) of the patent families linked directly and indirectly to the earlier BTO-HVAC patent families.<sup>32</sup>

Figure 5-7 shows the patents by their 4-digit IPCs that are linked to BTO-HVAC patents through two generations of forward citations. Refrigeration Systems (IPC F25B) is dominant, followed by Refrigerators (IPC F25D). Adding the second level of citations increases the prominence of certain other IPCs – notably Electrical Computers (G06F) and Printed Circuits (H05K). Most of the patents in these IPCs that are linked to earlier BTO-HVAC patents describing cooling systems for electronics and integrated circuits.





Note: IPC = International Patent Classification.

The organizations with the largest number of patent families linked directly or indirectly to the earlier BTO-HVAC patents are shown in Figure 5-8. This figure is derived by taking into account all patent families—not just HVAC technology assigned to all organizations. It reveals that IBM has the most families (160) linked to the earlier set of BTO-HVAC patents. These IBM patent families describe a variety of technologies, notably cooling systems for electronics racks and printed

<sup>&</sup>lt;sup>32</sup> In some cases, different patent documents within a patent family may have different first IPCs, although it is unusual for the IPCs to differ at the 4-digit level used here. To simplify the analysis, we used the primary IPC from the anchor patent in each patent family.

circuits, fans for computers, and methods for monitoring air quality. This is an example of how, over just two generations of patent links, the influence of patents can extend substantially beyond their immediate targeted field of technology.

Following IBM in Figure 5-8 are two of the top-ten companies in HVAC patenting–Honeywell and United Technologies. Next there are two large multinationals–General Electric and Emerson Electric. GE's patents that are linked to the BTO-HVAC patents describe cooling systems, and also technologies associated with combustion engines and turbines. Meanwhile, Emerson's patents that are linked to the BTO-HVAC set describe various aspects of climate control, including refrigerants, heat exchangers and compressors. The results suggest that DOE's HVAC patents have influenced both technologies developed by leading HVAC companies, and the technologies of other organizations.

Figure 5-8. Organizations with the Greatest Numbers of Patent Families Linked to BTO-Attributed Prior HVAC Patents by IPC



#### 5.8.4 Influence of Attributed Patents: Backward Tracing

The 10 companies with the largest number of HVAC patent families as revealed by a recent patent search are shown in Figure 5-9. This includes patent families associated with all variant names under which the companies have patents, including all subsidiary names. The HVAC patent families of these ten companies form the starting point of the backward tracing in this technology area.



Figure 5-9. Companies with the Ten Largest HVAC Patent Portfolios

Figure 5-10 adjusts for the large differences in the size of patent portfolios among the organizations by using the mean number of linked patent families per patent rather than total, and also removes self-citations. This provides a measure of the average impact of individual patents in each organization's portfolio. After these adjustments, BTO, with an average of 1.07 linked families to its HVAC set, ranks third, behind only Toshiba and Hitachi. The results suggest that although BTO has a small HVAC patent portfolio, it has a relatively strong impact for its size.

While Figure 5-10 compares the impact of BTO's HVAC patents against the impact of patents owned by leading HVAC companies, Figure 5-11 examines which of the leading companies have built most extensively on earlier BTO-HVAC patents. Figure 5-11 accounts for portfolio size bias by calculating the percentage of each leading company's HVAC patent families that are linked to earlier BTO-HVAC patents, rather than their absolute number. Honeywell is at the head of this figure, with 5% of its HVAC patent families linked to earlier BTO-HVAC patent families. LG Electronics and United Technologies come next, each with slightly more than 3% of

Note: For derivation of this list of companies, see Appendix B.

their patent families linked to the BTO-HVAC patent set. Honeywell's relatively small HVAC portfolio, and LG's and United Technologies' much larger portfolios, are thus linked most extensively to earlier BTO-funded HVAC research.





Figure 5-11. Percentage of Leading Companies' HVAC Patent Families Linked to Earlier BTO-HVAC Patent Families



Table 5-11 shows the BTO-HVAC patent families (designated by the DOE Anchor Patent #) found to be linked directly or indirectly to the largest number of subsequent patent families owned by the leading companies in HVAC. Most of the patents in this figure are relatively old. This is not surprising, since older patents have had more time to become connected to subsequent generations of technology. As such, most of the patent families in Table 6-1 represent older foundation technologies that are linked to subsequent developments made by leading companies in the HVAC industry.

| Table 5-11. BTO-Appliances Patent Families Linked to the Most HVAC Patent Families of |
|---------------------------------------------------------------------------------------|
| Leading Companies.                                                                    |

| DOE Anchor | Application |            | Number of<br>Linked<br>Leading<br>Company |                                           |                                                                                              |
|------------|-------------|------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
| Patent #   | Date        | Issue Date | Families                                  | Assignee                                  | Title                                                                                        |
| 4449376    | 2/18/1983   | 5/22/1984  | 18                                        | Westinghouse<br>Electric Corp             | Indoor unit for electric<br>heat pump                                                        |
| 4217765    | 6/4/1979    | 8/19/1980  | 16                                        | BP PLC                                    | Heat exchanger-<br>accumulator                                                               |
| 4178772    | 10/25/1977  | 12/18/1979 | 10                                        | Consolidated<br>Natural Gas Service<br>Co | Heat pump system                                                                             |
| 4312188    | 11/7/1979   | 1/26/1982  | 9                                         | Consolidated<br>Natural Gas Service<br>Co | Heat pump system                                                                             |
| 6711470    | 11/16/2000  | 3/23/2004  | 8                                         | Bechtel BWXT Idaho<br>LLC                 | Method, system and<br>apparatus for monitoring<br>and adjusting the quality<br>of indoor air |
| 6778945    | 12/12/2001  | 8/17/2004  | 8                                         | Battelle Memorial<br>Institute            | Rooftop package unit<br>diagnostician                                                        |
| 4055964    | 11/1/1976   | 11/1/1977  | 7                                         | Consolidated<br>Natural Gas Service<br>Co | Heat pump system                                                                             |
| 5845502    | 7/22/1996   | 12/8/1998  | 7                                         | Lockheed Martin<br>Corp.                  | Heat pump having<br>improved defrost system                                                  |
| 5628200    | 1/12/1995   | 5/13/1997  | 5                                         | Consolidated<br>Natural Gas Service<br>Co | Heat pump system with selective space cooling                                                |
| 5245833    | 5/19/1992   | 9/21/1993  | 4                                         | Lockheed Martin<br>Corp.                  | Liquid over-feeding air<br>conditioning system and<br>method                                 |
| 6467284    | 9/17/2001   | 10/22/2002 | 4                                         | UT-Battelle LLC                           | Frostless heat pump<br>having thermal<br>expansion valves                                    |
| 4540501    | 9/12/1984   | 9/10/1985  | 4                                         | US Dept of Energy                         | Gas hydrate cool storage<br>system                                                           |

The patent family at the head of Table 5-11 (whose DOE anchor patent<sup>33</sup> is US #4449376) is assigned to Westinghouse Electric. It describes an indoor heat pump for residential air conditioning units, and is linked to eighteen patent families assigned to leading HVAC patent families. These include patents families owned by LG Electronics and United Technologies describing indoor and outdoor air conditioning units, rain shields for outdoor appliances, and methods for disposing of condensation formed on evaporator coils. Also prominent is a BP patent family (anchor patent US #4217765) describing a heat exchanger. This family is linked to 16 subsequent families assigned to the leading HVAC companies, primarily LG Electronics families describing various components of air conditioning systems. Table 6-1 also includes several newer DOE BTO-HVAC patent families, notably a Bechtel family describing air quality monitoring (anchor patent US #6711470), and a Battelle patent describing an HVAC diagnostic system (anchor patent US #6778945).

High-impact HVAC patents owned by Leading companies that Link back to the BTO-HVAC patents were also identified by backward tracing. An example is US #5761921, assigned to Toshiba, describing a low-cost, smaller-sized air conditioning system. Another is US #5503222, a Honeywell patent describing a heat exchanger for air conditioning or waste heat recovery.

#### 5.8.5 Most Influential Attributed Patents

The patents in Table 5-12 are a mix of older patents that have received large numbers of citations from subsequent generations of patents, and more recent patents that have attracted more citations than expected. One advantage of using Citation Indexes is that these two groups of patents can be compared directly, since each is benchmarked against its own peer group of patents of a similar age and technology.

The two patents at the head of Table 5-12, US #6037032 and US #6399149, both describe carbon foams designed for use as heat sinks. These patents both resulted from research performed by Oak Ridge National Lab (ORNL), and are assigned to the managers of that lab (Lockheed Martin for the first

<sup>&</sup>lt;sup>33</sup> The anchor patent for each patent family is a single patent from the family, generally the first patent issued, but it is not necessarily the priority filing (which may, for example, be a Japanese application).

patent, and UT-Battelle for the second, since UT-Battelle took over management of ORNL from Lockheed in 2000). The first of these patents has been cited by 80 subsequent patents (Citation Index = 5.08), while the second has been cited by 54 subsequent patents (Citation Index = 4.27). The ORNL heat sink technology's influence on subsequent technological developments appears strong.

More recent highly cited BTO-HVAC patents in Table 5-12 include US #7322205, a patent granted in 2008 to the Gas Technology Institute, describing a rooftop cooling system. It has been cited by 16 subsequent patents, more than three times as many citations as expected given its age and technology. Another relatively recent patent in Table 5-12 is US #7269966, granted in 2007 to AIL Research, and describing a heat and mass exchanger designed to regulate both temperature and humidity in buildings. It has been cited by 17 subsequent patents, more than three times as many citations as expected. Slightly older is US #6,880,344, a 2005 patent assigned to UTC Power (now owned by ClearEdge Power), that describes an organic Rankine cycle designed for turbine cooling systems. It has been cited by 38 subsequent patents, almost four times as many citations as expected.

Another patent of interest in Table 5-12 is US #5,477,914, granted to Climate Master in 1995. It describes a ground source heat pump. This Climate Master patent has been cited by 45 subsequent patents, which is almost three times as many citations as expected for a patent of its age and technology.
| DOE<br>Patent<br># | Application<br>Date | Issue<br>Date | Number of<br>Citations<br>Received | Citation<br>Index | Assignee                      | Title                                                                                                                                          |
|--------------------|---------------------|---------------|------------------------------------|-------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 6037032            | 6/8/1998            | 3/14/2000     | 80                                 | 5.08              | Lockheed Martin<br>Corp.      | Pitch-based carbon<br>foam heat sink with<br>phase change material                                                                             |
| 6399149            | 1/24/2000           | 6/4/2002      | 54                                 | 4.27              | UT-Battelle LLC               | Pitch-based carbon<br>foam heat sink with<br>phase change material                                                                             |
| 6880344            | 6/17/2003           | 4/19/2005     | 38                                 | 3.68              | ClearEdge Power<br>Inc        | Combined rankine and<br>vapor compression<br>cycles                                                                                            |
| 5157893            | 6/12/1990           | 10/27/1992    | 63                                 | 3.66              | Midwest Research<br>Institute | Compact vacuum<br>insulation                                                                                                                   |
| 4189848            | 8/1/1977            | 2/26/1980     | 41                                 | 3.44              | US Dept of<br>Energy          | Energy-efficient<br>regenerative liquid<br>desiccant drying<br>process                                                                         |
| 6276155            | 12/22/2000          | 8/21/2001     | 41                                 | 3.37              | UT-Battelle LLC               | Personal cooling apparatus and method                                                                                                          |
| 4825939            | 7/1/1986            | 5/2/1989      | 44                                 | 3.27              | University of<br>Dayton       | Polymeric<br>compositions<br>incorporating<br>polyethylene glycol as<br>a phase change<br>material                                             |
| 7322205            | 7/7/2004            | 1/29/2008     | 16                                 | 3.21              | Gas Technology<br>Institute   | Hydronic rooftop<br>cooling systems                                                                                                            |
| 7269966            | 11/1/2005           | 9/18/2007     | 17                                 | 3.20              | AIL Research Inc              | Heat and mass<br>exchanger                                                                                                                     |
| 4732008            | 11/1/1986           | 3/22/1988     | 49                                 | 3.14              | US Dept of<br>Energy          | Triple effect<br>absorption chiller<br>utilizing two<br>refrigeration circuits                                                                 |
| 5477914            | 9/7/1994            | 12/26/1995    | 45                                 | 2.96              | Climate Master<br>Inc         | Ground source heat<br>pump system<br>comprising modular<br>subterranean heat<br>exchange units with<br>multiple parallel<br>secondary conduits |
| 6711470            | 11/16/2000          | 3/23/2004     | 45                                 | 2.57              | Bechtel BWXT<br>Idaho LLC     | Method, system and<br>apparatus for<br>monitoring and<br>adjusting the quality<br>of indoor air                                                |
| 6378605            | 12/2/1999           | 4/30/2002     | 29                                 | 2.51              | Midwest Research<br>Institute | Heat exchanger with<br>transpired, highly<br>porous fins                                                                                       |
| 5245833            | 5/19/1992           | 9/21/1993     | 34                                 | 2.20              | Lockheed Martin<br>Corp.      | Liquid over-feeding air<br>conditioning system<br>and method                                                                                   |

.

#### 5.8.6 Summary of Findings

The patent analysis produced the following principal findings attributed to BTO's funding of HVAC R&D:

- A total of 162 HVAC patents attributed to BTO funding comprised of 115 US patents, 19 EPO patents, and 28 WIPO patents--were grouped into 106 patent families.
- The number of BTO HVAC patent families counts rose and then declined sharply after 2005. Meanwhile, overall HVAC patenting continued to increase throughout the period -- consistent with BTO performing earlier, foundational work that is subsequently built on by others.
- Using citation analysis to trace forward from BTO-HVAC patents showed that they are linked extensively to subsequent patents in the patent classification associated with Refrigeration Systems. This suggests that DOE's influence has been particularly strong upon developments related to the underlying refrigeration cycle of air conditioning systems, rather than to mechanical components such as blowers, vents, housings, etc.
- Tracing forward also revealed that BTO's HVAC patents are linked to subsequent developments related to cooling systems for electronics and integrated circuits, showing a spillover influence of DOE's HVAC research into other areas than heating and cooling of buildings.
- Preparatory work for the backward tracing analysis showed that BTO's HVAC portfolio (106 patent families) is much smaller than those associated with the leading companies in the industry. The largest HVAC patent portfolios are owned by Daikin Industries (1,278 patent families) and Mitsubishi Electric (1,265), LG Electronics (957), Panasonic (883), United Technologies (798), Samsung (346), Toshiba (308), Sharp (265), Hitachi (260), and Honeywell (239).
- The backward patent citation tracing revealed that BTO's 106 HVAC patent families are linked to 114 subsequent HVAC patent families owned by the leading HVAC companies, which when adjusted for size difference and

self-citations resulted in an average of 1.07 links per BTO family. This average puts BTO third when ranked against the leading companies in terms of impact per patent family--behind Toshiba (2.77 links per family, and behind Hitachi (1.56). It puts BTO significantly ahead of Daikin (0.35), Sharp (0.34) and LG Electronics (0.18). Thus, although DOE has a relatively small HVAC patent portfolio, the patents have had a comparatively strong impact.

- The backward tracing showed that, among the leading companies, HVAC patent families owned by LG Electronics, United Technologies and Honeywell are linked particularly extensively to BTO- HVAC patents.
- The forward and backward tracing together identified high-impact individual BTO-attributed patents overall i.e., considering citations both within and outside the targeted application area. Of the BTO-HVAC patent set, ORNL-assigned patents describing carbon forms designed for use as heat sinks have been particularly influential, as have patents describing rooftop cooling systems and heat and mass exchangers. Also of interest is a highly-cited Climate Master patent describing a ground source heat pump.

# 6

## Heat Pump Water Heating Technology

This section describes BTO R&D related to the heat pump water heating technology and presents a knowledge benefits analysis based on water heating patenting and patent citations. No benefits were quantified for water heating technology. This section does not contribute benefits to overall estimates of investment performance metrics.

### 6.1 TECHNOLOGY OVERVIEW

DOE funded the development of the first unitized heat pump water heater from 1977 to 1982. Energy Utilization Systems commercialized the Tempcor model in 1982, but it was commercially unsuccessful. DOE's second effort funded A.D. Little, from 1997 to 2001, to develop a unit that was commercialized by EMI as the Watter\$aver; it was also not commercially successful.<sup>34</sup> However, A.D. Little's involvement in this project was critical to TIAX (formerly A.D. Little) winning a contract with the California Energy Commission (CEC) for design refinement and demonstration of a market-optimized heat pump water heater.

The development of the GeoSpring by General Electric, from 2008 to 2009 under a CRADA with ORNL, built on the earlier DOE-funded work by A.D. Little/TIAX. The GeoSpring was commercialized in 2009. DOE testing for appliance EnergyGuide labeling confirmed that the GeoSpring heat pump uses 62%

<sup>&</sup>lt;sup>34</sup> One interviewee suggested that part of the reason the Watter\$aver struggled commercially had to do with a supply chain problem. The product relied on a specialized component that the part supplier discontinued.

less energy than a standard 50-gallon electric water heater. GeoSpring was the first ENERGY STAR-qualified heat pump water heater and also qualifies for the federal 30% residential energy efficiency tax credit and numerous state and local utility rebates/incentives.

General Electric was probably not the only company that benefited from the DOE- and CEC-funded work by A.D. Little/TIAX. A number of other companies have also recently commercialized heat pump water heaters; these include Rheem, A.O. Smith, and Sanden. It is plausible that knowledge spillovers played a part, although our analysis did not explore this possibility in any detail.

Annual sales in the United States were 43,000 in 2013 and 55,000 in 2015 according to Energy Star Unit Shipment and Market Penetration Report, Calendar Year 2013 Summary and Calendar Year 2015 Summary.

## 6.2 KNOWLEDGE BENEFITS

This section assesses selected knowledge benefits resulting from BTO's funding of R&D in water heating technologies, including and especially heat pump water heating technology.

### 6.2.1 Trends in Attributed Patenting

Figure 6-1 shows two bursts of activity in BTO-attributed water heating patenting: 7 patent families were born from 1978 to 1983 and 8 were born from 2001 to 2005. These bursts correspond to heat-pump water heating technology research pursued at those times by BTO.

The upward trend in water heating technology patenting activity by all organizations beginning in 2000 (Figure 6-2) reflects the interest finally taken in heat-pump water heating technology by industry.<sup>35</sup>

<sup>&</sup>lt;sup>35</sup> The number of patent family births in 2011-2015 is biased downward by time lags in the patenting process; most patent families filed in 2015, and possibly in 2014, had not yet been issued when this analysis was carried out.



Figure 6-1. Trend in BTO-Attributed Water Heating Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.



Figure 6-2. Trend in All Water Heating Patent Family Births

Note: Patent families are assigned to the year of the first patent application in the family.

#### 6.2.2 Assignees of Attributed Patents

DOE is the most prolific assignee with five patent families, followed by the Gas Technology Institute with 4 families. No other assignee has more than two BTO-attributed Water Heating patent families, including Advanced Mechanical Technology (2), Thermacore Inc. (2), Battelle Memorial Institute (1), Energy Utilization Systems (1), Lockheed Martin (1), Nordyne LLC (1), TIAX LLX (1), University of Florida (1), and UT-Battelle (1).

#### 6.2.3 Influence of Attributed Patents: Forward Tracing

This section reports the results of starting with BTO-Water Heating patents and tracing forwards in time through two generations of citations. This analysis shows the influence of BTO-funded research on subsequent technological developments both within and outside the Water Heating industry, revealing the broader influence of BTO-funded Water Heating research.

To facilitate the analysis, the primary International Patent Classifications (IPCs) of the patent families that are linked directly and indirectly to earlier BTO-Water Heating patent families36 were identified. Figure 6-3 shows the 4-digit IPCs with the largest number of patent families that cite BTO-Water Heating patents directly as prior art and also indirectly through adding a second generation of citations. Interestingly, this figure is not headed by the IPC for Water Heaters (F24H), nor would it be if only direct citations were considered.

Heat Exchangers (IPC F28D) heads the bar chart shown in Figure 6-3. This is followed by Refrigeration Systems (IPC F25B). Adding the second level of citations increases the prominence of some other IPCs – notably Printed Circuits (H05K) and Semiconductor Devices (H01L). Most of the patents in these IPCs that are linked to earlier BTO-Water Heating patents describe heat transfer methods, especially for cooling computers and integrated circuits. The results reflect the influence of BTO-funded Water Heating research in the use of heat energy output by air conditioning systems to improve the efficiency of water heaters. The results also show how the influence of BTO's Water Heating research broadens beyond the targeted technology area yielding knowledge spillover benefits.

<sup>&</sup>lt;sup>36</sup> In some cases, different patent documents within a patent family may have different first IPCs, although it is unusual for the IPCs to differ at the 4-digit level used here. To simplify the analysis, we used the primary IPC from the anchor patent in each patent family.



Figure 6-3. Patent Families Linked to BTO-Attributed Prior Water Heating Patents by IPC

Note: IPC = International Patent Classification.

The organizations with the largest number of patent families linked directly or indirectly to earlier BTO- Water Heating patents are shown in Figure 6-4. This figure includes patent families assigned to all organizations, and includes all patent families from these organizations, not just patent families describing Water Heating technology.

Emerson Electric is at the head of Figure 6-4, with 44 patent families linked to the BTO-Water Heating patent set. Most of these Emerson families were originally assigned to Cooligy, which Emerson acquired in 2005. These families describe heat exchangers used in cooling systems for electronics and microprocessors. IBM is listed second in Figure 6-4, with 32 patent families linked to BTO-Water Heating patents. These IBM patent families also describe cooling systems for electronics. General Electric is third in this figure, with 28 linked families, covering a broader range of technologies, from heat recovery and heat sinks, to NOx removal and gas turbines.

The variety of technologies linked to BTO's Water Heating patents suggests that these patents have had a relatively broad influence extending well beyond Water Heating technology. The companies affected are also diverse.





#### 6.2.4 Influence of Attributed Patents: Backward Tracing

The ten companies with the largest number of Water Heating patent families (including all variant and subsidiary names) are shown in Table 6-5. The Water Heating patent families of these ten companies form the starting point of the backward tracing in this technology.



Figure 6-5. Companies with the Ten Largest Water Heating Patent Portfolios

Note: For derivation of this list of companies, see Appendix B.

Figure 6-6 shows that DOE's average of 0.39 linked families adjusted for portfolio size bias and self-citations—ranks second, behind Paloma's. The result suggests that the overall impact of the DOE patent portfolio is limited by its small size and not by the robustness of the BTO-Water Heating patents.





The total number of citation links from the leading companies to the BTO-Water Heating patent set is shown in Figure 6-7. Paloma Industries (a Japanese appliance manufacturer) leads by a wide margin, with a total of nine links back to the BTO set.



Figure 6-7. Total Number of Citation Links from Leading Companies' Water Heating Patent Families to Earlier BTO-Water Heating Patent Families

Note: Companies without citation links to BTO-Water Heating families are omitted.

Table 6-1 lists the BTO-Water Heating patent families linked most strongly to the Water Heating Patent Families of the 10top leading Water Heating companies. Almost all of the patent families in the table represent older foundation technologies that are linked to subsequent developments made by leading companies. Few patent families are listed.

The patent family at the head of Table 6-1 is related to heat pump water heaters. This patent family (with anchor patent US #5946927) is assigned to Arthur D Little Inc. and describes a low-cost hot water heater based on heat pump technology. This family is linked to four subsequent Water Heating patent families owned by leading companies. These include two patent families assigned to Rheem (a subsidiary of Paloma) describing heat pump water heaters, plus an A.O. Smith family outlining a door assembly for a water heater, and a Panasonic family describing a hot water supply system.

Another patent family near the head of Table 6-1 is an old Energy Utilization Systems family (anchor patent US #4173872, filed in 1978). This family describes a method for converting conventional hot water tanks to enable them to utilize heat output by the refrigeration circuit of air conditioning systems. It is linked to four subsequent Water Heating patent families owned by leading companies. These consist of two Paloma (Rheem) families describing water heating that utilizes heat energy output by air conditioning systems; one Panasonic family detailing a heat pump water heater; and a Navien family outlining a hot water tank incorporating a heat exchanger.

|                        | A          |            | Number of<br>Linked<br>Leading |                                          |                                                                                                 |
|------------------------|------------|------------|--------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| DOE Anchor<br>Patent # | Date       | Issue Date | Company<br>Families            | Assignee                                 | Title                                                                                           |
| 5946927                | 4/14/1998  | 9/7/1999   | 4                              | Arthur D Little Inc                      | Heat pump water<br>heater and storage<br>tank assembly                                          |
| 4173872                | 2/1/1978   | 11/13/1979 | 4                              | Energy Utilization<br>Systems Inc        | Water heater apparatus                                                                          |
| 4390008                | 06/26/1980 | 6/28/1983  | 2                              | US Dept of Energy                        | Hot water tank for use<br>with a combination of<br>solar energy and heat<br>pump desuperheating |
| 6675746                | 5/16/2001  | 1/13/2004  | 1                              | Advanced<br>Mechanical<br>Technology Inc | Heat exchanger with internal pin elements                                                       |
| 5906109                | 7/3/1998   | 5/25/1999  | 1                              | Arthur D Little Inc                      | Heat pump water<br>heater and storage<br>tank assembly                                          |
| 6233958                | 9/15/1999  | 5/22/2001  | 1                              | Lockheed Martin<br>Corp.                 | Heat pump water<br>heater and method of<br>making the same                                      |
| 4523629                | 9/30/1982  | 6/18/1985  | 1                              | US Dept of Energy                        | Method and apparatus<br>for operating an<br>improved thermocline<br>storage unit                |

Table 6-1. BTO Water Heating Patent Families Linked to the Most Water Heating PatentFamilies of Leading Companies.

The backward tracing also revealed comparatively high-impact Water Heating patents owned by leading companies that have links back to the BTO-Water Heating set. Of most interest is the patent family designated by anchor patent US #7258080. It has been cited by 13 subsequent patents, which is 50% more citations than expected given its age and type. This patent is assigned to Paloma (Rheem) and describes a water heater with a dual tank structure.

#### 6.2.5 Most Influential Attributed Patents

Table 6-2 lists highly cited BTO-Water Heating patents. The patents in Table 6-2 are a mix of old patents from the early 1980s, and newer patents from the late 1990s and early 2000s. As noted earlier, an advantage of using Citation Indexes is that

it allows older and newer groups of patents to be compared directly, since each is benchmarked against its own peer group of patents of a similar age and technology.

Among the old patents are a 1983 DOE-assigned patent describing a hot water tank utilizing solar energy (US #4,390,008) and a Thermacore patent outlining a heat pipe that can be frozen and thawed repeatedly without being damaged (US #4,248,295). More recent patents attributed to BTO include the two listed at the head of Table 6-2. One of these patents (US #5,687,706) was granted in 1997 to the University of Florida, and describes a water heater incorporating phase change material to store heat. This patent has been cited by 37 subsequent patents, which is more than three times as many citations as expected for a patent of its age and technology. The second patent is a 2003 patent assigned to the Gas Technology Institute, which describes a NOx-reducing burner for boilers. It has been cited by 19 subsequent patents, almost three times as many citations as expected.

| DOE<br>Patent # | Application<br>Date | Issue<br>Date | Number of<br>Citations<br>Received | Citation<br>Index | Assignee                    | Title                                                                                                   |
|-----------------|---------------------|---------------|------------------------------------|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|
| 5687706         | 4/25/1995           | 11/18/1997    | 37                                 | 3.04              | University of<br>Florida    | Phase change material<br>storage heater                                                                 |
| 6663380         | 9/5/2001            | 12/16/2003    | 19                                 | 2.80              | Gas Technology<br>Institute | Method and apparatus<br>for advanced staged<br>combustion utilizing<br>forced internal<br>recirculation |
| 4390008         | 26-06-80            | 6/28/1983     | 19                                 | 2.23              | US Dept of<br>Energy        | Hot water tank for use<br>with a combination of<br>solar energy and heat<br>pump desuperheating         |
| 4248295         | 17-01-80            | 2/3/1981      | 22                                 | 2.04              | Thermacore Inc              | Freezable heat pipe                                                                                     |
| 5946927         | 4/14/1998           | 9/7/1999      | 17                                 | 1.46              | Arthur D Little<br>Inc      | Heat pump water<br>heater and storage tank<br>assembly                                                  |
| 6233958         | 9/15/1999           | 5/22/2001     | 14                                 | 1.36              | Lockheed<br>Martin Corp.    | Heat pump water<br>heater and method of<br>making the same                                              |
| 6814070         | 1/6/2003            | 11/9/2004     | 8                                  | 1.28              | Gas Technology<br>Institute | Molded polymer solar<br>water heater                                                                    |
| 4336837         | 11-02-81            | 6/29/1982     | 12                                 | 1.14              | US Dept of<br>Energy        | Entirely passive heat<br>pipe apparatus capable<br>of operating against<br>gravity                      |

#### Table 6-2. Highly Cited BTO-attributed Water Heating Patents Overall.

#### 6.2.6 Summary of Findings

The patent analysis produced the following principal findings attributed to BTO's funding of Water Heating R&D:

- A total of 33 Water Heating patents attributed to BTO funding of R&D--comprised of 25 US patents, 2 EPO patents, and 6 WIPO patents--were grouped into 23 patent families
- In terms of trends, the number of BTO-attributed Water Heating patent families remained relatively low throughout the period examined (1976-2015). Between 1976 and 2000, there were a total of 13 such families. Then there was an increase in activity, with eight patent families having a priority year between 2001 and 2005. Since then, there have been only two further BTO-Water Heating patent families attributed to BTO funding. At the same time, overall patenting in Water Heating by all parties increased throughout the period examined.
- The forward tracing showed the BTO's Water Heating patents to be linked to patents related to Refrigeration Systems and Heat Exchangers, as well as to subsequent developments in heat pump water heaters and the use of residual heat from air conditioning systems in water heaters. This reflects the influence of BTO-funded research on the use of heat energy output by air conditioning systems to improve the efficiency of water heaters.
- Preparation for tracing backward from the leading innovators in Water Heating technology to BTO's Water Heating patent portfolio showed that the BTO's patent portfolio in Water Heating is also much smaller than the Water Heating patent portfolios held by the leading companies in the Water Heating industry, though the difference is less extreme. BTO's 23 patent families are compared against those of Bosch (188 families), Vaillant (154), A.O. Smith (139), Panasonic (127), Viessmann (126), Paloma (87 families), Daikin (73), Mitsubishi Electric (61), Kyung Dong Navien (60), and BSH Hausgeräte (59).
- The backward tracing revealed that BTO's 23 Water Heating patent families are linked to only nine Water

Heating patent families owned by the leading companies— not surprising given the small size of the BTO-Water Heating patent portfolio. At the same time, BTO's average of 0.39 links per patent family ranks second--behind only that of Paloma--when compared with the average links of patents of the leading companies.

 Among the particularly influential BTO-Water Heating patents overall—that is, both within and outside the targeted technology area--is one owned by Arthur D. Little describing a low-cost hot water heater based on heat pump technology. Other influential patents were a patent describing a water heater incorporating phase change materials to store heat, assigned to the University of Florida, and a patent describing a NOxreducing burner for boilers assigned to the Gas Technology Institute.

## Retrospective Economic Impact Assessment

This section collects the quantified benefits for the three selected technology areas and compares them with BTO R&D investment costs to develop the main retrospective investment performance metrics.

### 7.1 BUILDING TECHNOLOGIES OFFICE RESEARCH INVESTMENTS

Table 7-1 summarizes BTO investments in HVAC, water heating, and appliance R&D from 1976 through 2015.<sup>37</sup> These investments comprise one of four long-standing R&D portfolios within BTO's Emerging Technologies Program. The other three portfolios in the Emerging Technologies Program address the technology areas of 1) lighting, 2) windows and building envelope, and 3) building energy modeling.<sup>38</sup> Investments are discounted back to the beginning of 1976 at 7% and 3%, assuming that each year's investment cost was incurred at the beginning of the year. Thus, 1976 costs are undiscounted, 1977 costs are discounted by one year, etc.

Recall, the three technology areas for which benefits were quantified for this study are only a small subset of BTO's HVAC, water heating, and appliance R&D portfolio, which has also included, e.g., thermally activated heat pumps, combustion and thermal distribution, and household appliances like dishwashers and clothes washers and dryers. Additional examples are described in Section 6 and Section 2.6.1.

<sup>&</sup>lt;sup>37</sup> DOE was established on October 1, 1977. The analysis includes investments in building technologies made by DOE's predecessor agencies in 1976 and the beginning of 1977.

<sup>&</sup>lt;sup>38</sup> More recently, BTO has added R&D portfolios addressing sensors and controls and transactive energy.

|       |             |                          | Constant 2015<br>dollars     | Constant 2015<br>dollars     |
|-------|-------------|--------------------------|------------------------------|------------------------------|
|       | Nominal     | Constant 2015<br>dollars | (thousands)<br>Discounted at | (thousands)<br>Discounted at |
| Year  | (thousands) | (thousands)              | 7%                           | 3%                           |
| 1976  | 2,693       | 11,210                   | 11,210                       | 11,210                       |
| 1977  | 3,405       | 13,313                   | 12,442                       | 12,925                       |
| 1978  | 8,200       | 29,787                   | 26,017                       | 28,077                       |
| 1979  | 19,250      | 62,854                   | 51,308                       | 57,521                       |
| 1980  | 26,600      | 76,521                   | 58,378                       | 67,988                       |
| 1981  | 11,300      | 29,451                   | 20,998                       | 25,404                       |
| 1982  | 8,520       | 20,917                   | 13,938                       | 17,518                       |
| 1983  | 8,700       | 20,705                   | 12,894                       | 16,835                       |
| 1984  | 8,050       | 18,356                   | 10,683                       | 14,491                       |
| 1985  | 8,993       | 19,808                   | 10,774                       | 15,181                       |
| 1986  | 7,621       | 16,466                   | 8,370                        | 12,252                       |
| 1987  | 7,450       | 15,540                   | 7,383                        | 11,226                       |
| 1988  | 8,498       | 17,028                   | 7,561                        | 11,943                       |
| 1989  | 9,743       | 18,630                   | 7,731                        | 12,686                       |
| 1990  | 10,412      | 18,886                   | 7,324                        | 12,486                       |
| 1991  | 11,613      | 20,212                   | 7,326                        | 12,973                       |
| 1992  | 10,274      | 17,354                   | 5,878                        | 10,814                       |
| 1993  | 10,893      | 17,869                   | 5,657                        | 10,811                       |
| 1994  | 12,306      | 19,676                   | 5,821                        | 11,558                       |
| 1995  | 13,107      | 20,385                   | 5,637                        | 11,625                       |
| 1996  | 10,011      | 15,126                   | 3,909                        | 8,375                        |
| 1997  | 11,440      | 16,890                   | 4,079                        | 9,079                        |
| 1998  | 12,390      | 18,014                   | 4,066                        | 9,401                        |
| 1999  | 14,833      | 21,103                   | 4,452                        | 10,693                       |
| 2000  | 5,940       | 8,175                    | 1,612                        | 4,022                        |
| 2001  | 6,735       | 9,016                    | 1,661                        | 4,306                        |
| 2002  | 7,484       | 9,860                    | 1,698                        | 4,572                        |
| 2003  | 6,146       | 7,917                    | 1,274                        | 3,564                        |
| 2004  | 7,303       | 9,162                    | 1,378                        | 4,004                        |
| 2005  | 7,021       | 8,521                    | 1,198                        | 3,616                        |
| 2006  | 10,839ª     | 12,744                   | 1,674                        | 5,250                        |
| 2007  | 2,919       | 3,336                    | 410                          | 1,335                        |
| 2008  | 2,845       | 3,132                    | 359                          | 1,216                        |
| 2009  | 7,040       | 7,776                    | 834                          | 2,932                        |
| 2010  | 15,500      | 16,845                   | 1,688                        | 6,166                        |
| 2011  | 15,093      | 15,903                   | 1,490                        | 5,652                        |
| 2012  | 16,000      | 16,516                   | 1,446                        | 5,698                        |
| 2013  | 22,776      | 23,170                   | 1,896                        | 7,762                        |
| 2014  | 16,968      | 16,988                   | 1,299                        | 5,525                        |
| 2015  | 18,277      | 18,277                   | 1,306                        | 5,771                        |
| Total |             | 743,439                  | 335,057                      | 494,463                      |

#### Table 7-1. BTO HVAC, Water Heating, and Appliance R&D Portfolio Investment Costs

Notes: Nominal costs converted to constant 2015 dollars using Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted. <sup>a</sup>Nominal investment cost for HVAC, water heating, and appliances could not be separated from other Emerging Technologies R&D in 2006 and was estimated to be 33% of the total Emerging Technologies R&D portfolio cost in that year. This is considered an upper bound estimate because HVAC, water heating, and appliance R&D was at least 30% of the Emerging Technologies portfolio only in 2013, 2014, and 2015; it was less than 25% in 2004 and 2005 and less than 10% in 2007 and 2008.

## 7.2 ATTRIBUTABLE ECONOMIC BENEFITS

Table 7-2 summarizes energy and resource benefits over the three technologies. Benefits are discounted back to the beginning of 1976 at 7% and 3%, assuming that each year's investment cost was incurred at the end of the year.

| Table 7-2. Total Retrospective Energy and Resource Benefits, Summed over the Three |  |
|------------------------------------------------------------------------------------|--|
| Technologies                                                                       |  |

|       | Discounted at 7% |            |          |       |             |        |                  |           |          |  |
|-------|------------------|------------|----------|-------|-------------|--------|------------------|-----------|----------|--|
|       | U                | ndiscount  | ed       | (mi   | llions of 2 | 2015   | Discounted at 3% |           |          |  |
|       | (millior         | ns of 2015 | dollars) |       | dollars)    |        | (million         | s of 2015 | dollars) |  |
| Year  | Low              | Mid        | High     | Low   | Mid         | High   | Low              | Mid       | High     |  |
| 1978  | 1                | 1          | 1        | 0     | 1           | 1      | 1                | 1         | 1        |  |
| 1979  | 3                | 4          | 5        | 2     | 3           | 4      | 2                | 4         | 5        |  |
| 1980  | 11               | 14         | 18       | 8     | 10          | 13     | 9                | 12        | 15       |  |
| 1981  | 39               | 54         | 69       | 26    | 36          | 46     | 33               | 45        | 58       |  |
| 1982  | 108              | 141        | 173      | 67    | 88          | 108    | 88               | 114       | 141      |  |
| 1983  | 173              | 231        | 289      | 101   | 134         | 168    | 137              | 182       | 228      |  |
| 1984  | 244              | 336        | 428      | 133   | 183         | 233    | 187              | 258       | 328      |  |
| 1985  | 293              | 428        | 563      | 149   | 218         | 286    | 218              | 319       | 419      |  |
| 1986  | 223              | 359        | 495      | 106   | 170         | 235    | 161              | 259       | 358      |  |
| 1987  | 305              | 510        | 714      | 135   | 226         | 317    | 214              | 358       | 501      |  |
| 1988  | 307              | 541        | 775      | 127   | 224         | 322    | 209              | 368       | 528      |  |
| 1989  | 392              | 703        | 1,014    | 152   | 273         | 393    | 259              | 465       | 671      |  |
| 1990  | 439              | 799        | 1,160    | 159   | 290         | 421    | 282              | 513       | 745      |  |
| 1991  | 426              | 807        | 1,189    | 144   | 274         | 403    | 266              | 503       | 741      |  |
| 1992  | 496              | 977        | 1,460    | 157   | 309         | 462    | 300              | 591       | 883      |  |
| 1993  | 586              | 1,190      | 1,798    | 173   | 352         | 532    | 344              | 699       | 1,056    |  |
| 1994  | 682              | 1,420      | 2,166    | 189   | 393         | 599    | 389              | 810       | 1,235    |  |
| 1995  | 761              | 1,620      | 2,490    | 197   | 419         | 643    | 422              | 897       | 1,378    |  |
| 1996  | 888              | 1,897      | 2,922    | 215   | 458         | 706    | 478              | 1,020     | 1,571    |  |
| 1997  | 965              | 2,092      | 3,237    | 218   | 472         | 731    | 504              | 1,092     | 1,689    |  |
| 1998  | 998              | 2,211      | 3,448    | 211   | 466         | 727    | 506              | 1,120     | 1,747    |  |
| 1999  | 1,093            | 2,438      | 3,812    | 215   | 481         | 751    | 537              | 1,199     | 1,875    |  |
| 2000  | 1,268            | 2,808      | 4,381    | 234   | 517         | 807    | 606              | 1,341     | 2,093    |  |
| 2001  | 1,314            | 3,007      | 4,740    | 226   | 518         | 816    | 609              | 1,394     | 2,198    |  |
| 2002  | 1,332            | 3,123      | 4,960    | 214   | 503         | 798    | 600              | 1,406     | 2,233    |  |
| 2003  | 1,432            | 3,457      | 5,534    | 215   | 520         | 832    | 626              | 1,511     | 2,419    |  |
| 2004  | 1,534            | 3,759      | 6,046    | 216   | 528         | 850    | 651              | 1,595     | 2,566    |  |
| 2005  | 1,736            | 4,202      | 6,743    | 228   | 552         | 886    | 715              | 1,731     | 2,778    |  |
| 2006  | 2,042            | 4,880      | 7,822    | 251   | 599         | 960    | 817              | 1,952     | 3,129    |  |
| 2007  | 2,184            | 5,198      | 8,342    | 251   | 596         | 957    | 848              | 2,019     | 3,239    |  |
| 2008  | 2,343            | 5,598      | 9,009    | 251   | 600         | 966    | 883              | 2,110     | 3,396    |  |
| 2009  | 2,491            | 5,972      | 9,635    | 250   | 598         | 966    | 912              | 2,186     | 3,527    |  |
| 2010  | 2,557            | 6,149      | 9,945    | 240   | 576         | 931    | 909              | 2,185     | 3,534    |  |
| 2011  | 2,613            | 6,302      | 10,215   | 229   | 552         | 894    | 902              | 2,174     | 3,525    |  |
| 2012  | 2,687            | 6,497      | 10,556   | 220   | 532         | 864    | 900              | 2,177     | 3,536    |  |
| 2013  | 2,799            | 6,786      | 11,049   | 214   | 519         | 845    | 910              | 2,207     | 3,594    |  |
| 2014  | 2,955            | 7,189      | 11,736   | 211   | 514         | 839    | 933              | 2,270     | 3,706    |  |
| 2015  | 3,099            | 7,565      | 12,380   | 207   | 505         | 827    | 950              | 2,319     | 3,795    |  |
| Total | 43,819           | 101,266    | 161,321  | 6,540 | 14,209      | 22,139 | 18,315           | 41,407    | 65,440   |  |

Notes: These totals include only the dollar-denominated energy and resource benefits. Environmental health benefits are not included.

Table 7-3 summarizes total monetized benefits—energy and resource benefits plus environmental health benefits—over the three technologies. Environmental health benefits are based on the lower numbers of adult mortality and non-fatal heart attacks estimated by COBRA. Benefits are discounted back to the beginning of 1976 at 7% and 3%, assuming that each year's investment cost was incurred at the end of the year.

|       | Undiscounted Discounted at 7% |                |                |         |           |                     |             | Discounted at 3%        |                |  |
|-------|-------------------------------|----------------|----------------|---------|-----------|---------------------|-------------|-------------------------|----------------|--|
|       | (millio                       | naiscound      | eu<br>dollare) | (millio | counted a | at 7%<br>5 dollars) | (m          | liions oi .<br>Aollare) | 2015           |  |
| Year  | Low                           | Mid            | Hiah           | Low     | Mid       | Hiah                | Low         | Mid                     | Hiah           |  |
| 1978  | 1                             | 1              | 2              | 1       | 1         | 1                   | 1           | 1                       | 2              |  |
| 1979  | 4                             | 6              | 8              | 3       | 4         | 5                   | 3           | 5                       | 7              |  |
| 1980  | 13                            | 18             | 23             | 9       | 12        | 16                  | 11          | 15                      | 19             |  |
| 1981  | 52                            | 76             | 100            | 33      | 48        | 63                  | 43          | 62                      | 82             |  |
| 1982  | 143                           | 195            | 246            | 85      | 115       | 145                 | 114         | 155                     | 196            |  |
| 1983  | 236                           | 327            | 418            | 131     | 181       | 230                 | 182         | 252                     | 322            |  |
| 1984  | 337                           | 481            | 626            | 175     | 248       | 322                 | 253         | 361                     | 468            |  |
| 1985  | 421                           | 637            | 853            | 203     | 305       | 408                 | 306         | 462                     | 619            |  |
| 1986  | 389                           | 640            | 891            | 171     | 281       | 390                 | 272         | 447                     | 622            |  |
| 1987  | 513                           | 878            | 1,243          | 212     | 361       | 511                 | 349         | 596                     | 844            |  |
| 1988  | 556                           | 994            | 1,432          | 213     | 380       | 547                 | 366         | 654                     | 942            |  |
| 1989  | 672                           | 1,224          | 1,776          | 242     | 440       | 637                 | 430         | 784                     | 1,137          |  |
| 1990  | 738                           | 1,370          | 2,003          | 248     | 461       | 673                 | 459         | 852                     | 1,245          |  |
| 1991  | 768                           | 1,474          | 2,180          | 240     | 460       | 680                 | 463         | 887                     | 1,312          |  |
| 1992  | 927                           | 1,842          | 2,761          | 270     | 535       | 802                 | 541         | 1,075                   | 1,612          |  |
| 1993  | 1,108                         | 2,265          | 3,431          | 301     | 615       | 931                 | 628         | 1,283                   | 1,944          |  |
| 1994  | 1,303                         | 2,727          | 4,167          | 330     | 691       | 1,056               | 717         | 1,500                   | 2,291          |  |
| 1995  | 1,379                         | 2,930          | 4,502          | 328     | 698       | 1,073               | 738         | 1,568                   | 2,409          |  |
| 1996  | 1,625                         | 3,484          | 5,370          | 362     | 775       | 1,194               | 844         | 1,809                   | 2,789          |  |
| 1997  | 1,809                         | 3,932          | 6,090          | 375     | 815       | 1,262               | 911         | 1,980                   | 3,067          |  |
| 1998  | 1,917                         | 4,247          | 6,622          | 371     | 821       | 1,280               | 937         | 2,075                   | 3,235          |  |
| 1999  | 2,140                         | 4,777          | 7,469          | 386     | 861       | 1,347               | 1,014       | 2,264                   | 3,540          |  |
| 2000  | 2,323                         | 5,173          | 8,086          | 394     | 877       | 1,371               | 1,072       | 2,386                   | 3,730          |  |
| 2001  | 2,418                         | 5,538          | 8,/33          | 383     | 8/8       | 1,384               | 1,083       | 2,480                   | 3,911          |  |
| 2002  | 2,424                         | 5,686          | 9,029          | 359     | 843       | 1,339               | 1,055       | 2,473                   | 3,928          |  |
| 2003  | 2,579                         | 6,213          | 9,942          | 358     | 862       | 1,380               | 1,090       | 2,626                   | 4,202          |  |
| 2004  | 2,737                         | 6,676          | 10,727         | 355     | 867       | 1,393               | 1,123       | 2,741                   | 4,404          |  |
| 2005  | 3,066                         | 7,390          | 11,846         | 372     | 898       | 1,439               | 1,222       | 2,946                   | 4,723          |  |
| 2006  | 3,392                         | 8,100          | 12,982         | 388     | 926       | 1,483               | 1,310       | 3,144                   | 5,038          |  |
| 2007  | 3,483                         | 8,290          | 13,303         | 3/4     | 889       | 1,427               | 1,313       | 3,130                   | 5,022          |  |
| 2008  | 3,383                         | 8,307          | 14 205         | 247     | 203       | 1,389               | 1,317       | 3,140                   | 5,003          |  |
| 2009  | 2,073                         | 0,005          | 14,205         | 217     | 762       | 1,344               | 1,312       | 3,145                   | 5,075<br>4 001 |  |
| 2010  | 2 100                         | 0,000          | 13,030         | 201     | 703       | 1 1 2 0             | 1 1 70      | 2,901<br>2 012          | 4,021          |  |
| 2011  | 3,400                         | 0,392<br>8 601 | 1/ 110         | 291     | 680       | 1,139               | 1 1 2 1     | 2,042                   | 4,000          |  |
| 2012  | 3,394                         | 0,091          | 14,119         | 201     | 661       | 1,104               | 1 101       | 2,000                   | 4,041          |  |
| 2013  | 3,730                         | 9,040<br>8 030 | 14,729         | 273     | 616       | 1,077               | 1 1/12      | 2,007                   | 4,701          |  |
| 2014  | 3 661                         | 8 936          | 14 623         | 233     | 581       | 950                 | 1 1 1 1 9 9 | 2,779                   | 4 4 3 1        |  |
| Total | 68 430                        | 157 524        | 250 364        | 10.033  | 21 847    | 34 033              | 28 528      | 64 358                  | 101 534        |  |

#### Table 7-3. Total Monetized Benefits, Summed over the Three Technologies

Notes: These totals include all dollar-denominated benefits: energy and resource benefits plus environmental health benefits. Note that, because environmental health benefits in a given year include internal discounting (reflecting expected numbers of years between pollution emissions and certain adverse health events), discounted values cannot be calculated directly from undiscounted values in this table.

## 7.3 RETURN ON INVESTMENT ANALYSIS

Table 7-4 summarizes net present values (NPV), benefit-to-cost ratios (BCR), and internal rates of return (IRR) taking into account only energy and resource benefits (based on the benefits summarized in Table 7-2).

Based on energy and resource benefits alone, BTO's investments are estimated to have had a NPV of between \$6 billion and \$22 billion and a benefit-to-cost ratio of between 20-to-1 and 66-to-1 (using a 7% discount rate), and an internal rate of return of between 38% and 51%.

| Metric                         | Low    | Mid    | High   |  |
|--------------------------------|--------|--------|--------|--|
| NPV (millions of 2015 dollars) |        |        |        |  |
| 7% Discount Rate               | 6,205  | 13,874 | 21,804 |  |
| 3% Discount Rate               | 17,820 | 40,912 | 64,945 |  |
| Benefit-to-Cost Ratio          |        |        |        |  |
| 7% Discount Rate               | 20:1   | 42:1   | 66:1   |  |
| 3% Discount Rate               | 37:1   | 84:1   | 132:1  |  |
| Internal Rate of Return        | 38%    | 46%    | 51%    |  |

Note: Benefits are retrospective: only energy savings realized through 2015 are included.

Table 7-5 summarizes net present values (NPV), benefit-to-cost ratios (BCR), and internal rates of return (IRR) taking into account total monetized benefits: energy and resource benefits plus environmental health benefits (based on the benefits summarized in Table 7-3).

With environmental health benefits included, BTO's investments have a NPV of between \$10 billion and \$34 billion and a benefit-to-cost ratio of between 30-to-1 and 102-to-1 (using a 7% discount rate), and an internal rate of return of between 46% and 61%.

| Metric                         | Low    | Mid    | High    |  |
|--------------------------------|--------|--------|---------|--|
| NPV (millions of 2015 dollars) |        |        |         |  |
| 7% Discount Rate               | 9,698  | 21,512 | 33,698  |  |
| 3% Discount Rate               | 28,034 | 63,863 | 101,039 |  |
| Benefit-to-Cost Ratio          |        |        |         |  |
| 7% Discount Rate               | 30:1   | 65:1   | 102:1   |  |
| 3% Discount Rate               | 58:1   | 130:1  | 205:1   |  |
| Internal Rate of Return        | 46%    | 55%    | 61%     |  |

## Table 7-5. Retrospective Investment Performance Metrics: Energy and Resource Benefitsand Environmental Health Benefits

Note: Benefits are retrospective: only energy savings realized through 2015 are included.

## Effective Useful Life Economic Impact Assessment

This section extends the retrospective analysis by also considering the remaining effective useful life of equipment installed and operating as of 2015.

### 8.1 ATTRIBUTABLE ECONOMIC BENEFITS

Flame-retention-head oil burner does not appear in this section because all DOE-attributed benefits for this technology are retrospective. Actual and counterfactual market shares of new burner sales had converged to 100% by 1996, meaning (under the assumption of a 15-year effective useful life) that the actual and counterfactual percentages of operating burners had converged to 100% by 2010, ending the stream of DOEattributed benefits.

#### 8.1.1 Residential Refrigeration

This section extends the analysis of Section 4 to consider the remaining effective useful life of refrigerators purchased through 2015. No refrigerators purchased after 2015 are considered—only the remaining useful life of refrigerators purchased in 2015 and earlier. As in section 4, we assume that the effective useful life of a refrigerator is 15 years.

The basis for this extended analysis is therefore the first-year energy savings developed in Step 1 in Section 4, summarized in Table 4-2 and reprised here as Table 8-1.

| Year | Actual<br>Avg.<br>Usage<br>(kWh) | Low<br>Impact<br>Avg.<br>Usage<br>(kWh) | Mid<br>Impact<br>Avg.<br>Usage<br>(kWh) | High<br>Impact<br>Avg.<br>Usage<br>(kWh) | Refrig.<br>Shipped<br>(thous) | Low<br>First-<br>Year<br>Energy<br>Savings<br>(GWh) | Mid<br>First-<br>Year<br>Energy<br>Savings<br>(GWh) | High<br>First-<br>Year<br>Energy<br>Savings<br>(GWh) |
|------|----------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| 1980 | 1,437                            | 1,437                                   | 1,437                                   | 1,437                                    | 5,124                         | 0                                                   | 0                                                   | 0                                                    |
| 1981 | 1,338                            | 1,346                                   | 1,354                                   | 1,363                                    | 4,944                         | 37                                                  | 79                                                  | 121                                                  |
| 1982 | 1,340                            | 1,347                                   | 1,355                                   | 1,364                                    | 4,364                         | 32                                                  | 69                                                  | 105                                                  |
| 1983 | 1,305                            | 1,315                                   | 1,327                                   | 1,338                                    | 5,477                         | 55                                                  | 117                                                 | 179                                                  |
| 1984 | 1,282                            | 1,294                                   | 1,307                                   | 1,320                                    | 5,994                         | 71                                                  | 150                                                 | 230                                                  |
| 1985 | 1,192                            | 1,210                                   | 1,231                                   | 1,252                                    | 6,081                         | 114                                                 | 242                                                 | 370                                                  |
| 1986 | 1,210                            | 1,227                                   | 1,247                                   | 1,266                                    | 6,510                         | 113                                                 | 240                                                 | 366                                                  |
| 1987 | 1,097                            | 1,123                                   | 1,152                                   | 1,181                                    | 6,972                         | 180                                                 | 383                                                 | 586                                                  |
| 1988 | 1,086                            | 1,113                                   | 1,143                                   | 1,173                                    | 7,227                         | 193                                                 | 410                                                 | 628                                                  |
| 1989 | 1,053                            | 1,082                                   | 1,115                                   | 1,148                                    | 7,099                         | 208                                                 | 442                                                 | 675                                                  |
| 1990 | 1,033                            | 1,064                                   | 1,098                                   | 1,133                                    | 7,101                         | 219                                                 | 465                                                 | 711                                                  |
| 1991 | 966                              | 1,002                                   | 1,043                                   | 1,083                                    | 7,273                         | 261                                                 | 554                                                 | 847                                                  |
| 1992 | 926                              | 965                                     | 1,009                                   | 1,052                                    | 7,761                         | 302                                                 | 642                                                 | 982                                                  |
| 1993 | 745                              | 797                                     | 857                                     | 916                                      | 8,109                         | 428                                                 | 909                                                 | 1,390                                                |
| 1994 | 737                              | 790                                     | 850                                     | 910                                      | 8,652                         | 461                                                 | 981                                                 | 1,500                                                |
| 1995 | 732                              | 786                                     | 846                                     | 907                                      | 8,671                         | 465                                                 | 989                                                 | 1,513                                                |
| 1996 | 746                              | 799                                     | 858                                     | 917                                      | 9,045                         | 476                                                 | 1,012                                               | 1,547                                                |
| 1997 | 755                              | 807                                     | 866                                     | 924                                      | 9,015                         | 468                                                 | 995                                                 | 1,522                                                |
| 1998 | 768                              | 819                                     | 876                                     | 933                                      | 9,741                         | 497                                                 | 1,055                                               | 1,614                                                |
| 1999 | 779                              | 829                                     | 886                                     | 942                                      | 10,045                        | 503                                                 | 1,070                                               | 1,636                                                |
| 2000 | 795                              | 844                                     | 899                                     | 954                                      | 10,169                        | 497                                                 | 1,057                                               | 1,616                                                |
| 2001 | 638                              | 699                                     | 768                                     | 836                                      | 10,262                        | 624                                                 | 1,327                                               | 2,030                                                |
| 2002 | 587                              | 652                                     | 725                                     | 798                                      | 10,754                        | 696                                                 | 1,479                                               | 2,262                                                |
| 2003 | 580                              | 646                                     | 719                                     | 793                                      | 11,014                        | 719                                                 | 1,527                                               | 2,336                                                |
| 2004 | 565                              | 631                                     | 706                                     | 781                                      | 11,953                        | 794                                                 | 1,688                                               | 2,581                                                |
| 2005 | 554                              | 621                                     | 697                                     | 772                                      | 12,180                        | 820                                                 | 1,742                                               | 2,664                                                |
| 2006 | 574                              | 640                                     | 714                                     | 788                                      | 12,173                        | 800                                                 | 1,701                                               | 2,601                                                |
| 2007 | 565                              | 632                                     | 706                                     | 781                                      | 11,523                        | 765                                                 | 1,626                                               | 2,487                                                |
| 2008 | 549                              | 617                                     | 693                                     | 769                                      | 10,312                        | 697                                                 | 1,482                                               | 2,267                                                |
| 2009 | 523                              | 593                                     | 671                                     | 749                                      | 9,196                         | 640                                                 | 1,361                                               | 2,081                                                |
| 2010 | 517                              | 587                                     | 666                                     | 745                                      | 10,235                        | 717                                                 | 1,524                                               | 2,330                                                |
| 2011 | 514                              | 584                                     | 663                                     | 742                                      | 10,235                        | 720                                                 | 1,529                                               | 2,339                                                |
| 2012 | 516                              | 586                                     | 665                                     | 744                                      | 9,493                         | 666                                                 | 1,415                                               | 2,164                                                |
| 2013 | 505                              | 576                                     | 656                                     | 736                                      | 10,081                        | 716                                                 | 1,521                                               | 2,326                                                |
| 2014 | 500                              | 571                                     | 652                                     | 732                                      | 10,081                        | 720                                                 | 1,529                                               | 2,339                                                |
| 2015 | 498                              | 570                                     | 650                                     | 730                                      | 10,081                        | 721                                                 | 1,532                                               | 2,344                                                |

Table 8-1. Actual and Counterfactual Average Energy Consumption and First-Year Savings

Notes: Reprised from Table 4-2. First-year energy savings is obtained by multiplying the number of refrigerators shipped by the difference between the actual (shipments-weighted) average usage by the counterfactual average usage. Refrigerator shipments obtained from Association of Home Appliance Manufacturers (2013).

Cumulative energy savings in each year are calculated just as they were in Section 4, by summing first-year energy savings over 15-year intervals, the only difference now being that the summations are continued beyond 2015. The final year is 2029, when refrigerators purchased in 2015, for which 2015 was considered to be the first year of operation, are in their 15<sup>th</sup> and final year of operation. Cumulative energy savings are converted into energy cost savings by multiplying by the real price of electricity in each year. The real price of energy for 2017 to 2029 is assumed to stay constant at its 2016 level.

Our estimates attribute savings to DOE of between 246 billion and 799 billion kWh and between \$30 billion and \$98 billion undiscounted dollars (Table 8-2).

| Year               | Low<br>Energy<br>Savings<br>(GWh) | Mid<br>Energy<br>Savings<br>(GWh) | High<br>Energy<br>Savings<br>(GWh) | Real<br>Price<br>(2015<br>dollars<br>/GWh) | Low Cost<br>Savings<br>(Millions<br>of 2015<br>dollars) | Mid Cost<br>Savings<br>(Millions<br>of 2015<br>dollars) | High<br>Savings<br>(Millions<br>of 2015<br>dollars) |
|--------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Total<br>1980-2015 | 170,529                           | 362,396                           | 554,263                            |                                            | 20,950                                                  | 44,521                                                  | 68,092                                              |
| 2016               | 10,190                            | 21,656                            | 33,121                             | 121,400                                    | 1,237                                                   | 2,629                                                   | 4,021                                               |
| 2017               | 9,494                             | 20,177                            | 30,859                             | 121,400                                    | 1,153                                                   | 2,449                                                   | 3,746                                               |
| 2018               | 8,776                             | 18,649                            | 28,523                             | 121,400                                    | 1,065                                                   | 2,264                                                   | 3,463                                               |
| 2019               | 7,982                             | 16,962                            | 25,942                             | 121,400                                    | 969                                                     | 2,059                                                   | 3,149                                               |
| 2020               | 7,162                             | 15,220                            | 23,278                             | 121,400                                    | 869                                                     | 1,848                                                   | 2,826                                               |
| 2021               | 6,362                             | 13,519                            | 20,677                             | 121,400                                    | 772                                                     | 1,641                                                   | 2,510                                               |
| 2022               | 5,596                             | 11,893                            | 18,189                             | 121,400                                    | 679                                                     | 1,444                                                   | 2,208                                               |
| 2023               | 4,899                             | 10,411                            | 15,923                             | 121,400                                    | 595                                                     | 1,264                                                   | 1,933                                               |
| 2024               | 4,259                             | 9,050                             | 13,842                             | 121,400                                    | 517                                                     | 1,099                                                   | 1,680                                               |
| 2025               | 3,542                             | 7,527                             | 11,512                             | 121,400                                    | 430                                                     | 914                                                     | 1,398                                               |
| 2026               | 2,822                             | 5,997                             | 9,173                              | 121,400                                    | 343                                                     | 728                                                     | 1,114                                               |
| 2027               | 2,156                             | 4,582                             | 7,009                              | 121,400                                    | 262                                                     | 556                                                     | 851                                                 |
| 2028               | 1,441                             | 3,061                             | 4,682                              | 121,400                                    | 175                                                     | 372                                                     | 568                                                 |
| 2029               | 721                               | 1,532                             | 2,344                              | 121,400                                    | 88                                                      | 186                                                     | 285                                                 |
| Total<br>2016-2029 | 75,401                            | 160,237                           | 245,072                            |                                            | 9,154                                                   | 19,453                                                  | 29,752                                              |
| Total<br>1980-2029 | 245,930                           | 522,632                           | 799,335                            |                                            | 30,103                                                  | 63,973                                                  | 97,843                                              |

|                            |                  |               |                       | -  |
|----------------------------|------------------|---------------|-----------------------|----|
| Tahla 8-7 Cumulativa Ene   | ray and Energy ( | Cost Savinas  | Effortivo lleoful l i | f۵ |
| Table 0 2. cumulative Life | igy and Energy   | cost savings. | LITECTIVE OBEIUI LI   |    |

Notes: Nominal energy prices are from "Average Retail Price of Electricity, Residential" (dollars per kWh, including taxes) from the U.S. Energy Information Administration. Nominal prices are converted to constant 2015 dollars using the Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted. Prices for 2017 to 2029 are assumed to be constant at the 2016 level.

Based on the full EUL energy savings, we extend the environmental health benefits analysis using the approach described in Section 4.6. Table 8-3 reports the estimated value of avoided adverse health events at between \$14 billion and \$105 billion, without discounting.

|                    | Value base<br>mortality a<br>(milli | d on low numb<br>nd non-fatal he<br>ons of 2015 do | ers of adult<br>eart attacks<br>ollars) | Value based<br>mortality a<br>(milli | d on high numl<br>nd non-fatal h<br>ons of 2015 do | bers of adult<br>eart attacks<br>ollars) |
|--------------------|-------------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------|
| Year               | Low                                 | Middle                                             | High                                    | Low                                  | Middle                                             | High                                     |
| Total<br>1980-2015 | 12,480                              | 26,521                                             | 40,562                                  | 28,239                               | 60,011                                             | 91,784                                   |
| 2016               | 236                                 | 501                                                | 766                                     | 533                                  | 1,133                                              | 1,732                                    |
| 2017               | 221                                 | 470                                                | 718                                     | 500                                  | 1,062                                              | 1,625                                    |
| 2018               | 204                                 | 434                                                | 664                                     | 462                                  | 982                                                | 1,502                                    |
| 2019               | 186                                 | 395                                                | 604                                     | 420                                  | 893                                                | 1,366                                    |
| 2020               | 167                                 | 354                                                | 542                                     | 377                                  | 801                                                | 1,226                                    |
| 2021               | 148                                 | 315                                                | 481                                     | 335                                  | 712                                                | 1,089                                    |
| 2022               | 130                                 | 277                                                | 423                                     | 295                                  | 626                                                | 958                                      |
| 2023               | 114                                 | 242                                                | 371                                     | 258                                  | 548                                                | 838                                      |
| 2024               | 99                                  | 211                                                | 322                                     | 224                                  | 477                                                | 729                                      |
| 2025               | 82                                  | 175                                                | 268                                     | 187                                  | 396                                                | 606                                      |
| 2026               | 66                                  | 140                                                | 213                                     | 149                                  | 316                                                | 483                                      |
| 2027               | 50                                  | 107                                                | 163                                     | 114                                  | 241                                                | 369                                      |
| 2028               | 34                                  | 71                                                 | 109                                     | 76                                   | 161                                                | 247                                      |
| 2029               | 17                                  | 36                                                 | 55                                      | 38                                   | 81                                                 | 123                                      |
| Total<br>2016-2029 | 1,753                               | 3,726                                              | 5,698                                   | 3,967                                | 8,430                                              | 12,894                                   |
| Total<br>1980-2029 | 14,233                              | 30,247                                             | 46,260                                  | 32,206                               | 68,442                                             | 104,678                                  |

| Table 8-3. Value of All DOE-Attributed | Avoided | Adverse Health Eve | ents |
|----------------------------------------|---------|--------------------|------|
|----------------------------------------|---------|--------------------|------|

Notes: Attributed avoided mortalities based amounts of pollutants abated and COBRA model parameters. Within each block of three columns, Low/Middle/High refers to the scenarios in Table 8-2. Lower values in the left block of Low/Middle/High scenarios are based on low numbers of adult mortality and non-fatal heart attacks in Table 4-7; higher values in the right block are based on high numbers for adult mortality and non-fatal heart attacks. Based on U.S. population in 2017. Totals are not discounted.

#### 8.1.2 Heat Pumps and Central Air Conditioners

This section extends the analysis of Section 5 to consider the remaining effective useful life of heat pumps and central air conditioners purchased through 2015. No products purchased after 2015 are considered—only the remaining useful life of heat pumps and central air conditioners purchased in 2015 and earlier. As in section 5, we assume that the effective useful life of a heat pumps or central air conditioner is 15 years.

The basis for this extended analysis is therefore the first-year energy savings developed in Step 1 in Section 5, summarized in Table 5-2 and reprised here as Table 8-4.

|      | Ship   | Shipr<br>(thous | nents<br>sands) |          |       |       |
|------|--------|-----------------|-----------------|----------|-------|-------|
|      |        | Low DOE         | Mid DOE         | High DOE | Heat  |       |
| Year | Actual | Impact          | Impact          | Impact   | Pumps | CACs  |
| 1990 | 9.3    | 9.3             | 9.3             | 9.3      | 809   | 2,920 |
| 1991 | 9.5    | 9.5             | 9.5             | 9.5      | 764   | 3,006 |
| 1992 | 10.5   | 10.4            | 10.2            | 10.0     | 799   | 2,914 |
| 1993 | 10.6   | 10.5            | 10.3            | 10.0     | 882   | 3,188 |
| 1994 | 10.7   | 10.5            | 10.3            | 10.1     | 1,008 | 3,888 |
| 1995 | 10.7   | 10.6            | 10.3            | 10.1     | 1,025 | 4,063 |
| 1996 | 10.7   | 10.6            | 10.3            | 10.1     | 1,148 | 4,523 |
| 1997 | 10.7   | 10.6            | 10.3            | 10.1     | 1,131 | 4,229 |
| 1998 | 11.0   | 10.8            | 10.5            | 10.2     | 1,260 | 4,980 |
| 1999 | 11.0   | 10.8            | 10.6            | 10.3     | 1,293 | 5,354 |
| 2000 | 11.0   | 10.8            | 10.5            | 10.3     | 1,339 | 5,346 |
| 2001 | 11.1   | 10.9            | 10.6            | 10.3     | 1,442 | 4,835 |
| 2002 | 11.1   | 10.9            | 10.6            | 10.3     | 1,484 | 5,263 |
| 2003 | 11.3   | 11.0            | 10.7            | 10.4     | 1,626 | 5,181 |
| 2004 | 11.4   | 11.2            | 10.8            | 10.5     | 1,886 | 5,515 |
| 2005 | 11.4   | 11.2            | 10.8            | 10.5     | 2,137 | 6,471 |
| 2006 | 13.2   | 12.7            | 12.1            | 11.4     | 2,118 | 4,951 |
| 2007 | 13.8   | 13.3            | 12.5            | 11.8     | 1,903 | 4,456 |
| 2008 | 13.8   | 13.3            | 12.6            | 11.8     | 1,865 | 3,968 |
| 2009 | 14.0   | 13.5            | 12.7            | 11.9     | 1,642 | 3,516 |
| 2010 | 14.5   | 13.9            | 13.0            | 12.1     | 1,748 | 3,420 |
| 2011 | 14.3   | 13.7            | 12.9            | 12.0     | 1,765 | 3,745 |
| 2012 | 14.3   | 13.7            | 12.9            | 12.0     | 1,698 | 3,916 |
| 2013 | 14.4   | 13.8            | 12.9            | 12.1     | 1,969 | 4,201 |
| 2014 | 14.6   | 14.0            | 13.1            | 12.2     | 2,354 | 4,500 |
| 2015 | 14.7   | 14.1            | 13.2            | 12.3     | 2,269 | 4,546 |

Table 8-4. Actual and Counterfactual Shipments-Weighted Average SEER, and Numbers of Heat Pumps and Central Air Conditioners Shipped

Notes: Reprised from Table 5-2. CACs = central air conditioners. Shipments data from AHRI (2017).

Cumulative energy savings in each year are calculated just as they were in Section 5, by summing first-year energy savings over 15-year intervals, the only difference now being that the summations are continued beyond 2015. The final year is 2029, when heat pumps and central air conditioners purchased in 2015, for which 2015 was considered to be the first year of operation, are in their 15<sup>th</sup> and final year of operation.

Cumulative energy savings are converted into energy cost savings by multiplying by the real price of electricity in each year. The real price of energy for 2017 to 2029 is assumed to stay constant at its 2016 level.

Our estimates attribute savings to DOE of between 260 billion and 1.2 trillion kWh and between \$32 billion and \$143 billion undiscounted dollars (Table 8-5).

| Year               | Low<br>Energy<br>Savings<br>(GWh) | Mid<br>Energy<br>Savings<br>(GWh) | High<br>Energy<br>Savings<br>(GWh) | Real<br>Price<br>(2015<br>dollars<br>/GWh) | Low Cost<br>Savings<br>(Millions<br>of 2015<br>dollars) | Mid Cost<br>Savings<br>(Millions<br>of 2015<br>dollars) | High<br>Savings<br>(Millions<br>of 2015<br>dollars) |
|--------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Total<br>1990-2015 | 153,671                           | 407,046                           | 681,628                            |                                            | 18,748                                                  | 49,675                                                  | 83,209                                              |
| 2016               | 13,086                            | 35,251                            | 60,123                             | 121,400                                    | 1,589                                                   | 4,280                                                   | 7,299                                               |
| 2017               | 12,489                            | 33,687                            | 57,533                             | 121,400                                    | 1,516                                                   | 4,090                                                   | 6,985                                               |
| 2018               | 11,842                            | 31,986                            | 54,713                             | 121,400                                    | 1,438                                                   | 3,883                                                   | 6,642                                               |
| 2019               | 11,092                            | 30,014                            | 51,437                             | 121,400                                    | 1,347                                                   | 3,644                                                   | 6,244                                               |
| 2020               | 10,218                            | 27,713                            | 47,613                             | 121,400                                    | 1,240                                                   | 3,364                                                   | 5,780                                               |
| 2021               | 9,148                             | 24,838                            | 42,726                             | 121,400                                    | 1,111                                                   | 3,015                                                   | 5,187                                               |
| 2022               | 8,126                             | 22,078                            | 38,003                             | 121,400                                    | 987                                                     | 2,680                                                   | 4,614                                               |
| 2023               | 7,161                             | 19,467                            | 33,533                             | 121,400                                    | 869                                                     | 2,363                                                   | 4,071                                               |
| 2024               | 6,297                             | 17,127                            | 29,518                             | 121,400                                    | 764                                                     | 2,079                                                   | 3,583                                               |
| 2025               | 5,384                             | 14,644                            | 25,238                             | 121,400                                    | 654                                                     | 1,778                                                   | 3,064                                               |
| 2026               | 4,442                             | 12,086                            | 20,839                             | 121,400                                    | 539                                                     | 1,467                                                   | 2,530                                               |
| 2027               | 3,501                             | 9,532                             | 16,446                             | 121,400                                    | 425                                                     | 1,157                                                   | 1,996                                               |
| 2028               | 2,441                             | 6,650                             | 11,483                             | 121,400                                    | 296                                                     | 807                                                     | 1,394                                               |
| 2029               | 1,216                             | 3,316                             | 5,730                              | 121,400                                    | 148                                                     | 403                                                     | 696                                                 |
| Total<br>2016-2029 | 106,444                           | 288,387                           | 494,935                            |                                            | 12,922                                                  | 35,010                                                  | 60,085                                              |
| Total<br>1990-2029 | 260,115                           | 695,432                           | 1,176,564                          |                                            | 31,671                                                  | 84,685                                                  | 143,295                                             |

| Tuble o Si cumulutive Energy and Energy cost Suvingsi Enective oscial Ene |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

Notes: Nominal energy prices are from "Average Retail Price of Electricity, Residential" (dollars per kWh, including taxes) from the U.S. Energy Information Administration. Nominal prices are converted to constant 2015 dollars using the Consumer Price Index for All Urban Consumers: All Items, Annual, Seasonally Adjusted. Prices for 2017 to 2029 are assumed to be constant at the 2016 level.

Based on the full EUL energy savings, we extend the environmental health benefits analysis using the approach described in Section 5.6. Table 8-6 reports the estimated value of avoided adverse health events at between \$18 billion and \$184 billion, without discounting.

|                    | Value base<br>mortality a<br>(milli | d on low numb<br>nd non-fatal he<br>ons of 2015 do | ers of adult<br>eart attacks<br>bllars) | Value based on high numbers of adult<br>mortality and non-fatal heart attacks<br>(millions of 2015 dollars) |        |         |  |
|--------------------|-------------------------------------|----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|--------|---------|--|
| Year               | Low                                 | Middle                                             | High                                    | Low                                                                                                         | Middle | High    |  |
| Total<br>1990-2015 | 9,566                               | 25,216                                             | 42,004                                  | 21,646                                                                                                      | 57,060 | 95,046  |  |
| 2016               | 302                                 | 815                                                | 1,390                                   | 684                                                                                                         | 1,844  | 3,145   |  |
| 2017               | 291                                 | 784                                                | 1,339                                   | 658                                                                                                         | 1,774  | 3,030   |  |
| 2018               | 276                                 | 744                                                | 1,273                                   | 624                                                                                                         | 1,684  | 2,881   |  |
| 2019               | 258                                 | 698                                                | 1,197                                   | 584                                                                                                         | 1,581  | 2,709   |  |
| 2020               | 238                                 | 645                                                | 1,108                                   | 538                                                                                                         | 1,459  | 2,507   |  |
| 2021               | 213                                 | 578                                                | 994                                     | 482                                                                                                         | 1,308  | 2,250   |  |
| 2022               | 189                                 | 514                                                | 884                                     | 428                                                                                                         | 1,163  | 2,001   |  |
| 2023               | 167                                 | 453                                                | 780                                     | 377                                                                                                         | 1,025  | 1,766   |  |
| 2024               | 147                                 | 399                                                | 687                                     | 332                                                                                                         | 902    | 1,554   |  |
| 2025               | 125                                 | 341                                                | 587                                     | 284                                                                                                         | 771    | 1,329   |  |
| 2026               | 103                                 | 281                                                | 485                                     | 234                                                                                                         | 636    | 1,097   |  |
| 2027               | 81                                  | 222                                                | 383                                     | 184                                                                                                         | 502    | 866     |  |
| 2028               | 57                                  | 155                                                | 267                                     | 129                                                                                                         | 350    | 605     |  |
| 2029               | 28                                  | 77                                                 | 133                                     | 64                                                                                                          | 175    | 302     |  |
| Total<br>2016-2029 | 2,475                               | 6,706                                              | 11,509                                  | 5,601                                                                                                       | 15,174 | 26,042  |  |
| Total<br>1990-2029 | 12,041                              | 31,922                                             | 53,512                                  | 27,246                                                                                                      | 72,234 | 121,088 |  |

#### Table 8-6. Value of All DOE-Attributed Avoided Adverse Health Events

Notes: Attributed avoided mortalities based amounts of pollutants abated and COBRA model parameters. Within each block of three columns, Low/Middle/High refers to the scenarios in Table 8-5. Lower values in the left block of Low/Middle/High scenarios are based on low numbers of adult mortality and non-fatal heart attacks in Table 5-8; higher values in the right block are based on high numbers for adult mortality and non-fatal heart attacks. Based on U.S. population in 2017. Totals are not discounted.

### 8.2 EUL RETURN ON INVESTMENT ANALYSIS

Table 8-7 summarizes monetized energy and resource benefits over the effective useful life of the three technologies. Benefits are discounted back to the beginning of 1976 at 7% and 3%, assuming that each year's investment cost was incurred at the end of the year.

|       | Undiscounted<br>(millions of 2015 dollars) |         | Disc<br>(millio | counted at | t 7%<br>dollars) | Discounted at 3%<br>(millions of 2015 dollars) |        |        |        |
|-------|--------------------------------------------|---------|-----------------|------------|------------------|------------------------------------------------|--------|--------|--------|
| Year  | Low                                        | Mid     | High            | Low        | Mid              | High                                           | Low    | Mid    | High   |
| Total |                                            |         |                 |            |                  |                                                |        |        |        |
| 1978- | 43,819                                     | 101,266 | 161,321         | 6,540      | 14,209           | 22,139                                         | 18,315 | 41,407 | 65,440 |
| 2015  |                                            |         |                 |            |                  |                                                |        |        |        |
| 2016  | 2,826                                      | 6,909   | 11,320          | 176        | 431              | 706                                            | 841    | 2,056  | 3,369  |
| 2017  | 2,669                                      | 6,539   | 10,731          | 156        | 381              | 626                                            | 771    | 1,890  | 3,101  |
| 2018  | 2,503                                      | 6,147   | 10,105          | 136        | 335              | 551                                            | 702    | 1,725  | 2,835  |
| 2019  | 2,316                                      | 5,703   | 9,394           | 118        | 291              | 479                                            | 631    | 1,553  | 2,559  |
| 2020  | 2,110                                      | 5,212   | 8,606           | 100        | 248              | 410                                            | 558    | 1,378  | 2,276  |
| 2021  | 1,883                                      | 4,657   | 7,697           | 84         | 207              | 343                                            | 483    | 1,195  | 1,976  |
| 2022  | 1,666                                      | 4,124   | 6,822           | 69         | 172              | 284                                            | 415    | 1,028  | 1,700  |
| 2023  | 1,464                                      | 3,627   | 6,004           | 57         | 141              | 233                                            | 354    | 878    | 1,453  |
| 2024  | 1,281                                      | 3,178   | 5,264           | 47         | 115              | 191                                            | 301    | 747    | 1,237  |
| 2025  | 1,084                                      | 2,691   | 4,461           | 37         | 91               | 151                                            | 247    | 614    | 1,018  |
| 2026  | 882                                        | 2,195   | 3,643           | 28         | 70               | 116                                            | 195    | 486    | 807    |
| 2027  | 687                                        | 1,713   | 2,847           | 20         | 51               | 84                                             | 148    | 368    | 612    |
| 2028  | 471                                        | 1,179   | 1,962           | 13         | 33               | 54                                             | 98     | 246    | 410    |
| 2029  | 235                                        | 589     | 980             | 6          | 15               | 25                                             | 48     | 119    | 199    |
| Total |                                            |         |                 |            |                  |                                                |        |        |        |
| 1978- | 65,895                                     | 155,728 | 251,158         | 7,588      | 16,790           | 26,393                                         | 24,108 | 55,691 | 88,990 |
| 2029  | -                                          |         |                 | -          |                  | -                                              |        |        | -      |

Table 8-7. Total EUL Energy and Resource Benefits, Summed over the Three Technologies

Notes: These totals include only the dollar-denominated energy and resource benefits. Environmental health benefits are not included.

Table 8-8 summarizes net present values (NPV), benefit-to-cost ratios (BCR), and internal rates of return (IRR) taking into account only EUL energy and resource benefits (based on the benefits summarized in Table 8-7).

Based on EUL energy and resource benefits alone, we estimate that BTO's investments have a NPV of between \$7 billion and \$26 billion and a benefit-to-cost ratio of between 23-to-1 and 79-to-1 (using a 7% discount rate), and an internal rate of return of between 38% and 51%.

| Metric                         | Low    | Mid    | High   |
|--------------------------------|--------|--------|--------|
| NPV (millions of 2015 dollars) |        |        |        |
| 7% Discount Rate               | 7,252  | 16,455 | 26,058 |
| 3% Discount Rate               | 23,613 | 55,196 | 88,496 |
| Benefit-to-Cost Ratio          |        |        |        |
| 7% Discount Rate               | 23:1   | 50:1   | 79:1   |
| 3% Discount Rate               | 49:1   | 113:1  | 180:1  |
| Internal Rate of Return        | 38%    | 46%    | 51%    |

| Table 8-8. EUL Investr | nent Performance | e Metrics: Ener | gy and Resou | urce Benefits |
|------------------------|------------------|-----------------|--------------|---------------|
|------------------------|------------------|-----------------|--------------|---------------|

Notes: These totals include only the dollar-denominated energy and resource benefits. Environmental health benefits are not included. Benefits associated with residential refrigerators, heat pumps, and central air conditioners include products purchased through 2015, including estimated savings after 2015 during the products' effective useful lives (assumed to be 15 years).

Table 8-9 summarizes total monetized benefits—energy and resource benefits plus environmental health benefits—over the three technologies. Environmental health benefits are based on the lower numbers of adult mortality and non-fatal heart attacks estimated by COBRA. Benefits are discounted back to the beginning of 1976 at 7% and 3%, assuming that each year's investment cost was incurred at the end of the year.

|                        | Undiscounted |         | Disc<br>(mill/ne | Discounted at 7% |        |        | Discounted at 3% |        |         |
|------------------------|--------------|---------|------------------|------------------|--------|--------|------------------|--------|---------|
| Year                   | Low          | Mid     | Hiah             | Low              | Mid    | High   | Low              | Mid    | High    |
| Total                  |              |         |                  |                  |        |        |                  |        |         |
| 1978-                  | 68,430       | 157,524 | 250,364          | 10,033           | 21,847 | 34,033 | 28,528           | 64,358 | 101,534 |
| 2015                   |              |         |                  |                  |        |        |                  |        |         |
| 2016                   | 3,364        | 8,224   | 13,475           | 204              | 499    | 818    | 989              | 2,418  | 3,963   |
| 2017                   | 3,180        | 7,792   | 12,788           | 180              | 442    | 725    | 908              | 2,225  | 3,651   |
| 2018                   | 2,983        | 7,326   | 12,042           | 158              | 388    | 638    | 827              | 2,030  | 3,338   |
| 2019                   | 2,759        | 6,796   | 11,195           | 137              | 337    | 554    | 743              | 1,829  | 3,012   |
| 2020                   | 2,514        | 6,211   | 10,256           | 116              | 287    | 475    | 657              | 1,623  | 2,679   |
| 2021                   | 2,244        | 5,549   | 9,173            | 97               | 240    | 397    | 569              | 1,408  | 2,327   |
| 2022                   | 1,985        | 4,915   | 8,130            | 80               | 199    | 329    | 489              | 1,210  | 2,002   |
| 2023                   | 1,745        | 4,322   | 7,155            | 66               | 163    | 270    | 417              | 1,033  | 1,711   |
| 2024                   | 1,527        | 3,787   | 6,273            | 54               | 134    | 221    | 354              | 879    | 1,456   |
| 2025                   | 1,291        | 3,207   | 5,317            | 43               | 106    | 175    | 291              | 723    | 1,198   |
| 2026                   | 1,051        | 2,616   | 4,342            | 32               | 81     | 134    | 230              | 572    | 950     |
| 2027                   | 819          | 2,042   | 3,393            | 24               | 59     | 98     | 174              | 434    | 721     |
| 2028                   | 562          | 1,405   | 2,339            | 15               | 38     | 63     | 116              | 290    | 482     |
| 2029                   | 280          | 701     | 1,168            | 7                | 18     | 29     | 56               | 140    | 234     |
| Total<br>1978-<br>2029 | 94,734       | 222,419 | 357,408          | 11,246           | 24,836 | 38,959 | 35,348           | 81,172 | 129,257 |

| Table 8-9. Tota | I EUL Monetized Be | nefits, Summed | over the Three | Technologies |
|-----------------|--------------------|----------------|----------------|--------------|
|-----------------|--------------------|----------------|----------------|--------------|

Notes: These totals include all dollar-denominated benefits: energy and resource benefits plus environmental health benefits. Note that, because environmental health benefits in a given year include internal discounting (reflecting expected numbers of years between pollution emissions and certain adverse health events), discounted values cannot be calculated directly from undiscounted values in this table.

Table 8-10 summarizes net present values (NPV), benefit-tocost ratios (BCR), and internal rates of return (IRR) taking into account total EUL monetized benefits: energy and resource benefits plus environmental health benefits (based on the benefits summarized in Table 7-3).

With environmental health benefits included, and taking into account the effective useful life of products sold through 2015, we estimate that BTO's investments have a NPV of between \$11 billion and \$39 billion and a benefit-to-cost ratio of between 34-to-1 and 116-to-1 (using a 7% discount rate), and an internal rate of return of between 46% and 61%.

| Metric                         | Low    | Mid    | High    |
|--------------------------------|--------|--------|---------|
| NPV (millions of 2015 dollars) |        |        |         |
| 7% Discount Rate               | 10,911 | 24,501 | 38,624  |
| 3% Discount Rate               | 34,854 | 80,678 | 128,763 |
| Benefit-to-Cost Ratio          |        |        |         |
| 7% Discount Rate               | 34:1   | 74:1   | 116:1   |
| 3% Discount Rate               | 71:1   | 164:1  | 261:1   |
| Internal Rate of Return        | 46%    | 55%    | 61%     |

## Table 8-10. EUL Investment Performance Metrics: Energy and Resource Benefits and Environmental Health Benefits

Notes: Benefits associated with residential refrigerators, heat pumps, and central air conditioners include products purchased through 2015, including estimated savings after 2015 during the products' effective useful lives (assumed to be 15 years).

# 9

## Summary Results and Conclusions

This section concludes the report by performing some robustness checks (in Sections 9.1 through 9.4) to ensure that our main conclusion—that BTO R&D has been worthwhile—is not sensitive to aspects of our methodology—either in its design (involving various unavoidable assumptions) or in its implementation (namely, the composition of our group of experts). Section 9.5 summarizes some common themes from the qualitative findings in each of the technology chapters, indicating the reasons given by the experts interviewed for why BTO R&D has had the impacts they attributed to it.

The robustness analysis presented in Sections 9.1 through 9.4 will be based on our main estimates of investment performance metrics, reprised here from Section 7 for ease of reference (Table 9-1). For simplicity, we will focus on one performance metric: benefit-to-cost ratio at a 7% discount rate.

Because different sensitivity tests are appropriate for the different technology areas, it will be useful to note that the discounted benefits in the numerator are composed as follows: 16% from flame-retention-head oil burner, 45% from advanced refrigeration, and 39% from heat pump design model and alternative refrigerants research.

| Metric                         | Low    | Mid    | High   |
|--------------------------------|--------|--------|--------|
| NPV (millions of 2015 dollars) |        |        |        |
| 7% Discount Rate               | 6,205  | 13,874 | 21,804 |
| 3% Discount Rate               | 17,820 | 40,912 | 64,945 |
| Benefit-to-Cost Ratio          |        |        |        |
| 7% Discount Rate               | 20:1   | 42:1   | 66:1   |
| 3% Discount Rate               | 37:1   | 84:1   | 132:1  |
| Internal Rate of Return        | 38%    | 46%    | 51%    |

| <b>Table 9-1. Retrospective Investment Performanc</b> | ce Metrics: Energy and Resource Bene | fits |
|-------------------------------------------------------|--------------------------------------|------|
|-------------------------------------------------------|--------------------------------------|------|

Note: Reprised from Table 7-4. Benefits are retrospective: only energy savings realized through 2015 are included.

## 9.1 SENSITIVITY TO INCRIMENTAL IMPACT OF FLAME-RETENTION-HEAD OIL BURNER

Recall that we assumed a 16% energy savings for flameretention-type burners compared to non-flame-retention burners. We based this assumption on field test results (Batey et al., 1978; McDonald et al., 1979 and 1980) and summaries of those results (Butcher et al., 1992; Batey, 2013). Based on these sources, a range of 11% to 22% is generally accepted.

To a first-order approximation, reducing the incremental savings to 11% from 16% gives up roughly one-third of the attributed benefits (i.e., 5/16 = 0.3125). Increasing to 22% increases attributed benefits by roughly 37% (6/16 = 0.375). Calculating the effect of any alternative assumption of the incremental improvement is similarly straightforward.

Because this technology area contributed 16% to our total benefits, the effect of giving up one-third of our benefits in this area would be to reduce our total benefits by roughly 5% (i.e.,  $0.33 \times 0.16 = 0.053$ ).

## 9.2 SENSITIVITY TO CHANGES IN THE COMPOSITION OF OUR GROUP OF EXPERTS

To test whether the manner in which our group of experts was constructed could have influenced our results, we regressed the key quantitative data point (impact attribution to BTO) for each respondent on the source of that respondent's name in our sample. We found no significant difference among sources. All regression coefficients were small and not even close to statistically significant. We therefore conclude that a
respondent's attribution of impact to BTO R&D does not differ in a statistically significant way depending on whether they were referred to us by DOE, by someone at ORNL, by another respondent, or discovered independently by RTI. This step establishes that our results were probably not significantly affected by our reliance on respondent referrals, which gave us one-third of our interviewees (Table 2-2). In other words, the composition of our sample, in terms of where the contacts came from, is not an important determinant of our average impact estimates.

We also regressed BTO impact attribution on other respondent characteristics, including affiliation with a national laboratory, professional involvement in technical R&D efforts, an index of their familiarity with specific BTO R&D activities, and their having ever worked in manufacturing. Only one of these characteristics was found to be significant. That was the respondent's having ever worked for a manufacturing company. Respondents who had worked for a manufacturer (OEM, component, or fluid manufacturing company) tended to attribute lower impact to DOE.

Although it is not sensible to think of a perfect sampling universe with a specific "correct" proportion of such respondents, it is useful to analyze the sensitivity of our results to this proportion. This approach is suggested by Frank et al. (2013) in analogous situations involving observational experiments where the mechanism by which units of observation were exposed to a treatment or not cannot be observed—much as we cannot observe the mechanism by which experts were included in our group.

Figure 9-1 illustrates the sensitivity of the average percentage BTO attribution to hypothetical changes in the composition of our group of experts. If the pattern observed in our group of experts were to stay the same as the percentage of experts who had worked in industry increased, say from just under 40% to just under 80%, then average attribution to BTO would fall from 21% to 15%, and we would lose roughly 30% of our estimated impacts.

Although we cannot characterize the "true" universe of potential experts and assign correct weights to manufacturing respondents, it is helpful to recall that manufacturing respondents made up roughly the same proportion of potential and actual respondents. Recall, from Tables 2-1 and 2-2, that 156 of 397 potential respondents were from industry (39%), and 34 of 91 actual respondents were from industry (37%). In light of this, our example of hypothetically doubling the proportion of manufacturing respondents seems rather extreme. If we were to do this, we would give up roughly a quarter of our total benefits.<sup>39</sup>



Figure 9-1. Sensitivity of Average Attribution to Hypothetical Changes in Sample Composition

Note: Respondents who had worked for a manufacturer tended to attribute lower impact to DOE. The graph shows how average attribution would vary with the composition of the group if this pattern were to stay the same.

#### 9.3 SENSITIVITY TO REBOUND EFFECTS

Improvements in energy performance, by reducing the cost of an energy service, may lead consumers to demand more of that service. Improved fuel efficiency may prompt drivers to drive farther. More efficient water heating technology may encourage people to take longer showers. Improvements in heating and air conditioning efficiency may lead people to turn thermostats up in winter and down in summer. Even improvements in refrigerator energy efficiency may lead to increases in the average size and number of refrigerators in

<sup>&</sup>lt;sup>39</sup> Recall, advanced refrigeration and HPDM and alternative refrigerants research together contributed 84% percent of total benefits, and 30% of 84% is 25%.

homes. This phenomenon is known as the rebound effect, and it can partially offset the benefits of improvements in energy performance.

Estimates suggest that the rebound effect is unlikely to negate more than 30% of the savings that would otherwise result from a technical improvement in the energy performance of residential heating and air conditioning equipment (Greening et al., 2000; Sorrell, 2007). Evidence for residential refrigeration is thin on the ground, but general consensus is that the effect is much less significant; 10% could be considered an upper bound (Greening et al., 2000; Sorrell, 2007).

Since energy performance improvements in residential heating and air conditioning make up 55% of our overall benefits (16% from flame-retention and 39% from heat pumps and central air conditioners), a 30% rebound effect would take away roughly 16.5% of our overall benefits (i.e.  $0.3 \times 0.55 = 0.165$ ).

Assuming a 10% rebound effect for refrigeration would take away roughly 4.5% overall, since refrigeration contributes 45% of total benefits.

#### 9.4 SCENARIO ANALYSIS

None of the sensitivity analyses suggested can on its own come close to bringing our estimated benefit-to-cost ratios near the unit threshold where we would have to question whether BTO R&D investments have been worthwhile.

A very conservative scenario can be constructed by applying all of these discounts at once:

#### **Flame-retention**

- 33% reduction in incremental impact
- 30% reduction because of rebound effect

#### Refrigeration

- 30% reduction by changing composition of expert group
- 10% reduction because of rebound effect

#### Heat pump and air conditioning

- 30% reduction by changing composition of expert group
- 30% reduction because of rebound effect

The remaining benefits, as a percentage of the original estimate, can be calculated as follows:

(0.16)(1 - 0.33)(1 - 0.3) + (0.45)(1 - 0.3)(1 - 0.1)+ (0.39)(1 - 0.3)(1 - 0.3) = 0.55

In this rather extreme scenario, we are still left with more than half of our estimated benefits. Although this reduction is not insignificant, applying this scenario to the lower-bound estimate of a 20-to-1 benefit-to-cost ratio still yields estimated benefits greater than ten times R&D portfolio costs.

#### 9.5 **DISCUSSION**

We have considered the sensitivity of estimated benefits and investment performance metrics to changes in

- the composition of the group of expert informants with whom we spoke,
- assumptions about the average incremental energy efficiency improvement of flame-retention-head oil burners, and
- assumptions about the magnitude of the rebound effect for all three technology areas.

Based on these sensitivity analyses, the main finding is quite robust. Recall, taking the most restrictive estimate of benefits considering only retrospective benefits for the three technology areas selected from the larger HVAC, water heating, and appliance R&D portfolio and omitting environmental health benefits—we estimated a benefits-to-costs ratio of between 20to-1 and 66-to-1, with the middle estimate being 42-to-1 (Table 9-1). In an alternative scenario based on the most conservative alternative assumptions considered for the sensitivity analysis (reweighting of expert responses toward a subgroup that gave on average lower attribution to BTO, lower incremental improvement for flame-retention-head oil burners, and rebound effect sizes at the upper end of estimated ranges from peer-reviewed studies), more than half of the estimated benefits remain.

Applying all of these most conservative alternative assumptions to the middle estimate of a 42-to-1 benefit-to-cost ratio still yields an estimate greater than the lower bound of 20-to-1. Applying these assumptions to that lower bound would still

Scenario analyses show that more than half of estimated benefits remain even under very conservative alternative assumptions. Applying these assumptions to the *lower-bound benefits* estimates would still result in estimated benefits of more than ten times R&D portfolio costs, strongly supporting the conclusion that BTO investments in HVAC, water heating, and appliance R&D have been worthwhile.

leave estimated benefits of more than ten times R&D investment costs, strongly supporting the conclusion that BTO investments in HVAC, water heating, and appliance R&D have been worthwhile.

This conclusion appears all the more robust in light of the following reasons to view the investment performance metrics as conservative lower bounds:

- The portfolio approach, taken here, considers the investment cost of the entire HVAC, water heating, and appliance R&D portfolio from 1976 (including investments made by DOE's predecessor agencies) through 2015, yet includes estimated benefits of only three technology areas within this portfolio.
- The retrospective energy and resource benefits, which are the basis for the top-line investment performance metrics, do not include environmental health benefits or benefits associated with the remaining EUL of equipment operating as of 2015 but due to accrue in 2016 and later.
- Benefits associated with the knowledge generated by BTO R&D, rated as the most important aspect of BTO's contributions by the experts with whom we spoke, are not quantified beyond their effects on energy efficiency of residential refrigerators, heat pumps, and air conditioners. Knowledge benefits are treated only qualitatively, in an analysis of patenting and patent citations.

For these reasons, a benefits-to-costs ratio of 20-to-1 is appropriately viewed as a lower bound on the estimated performance of BTO R&D investments.

Several common themes emerge from the reasons experts offered for why BTO R&D has had the impacts they attributed to it. DOE laboratories are perceived by industry to be a source of credible, objective, scientific and engineering data and fundamental knowledge. The research output of DOE laboratories is valuable to industry because the laboratories combine objectivity—a reputation as a trusted third party—with solid technical capabilities and state-of-the-art facilities, such as HVAC and refrigeration test facilities. DOE laboratories integrate multidisciplinary scientific and engineering capabilities that are BTO R&D investments support the role of DOE laboratories as trusted third-party sources of objective, high-quality scientific and engineering data and research. BTO R&D impacts stem from its ability to leverage DOE laboratories' unique capabilities to create productive R&D investment opportunities for the private sector. beyond the scope of most companies' R&D laboratories. BTO R&D investments are able to leverage these facilities and interdisciplinary expertise to conduct basic research having applications much broader than the scope of any one company's business model. BTO R&D investments can also support early development of novel technologies that companies would find unattractive because of high technical risk (the risk of failing to achieve performance improvements over existing technologies), market risk (the risk of failing to commercialize a product embodying the new technology once it has been successfully developed from a technical perspective), and a long and uncertain timeline to eventual commercialization and market acceptance. Especially high-risk and long-term R&D projects are good candidates for BTO investment because they are less likely to attract private-sector investment.

BTO R&D can de-risk a new energy-efficient technology to the point that a company will want to invest in its further commercial development. BTO's role in the development of a given technology may vary; depending on the technology, its application, and market and other conditions, BTO involvement may end with basic research or proof of concept, or it may extend through later stages of development. BTO investment is most effective when it complements private investment, i.e., when BTO outputs create productive investment opportunities for the private sector, thereby crowding in private investment. The nature of high-risk R&D portfolios is that not all projects will be successful. In selecting projects, the questions to ask are whether a project is one that BTO is uniquely capable of undertaking—a project which the private sector could not or would not choose to undertake—and whether, if it is technically successful, the project will create productive investment opportunities for U.S. industry while advancing BTO's mission.

# **10** References

Abdelaziz, O., Shrestha, S.,..., and Kassuga, T. (2015). *Alternative Refrigerant Evaluation for High-Ambient- Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners*. ORNL/TM-2016/513.

Abdelaziz, O., Shrestha, S.,..., and Bargach, Y. (2016). *Alternative Refrigerant Evaluation for High-Ambient- Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners*. ORNL/TM-2015/536.

Air-Conditioning, Heating, and Refrigeration Institute [AHRI]. (2017). *Historical Data: Central Air Conditioners and Air-Source Heat Pumps*. http://www.ahrinet.org/Resources/ Statistics/Historical-Data/Central-Air-Conditioners-and-Air-Source-Heat-Pumps.aspx. Accessed 5/18/17.

- Association of Home Appliance Manufacturers (2013). Refrigerators (6.5 cu.ft. or greater). Factory Shipments (Including Exports).
- Batey, J. E. (2013). Present and Future Energy Efficiency Upgrade and Conservation Opportunities for Residential Oil Heating in New York State, prepared for Empire State Petroleum Association, Inc.

Batey, J. E., Allen, T. W., McDonald, R. J., Hoppe, R. J., Salzano, F. J., & Berlad, A. L. (1978). Direct Measurement of the Overall Efficiency and Annual Fuel Consumption of Residential Oil-Fired Boilers, Annual Report, Fiscal Year 1977, Burner-Boiler/Furnace Efficiency Test Project (No. BNL 50853). Brookhaven National Lab., Upton, NY (United States).

- Baxter, V. D., Khowailed, G., Sikes, K., & Grubbs, T. (2015). Space Cooling in North America: Market Overview and Future Impacts. *IEA Heat Pump Center Newsletter* (Online), 32(2).
- Brown, M. A., Berry, L. G., & Goel, R. K. (1989). *Commercializing government-sponsored innovations: twelve successful buildings case studies* (No. ORNL/CON-275). Oak Ridge National Lab., TN (United States).
- Butcher, T., McDonald, R., Krajewski, R., Celebi, Y., & Andrews,
  J. (1992). *Impacts of changing residential oil burner technology* (No. BNL-47615; CONF-920828--3).
  Brookhaven National Lab., Upton, NY (United States).
- Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2000). Protecting their intellectual assets: Appropriability conditions and why US manufacturing firms patent (or not). NBER Working Paper no. 7552.
- Dockery, D. W., Cunningham, J., Damokosh, A. I., Neas, L. M., Spengler, J. D., Koutrakis, P., ... Speizer, F. E. (1996). Health effects of acid aerosols on North American Children—Respiratory symptoms. *Environmental Health Perspectives*, 104(5), 500–505.
- U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy. (2002, March). Strategic Program Review. Accessed 6/29/2017 at https://energy.gov/sites/prod/files/2013/11/f5/strategic \_program\_review.pdf.
- U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Building Technologies Office. (2017). R&D to Market Success: BTO-Supported Technologies Commercialized from 2010 to 2015. Accessed at https://energy.gov/eere/buildings/downloads/rdmarket-success-bto-supported-technologiescommercialized-2010-2015.
- U.S. Energy Information Administration (EIA). (2011, September). Annual Energy Review 2011. DOE/EIA-0384(2011). Accessed at https://www.eia.gov/totalenergy/data/annual/pdf/aer.p df.
- U.S. Energy Information Administration (EIA). (2016a). U.S. Sales of Distillate Fuel Oil by End Use. Accessed at http://www.eia.gov/dnav/pet/pet\_cons\_821dst\_dcu\_nus \_a.htm.

- U.S. Energy Information Administration (EIA). (2016b). Weekly U.S. No. 2 Heating Oil Residential Price (Dollars per Gallon). Accessed at http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n= PET&s=W\_EPD2F\_PRS\_NUS\_DPG&f=W.
- U.S. Energy Information Administration (EIA). (2016c). Annual U.S. Crude Oil First Purchase Price (Dollars per Barrel). Accessed at http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n= PET&s=F000000 3&f=A.
- U.S. Energy Information Administration (EIA). (2017a). Petroleum Supply Monthly, preliminary data for 2016. https://www.eia.gov/energyexplained/index.cfm?page= oil\_refining. Last accessed 5/19/2017.
- U.S. Energy Information Administration (EIA). (2017b). Supply and Disposition of Petroleum and Other Liquids. https://www.eia.gov/dnav/pet/pet\_sum\_snd\_d\_nus\_mb bl\_a\_cur.htm. Last accessed 5/21/2017.
- U.S. Energy Information Administration (EIA). (2017c). Net generation by electric power utilities. https://www.eia.gov/electricity/data.php#generation. Last accessed 5/21/2017.
- U.S. Environmental Protection Agency (EPA). (2014). Co-Benefits Risk Assessment (COBRA) Screening Model: How COBRA Works. Accessed 6/29/2017 from https://www.epa.gov/sites/production/files/2015-11/documents/how-cobra-works.pdf.
- U.S. Environmental Protection Agency (U.S. EPA). (2015). User's manual for the Co-Benefits Risk Assessment (COBRA) screening model. Accessed 6/29/2017 from https://19january2017snapshot.epa.gov/sites/productio n/files/2015-08/documents/cobra-manual.pdf.
- U.S. Environmental Protection Agency (EPA). (2017a). AP-42: Compilation of Air Emission Factors. https://www.epa.gov/air-emissions-factors-andquantification/ap-42-compilation-air-emission-factors. Last accessed 5/21/2017. And https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s03. pdf. Last accessed 5/21/2017.
- U.S. Environmental Protection Agency (EPA). (2017b). Air Pollutant Emissions Trends Data. Average Annual Emissions. Criteria pollutants National Tier 1 for 1970 -2016. https://www.epa.gov/air-emissionsinventories/air-pollutant-emissions-trends-data. Last accessed 5/21/2017.

Energy Star (2013). *Air Source Heat Pump Savings Calculator*. https://www.energystar.gov/buildings /sites/default/uploads/files/ASHP\_Sav\_Calc.xls. Last accessed 5/18/2017.

- Feller, I. (2017) Assessing the societal impact of publicly funded research. *The Journal of Technology Transfer*, 1-19.
- Frank, K. A., Maroulis, S. J., Duong, M. Q., and Kelcey, B. M. (2013). What would it take to change an inference? Using Rubin's causal model to interpret the robustness of causal inferences. *Educational Evaluation and Policy Analysis*, 35(4), 437-460.
- General Accounting Office (GAO). (1996). DOE's Success Stories Report. Washington, D.C. GAO/RCED-96-120R. Accessed 6/29/2017 at http://www.gao.gov/assets/90/85442.pdf.
- Greening, L. A., Greene, D. L., and Difiglio, C. (2000). Energy efficiency and consumption—the rebound effect—a survey. *Energy policy*, 28(6), 389-401.
- Griliches, Z. (1958). Research costs and social returns: Hybrid corn and related innovations. *Journal of Political Economy*, 66, 419–431.
- Haneke, B. H. (2001). A national methodology and emission inventory for residential fuel combustion. https://www3.epa.gov/ttnchie1/conference/ei12/area/h aneke.pdf. Last accessed 5/21/2017.
- Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., Turner, M. C., ... Tempalski, B. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. *Research Report of the Health Effects Institute*, 140, 5–114; discussion 115-136.
- Laden, F., Schwartz, J., Speizer, F. E., and Dockery, D. W. (2006). Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities Study. American Journal of Respiratory and Critical Care Medicine, 173(6), 667–672.
- Link, A. N., and Scherer, F. M. (Eds.). (2005). *Essays in Honor* of Edwin Mansfield: The Economics of R&D, Innovation, and Technological Change. Springer Science & Business Media.

- Link, A. N. & Scott, J. T. (2010). *Public goods, public gains: Calculating the social benefits of public R&D*. New York: Oxford University Press.
- Mansfield, E., Rapoport, J., Romeo, A., Wagner, S., & Beardsley, G. (1977). Social and private rates of return from industrial innovations. *Quarterly Journal of Economics*, 91, 221–240.
- Mar, T. F., Larson, T. V., Stier, R. A., Claiborn, C., and Koenig, J. Q. (2004). An analysis of the association between respiratory symptoms in subjects with asthma and daily air pollution in Spokane, Washington. *Inhalation Toxicology*, 16(13), 809–815.
- McDonald, R. J., Batey, J. E., Allen, T. W., & Hoppe, R. J. (1979). Direct Efficiency Measurement and Analysis of Residential Oil-Fired Boiler Systems (No. BNL 51171). Brookhaven National Lab., Upton, NY (United States).
- McDonald, R. J., & Krajewski, R. F. (1980). *Flame-retention head burner efficiency test results and analysis. Spaceheating-equipment test program* (No. BNL-51321). Brookhaven National Lab., Upton, NY (United States).
- McMahon, J. E., Chan, P., and Chaitkin, S. (2001). Impacts of US appliance standards to date. In *Energy efficiency in household appliances and lighting* (pp. 547-559). Springer, Berlin, Heidelberg.
- Meyers, S., McMahon, J. E., McNeil, M., and Liu, X. (2003). Impacts of US federal energy efficiency standards for residential appliances. *Energy*, 28(8), 755-767.
- Moolgavkar, S. H. (2000). Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. *Inhalation Toxicology*, 12(Supplement 4), 75–90.
- Moolgavkar, S. H. (2003). Air pollution and daily deaths and hospital admissions in Los Angeles and Cook Counties. In *Revised analyses of time-series studies of air pollution and health* (pp. 183–198). Boston, MA: Health Effects Institute.
- National Research Council. (2001). Energy Research at DOE: Was It Worth It? Energy Efficiency and Fossil Energy Research 1978 to 2000. National Academies Press.

Nemtzow (2001). Testimony of David M. Nemtzow, President of the Alliance to Save Energy, before the Senate Environment and Public Works Committee, Subcommittee on Clean Air, Wetlands, Private Property, and Nuclear Safety, Hearing on Energy and the Environment, March 21, 2001. Accessed 6/29/2017 at https://www.epw.senate.gov/107th/nem\_0321.htm.

- Newell, R. G., Jaffe, A. B., and Stavins, R. N. (1999). The induced innovation hypothesis and energy-saving technological change. *The Quarterly Journal of Economics*, 114(3), 941-975.
- Ostro, B. D. (1987). Air pollution and morbidity revisited: A specification test. *Journal of Environmental Economics and Management*, 14, 87–98.
- Ostro, B. D., and Rothschild, S. (1989). Air pollution and acute respiratory morbidity—An observational study of multiple pollutants. *Environmental Research*, 50(2), 238–247.
- Ostro, B., Lipsett, M., Mann, J., Braxton-Owens, H., and White, M. (2001). Air pollution and exacerbation of asthma in African-American children in Los Angeles. *Epidemiology*, 12(2), 200–208.
- Peters, A., Dockery, D. W., Muller, J. E., and Mittleman, M. A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. *Circulation*, 103(23), 2810–2815.
- Petroleum Marketers Association of Ammerica (PMAA) (1988). Statement of C. Richard Cahoon, Vice President for Policy, before the Subcommittee on Energy Research and Development, Committee on Science, Space, and Technology, U.S. House of Representatives, March 10, 1988, Washington, D.C. Accessed 6/29/2017 at http://digitalcollections.library.cmu.edu/awweb/awarchi ve?type=file&item=440315.
- Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *JAMA*, 287(9), 1132–1141.
- Popp, D., Newell, R. G., and Jaffe, A. B. (2010). Energy, the environment, and technological change. In Bronwyn H. Hall and Nathan Rosenberg: *Handbook of the Economics* of Innovation, Volume 2, , 873-937.

- Porter, M. E., and Van der Linde, C. (1995). Toward a new conception of the environment-competitiveness relationship. *The journal of economic perspectives*, 9(4), 97-118.
- Ruegg, R., O'Connor, A.C., & Loomis, R.J., (2014). *Evaluating Realized Impacts of DOE/EERE R&D Programs: Standard Impact Evaluation Method*.
- Scherer, F. M., and Harhoff, D. (2000). Technology policy for a world of skew-distributed outcomes. *Research policy*, 29(4), 559-566.
- Shedlick, M., Link, A., and Scott, J. (1998). *Economic* assessment of the NIST alternative refrigerants research program. NIST Planning Report, 98-1. Accessed at https://www.nist.gov/sites/default/files/documents/201 7/05/09/report98-1.pdf.
- Sorrell, S. (2007). The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency. Sussex Energy Group for the Technology and Policy Assessment function of the UK Energy Research Centre.
- Woodruff, T. J., Grillo, J., and Schoendorf, K. C. (1997). The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. *Environmental Health Perspectives*, 105(6), 608–612.

# **Appendix A: Interview Guides**

## ADVANCED REFRIGERATION INTERVIEW GUIDE

#### Interview Guide: DOE/EERE Building Technologies Office Economic Impact Study Advanced Refrigeration Research

The U.S. Department of Energy has contracted with RTI International to study the impact of Building Technologies Office research and development (R&D) investments and ancillary activities. This survey looks specifically at the impact of the Advanced Refrigeration R&D activities supported by DOE.

Your perspective will help guide DOE's planning and investment process. Participation in this study is confidential; only aggregated information will be included in any deliverables or communications. Your name and your company's/organization's name will not be disclosed.

Our research products will be an economic analysis, final report, and presentation materials. All deliverables will be publicly available in late summer 2017, and these will be shared with you as soon as they are released.

Throughout the survey, we will be seeking both qualitative and quantitative information. Quantitative information may be rough approximations based on your experience, but this data is important for us to aggregate the responses of all the survey participants in a meaningful way.

If you have questions, please contact:

- Troy Scott, RTI Project Manager, 503-428-5680 or tjscott@rti.org
- Zack Oliver, Data Collection Lead, 919-541-8911 or zoliver@rti.org
- Antonio Bouza, DOE Project Officer, 202-586-4563 or Antonio.Bouza@ee.doe.gov
- John Mayernik, Evaluation Advisor, 202-448-2209 or John.Mayernik@nrel.gov

#### **Paperwork Reduction Act Burden Disclosure Statement**

This data is being collected to evaluate DOE Office of Energy Efficiency and Renewable Energy (EERE) Building Technologies Office R&D investments. The data you supply will be used for estimating the economic benefits and costs of R&D investments. Public reporting burden for this collection of information is estimated to average 60 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Office of the Chief Information Officer, Records & Privacy Management Division, IM-23, Paperwork Reduction Project 1910-5186, U.S. Department of Energy, 1000 Independence Ave SW, Washington, DC, 20585-1290; and to the Office of Management and Budget (OMB), OIRA, Paperwork Reduction Project 1910-5186, Washington, DC 20503.

Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with a collection of information subject to the requirements of the Paperwork Reduction Act unless that collection of information displays a currently valid OMB control number.

Submission of this data is voluntary.

#### **Background on Advanced Refrigeration Technology**

Figure 1 below lists DOE research activities along with other activities that were happening during the same time frame. Figure 2 displays these activities on a visual timeline. We will ask about the impact of DOE funded activities on private sector R&D costs, product costs, and performance, among other things. Figure 3a and Figure 3b show sales-weighted average efficiency of residential refrigerators along with the timing of state and federal efficiency standards.

#### Figure 1: Factors Influencing Refrigeration Efficiency in the U.S.

- Department of Energy (DOE)
  - 1981: Development of a more efficient compressor by Columbus Products engineers, under subcontract to ORNL. Design changes to the motor, suction muffler, and compressor valve assembly achieved a 44% reduction in energy use.
  - 1993-1998: Under a CRADA with the Appliance Industry-Government CFC Replacement Consortium (a subsidiary of Association of Home Appliance Manufacturers [AHAM]), engineers from ORNL and industry explored new technical options to improve refrigerator energy efficiency using non-CFC refrigerants.
  - 1982: Multiple unequal parallel compressors, now the industry standard, can be traced to R&D at ORNL that demonstrated potential energy savings of 15% to 26%.
  - 1984: Collaboration between ORNL and Foster-Miller Associates, H. E. Butt Grocery, and Friedrich Commercial Refrigeration led to the commercialization of an advanced supermarket refrigeration system, which by the late 1990s was used by about 80% of supermarkets.
  - 1991: Under a CRADA with Lockheed Martin Energy Research and the Appliance Research Consortium, DOE funded the development and testing of a 1 kWh/day refrigerator-freezer, which represented a 50% reduction compared with the 1993 NAECA standard for 20 ft3 units. The final prototype achieved an energy consumption level of 0.93 kWh/day.
  - 2001: The development, with National Energy Technology Laboratory (NETL), A.D. Little, and Delfield, of a commercial refrigerator.
- State and Federal Efficiency standards
  - CA state standards (1978, 1980)
  - Federal efficiency standards (1990, 1993, 2001)
- Environmental standards
  - 1996: CFC phase out schedule established by the Montreal Protocol
- Utility led-initiatives
  - o Incentives/rebates for customers to purchase more efficient models
  - 1993: The Super-Efficient Refrigerator Program (SERP) which awarded \$30 million to the refrigerator manufacturer that developed and commercialized a refrigerator that exceeded 1993 federal efficiency standards by at least 25%
- Industry
  - Mid-1970s: Manufacturers switched from manually installed fiberglass insulation to robotically blown polyurethane foam installation which improved product quality and was more energy efficiency.
- Other
  - o 1979: EnergyGuide appliance labeling rules established by the FTC
- External factors such as the oil price shocks of 1973 and 1979 and real electricity prices peaking in 1982-83

#### OMB Control No. 1910-5186 Exp. Date 01/31/2020



#### Figure 2: Timing of Policies, Ongoing Events, and Standards

#### Figure 3 – Average Energy Use per Unit per Year



Figure 3a – 1947 to 2001

Source: National Academy of Sciences. 2001. "Energy Research at DOE: Was It Worth It? Energy Efficiency and Fossil Energy Research 1978 to 2000."

#### Figure 3b – 1972 to 2014



Source: Appliance Standards Awareness Project, 2015

#### **SECTION I. Respondent Background**

- 1. Which of the following best describes your background in relation to advanced refrigeration research & development? *Check all that apply.* 
  - □ Worked for a manufacturer that conducted research/testing/other technical efforts
    - \_\_\_ Refrigerator manufacturer
    - Other:
  - □ Led public-private collaboration on technical efforts
  - □ Participated in public-private collaboration on technical efforts
  - □ Led industry-only technical efforts for a manufacturer
  - □ Participated in industry-only technical efforts
  - Employed in a federal agency or research lab
  - □ Employed in a state energy office
  - $\Box$  Worked for a trade association
  - □ Worked for a university or research institute
  - □ Worked for an electric utility
  - Other: \_\_\_\_\_

Please give a brief description of your background:

2. Were you involved in or familiar with any of the following programs/activities related to advanced refrigeration? *Check all that apply.* 

|                                                                                                                                                                                                      | Directly<br>Involved | Very<br>Familiar | Somewhat<br>Familiar |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------------|
| <ul> <li>Development of a compressor by Columbus<br/>Products, under subcontract to ORNL</li> </ul>                                                                                                  |                      |                  |                      |
| <ul> <li>R&amp;D at ORNL on multiple unequal parallel<br/>compressors</li> </ul>                                                                                                                     |                      |                  |                      |
| <ul> <li>Collaboration on an advanced supermarket<br/>refrigeration system between ORNL and Foster-<br/>Miller Associates, H. E. Butt Grocery, and Friedrich<br/>Commercial Refrigeration</li> </ul> |                      |                  |                      |
| <ul> <li>Development of a commercial refrigerator with<br/>National Energy Technology Laboratory, A.D. Little,<br/>and Delfield</li> </ul>                                                           |                      |                  |                      |
| <ul> <li>CRADA with the Appliance Industry-Government<br/>CFC Replacement Consortium</li> </ul>                                                                                                      |                      |                  |                      |
| • Other                                                                                                                                                                                              |                      |                  |                      |
|                                                                                                                                                                                                      |                      |                  |                      |

Please give a brief description:

- 3. Have you ever received DOE funding for your work or participated in collaborative R&D activities with a DOE-funded laboratory such as Oak Ridge National Laboratory or the National Energy Technology Laboratory?
  - 🗆 No

□ Yes. Please give a brief description:

Have you been involved in commercial R&D related to refrigeration in the past 15 years?
 □ No (please skip down to Section III)
 □ Yes

SECTION II. This next set of questions pertains to DOE's involvement in and impact on the research and development activities related to advanced refrigeration technology that you were involved in. We will be asking you to quantify these impacts to the best of your ability.

#### Ask these questions if the respondent answered Yes to Question 4.

We are trying to isolate the impact of DOE R&D investments and activities as much as possible, and this poses some challenges. For example, efficiency standards affect companies' incentives to perform R&D and commercialize more efficient refrigeration systems, and the DOE R&D activities we are focused on have indirect effects on the evolution of standards. Similarly, EnergyGuide labeling, ENERGY STAR qualification and rebates rely on test methods linked to DOE R&D activities.

Therefore, if we were to hold fixed the exact timeline of these factors (for instance, the timing of updates to standards) we would be assuming away a part of the impact we are trying to estimate. What we would like to try to do instead is to think about holding constant the environment—the institutional frameworks—in which standards, labeling, and subsidies evolve, and consider what would happen without the DOE R&D-related activities and investments described in Question 5:

5. In what ways has your R&D work on refrigeration been influenced by DOE?

Provide a number from 0 to 3 (0 = DOE did not contribute in this way; 1 = minimal DOE contribution; 2 = moderate DOE contribution; 3 = major DOE contribution).

- \_\_\_\_\_Through DOE's contributions to the knowledge base on which R&D work drew (e.g., formal science literature, conference presentations and discussions, patents, knowledge and training of yourself and your colleagues)
- \_\_\_\_\_Through access to scientific and engineering data produced by DOE laboratories
- \_\_\_\_\_Through the licensing/transfer of technology that DOE helped to develop
- \_\_\_\_\_Through consultations with DOE scientists and engineers
- \_\_\_\_\_Through access to DOE laboratory facilities
- \_\_\_\_\_Through equipment/component testing performed at DOE laboratories
- \_\_\_\_\_Through direct R&D funding from DOE
- \_\_\_\_Other: \_\_\_\_

DOE had no influence (please skip down to question 8)

Please give a brief description of DOE influences:

- 6. Would your R&D work on refrigeration have been undertaken without the DOE factors identified above? (please select the most likely scenario)
  - □ The work would not have been undertaken
  - □ At least some of the work would still have been undertaken, but the effort levels, costs, timelines, and/or outcomes would have been different
  - □ The work would still have been undertaken, without significant difference in effort levels, costs, timelines, or outcomes (please skip down to question 8)

Please give a brief description of how effort levels, costs, timelines, and/or outcomes would have been different (or why the work would not have been undertaken). (Note: If the work would not have been undertaken at all, please skip down to question 8):

- 7. Without the DOE factors identified above:
  - □ The level of effort, in terms of research personnel years, would have been

\_\_\_\_\_ research personnel years [ MORE LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

□ The cost of the work would have been

\$\_\_\_\_\_\_ x1000 \$ [□ MORE □ LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

□ To reach the same outcomes (in terms of energy efficiency and other performance attributes) would have taken

\_\_\_\_\_ calendar years [□ MORE □ LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

If any of the DOE factors identified in question 5 were especially important for one or more of these impacts, please give a short explanation:

- 8. What were the technical outcomes of your R&D work? Where possible, please provide the baseline parameter and improved parameter (e.g., pre and post energy efficiency, or pre and post equipment cost).
  - □ Improvements in energy efficiency

Please describe:

□ Improvements in other performance attributes

Please describe:

Improvements in equipment cost for which these levels of energy efficiency or other performance attributes could be achieved

Please describe and include cost savings:

9. If DOE factors identified above had any impact on these outcomes, what was the DOE effect in terms of the proportion of the improvements you view were attributable to DOE activities?

| Improvements in<br>Energy Efficiency | Improvements in<br>performance attributes | Improvements in<br>equipment costs |
|--------------------------------------|-------------------------------------------|------------------------------------|
| Less than 10%                        | Less than 10%                             | Less than 10%                      |
| Between 10-24%                       | Between 10-24%                            | Between 10-24%                     |
| Between 25-49%                       | Between 25-49%                            | Between 25-49%                     |
| Between 50-75%                       | Between 50-75%                            | Between 50-75%                     |
| Greater than 75%                     | Greater than 75%                          | Greater than 75%                   |

Please give a short explanation of your reasoning. Please note if any of the DOE factors checked above were especially important for one or more of these impacts:

- 10. Was a new product commercialized as a result of this R&D work?
  - □ No (please skip down to Section III)
  - 🗆 Yes
- 11. Without the DOE factors identified in question 5, taking into account the impacts on energy efficiency, other performance attributes, and equipment cost described above:
  - a. How likely is it that your company would have commercialized the product in the same time frame (please select one)?
    - No chance the product would have been commercialized.
    - 0% to 25% chance
    - 25% to 50% chance
    - 50% to 75% chance
    - 75% to 100% chance

The product would have been commercialized in the same time frame without the DOE factors identified above.

b. If your company had commercialized the product without the DOE factors identified above, how would its sales volume today compare with that of the product actually commercialized?

No difference in sales (i.e., any difference in price, energy efficiency, and performance attributes would have negligible effect on sales)

Sales would have been lower by roughly \_\_\_\_\_% (a range is fine).

Sales would have been higher by roughly\_\_\_\_\_% (a range is fine).

Please give a short explanation of your reasoning:

#### (Respondents answering Section II questions skip to Section IV)

### SECTION III. This next set of questions pertains to your opinion of DOE's influence on the market and industry trends for refrigeration systems in general.

We are trying to isolate the impact of DOE R&D investments and activities as much as possible, and this poses some challenges. For example, efficiency standards affect companies' incentives to perform R&D and commercialize more efficient refrigeration systems, and the DOE R&D activities we are focused on have indirect effects on the evolution of standards. Similarly, EnergyGuide labeling, ENERGY STAR qualification and rebates rely on test methods linked to DOE R&D activities.

Therefore, if we were to hold fixed the exact timeline of these factors (for instance, the timing of updates to standards) we would be assuming away a part of the impact we are trying to estimate. What we would like to try to do instead is to think about holding constant the environment—the institutional frameworks—in which standards, labeling, and subsidies evolve, and consider what would happen without the DOE R&D-related activities and investments described in Question 12:

12. <u>How did DOE impact</u> the commercial R&D (performed in the last 15 years) necessary for companies to bring more energy-efficient refrigeration systems to market?

Provide a number from 0 to 3 (0 = DOE did not contribute in this way; 1 = minimal DOE contribution; 2 = moderate DOE contribution; 3 = major DOE contribution).

- \_\_\_\_\_Through DOE's contributions to the knowledge base on which R&D work drew (e.g., formal science literature, conference presentations and discussions, patents, knowledge and training of yourself and your colleagues)
- \_\_\_\_\_Through access to scientific and engineering data produced by DOE laboratories
- \_\_\_\_\_Through the licensing/transfer of technology that DOE helped to develop
- \_\_\_\_\_Through consultations with DOE scientists and engineers
- \_\_\_\_\_Through access to DOE laboratory facilities
- \_\_\_\_\_Through equipment/component testing performed at DOE laboratories
- \_\_\_\_\_Through direct R&D funding from DOE
- \_\_\_\_\_Other: \_\_\_\_\_
- \_\_\_\_\_DOE had no influence (please skip down to question 15)

Please give a brief description of DOE influences:

- 13. Without the DOE impacts discussed in Question 12, would the commercial R&D necessary to bring more energy-efficient refrigeration systems to market still have been undertaken within the same time frame?
  - □ The commercial R&D would not have been undertaken.
  - □ At least some of the commercial R&D would still have been undertaken, but the effort levels, costs, timelines, and/or outcomes would have been different.
  - □ The commercial R&D would still have been undertaken, without significant difference in effort levels, costs, timelines, or outcomes.

Please give a brief explanation:

14. Given your answers to Question 13, how would the market for refrigeration systems look different than it does today without the DOE impacts discussed above?

| Average energy use would be:   | 🗆 higher   |     |
|--------------------------------|------------|-----|
|                                | 🗆 lower    |     |
|                                | by roughly | _%. |
| Average price would be:        | 🗆 higher   |     |
|                                | 🗆 lower    |     |
|                                | by roughly | _%. |
| Average sales volume would be: | 🗆 higher   |     |
|                                | 🗆 lower    |     |
|                                | by roughly | _%. |

□ There would be no difference (the market would be exactly as it is today).

Please give a brief explanation:

#### Section IV. Additional Comments

15. Are there any additional comments you would like to share?

| Respondent Contact Information (optional) |
|-------------------------------------------|
| Name:                                     |
| Title:                                    |
| Division:                                 |
| Company/Organization:                     |
| Location, if not USA:                     |

Would you be willing to be contacted for a brief follow-up discussion of your responses to this survey?

| □ Yes, by phone |  |
|-----------------|--|
| 🗆 Yes, by email |  |
| _ • •           |  |

🗆 No

THANK YOU for contributing your time and insight to the study.

#### HEAT PUMP DESIGN MODEL RESEARCH INTERVIEW GUIDE

#### Interview Guide: DOE/EERE Building Technologies Office Economic Impact Study Alternative Refrigerants and Heat Pump Design Model Research

The U.S. Department of Energy (DOE) has contracted with RTI International to study the impact of Building Technologies Office (BTO) research and development investments and ancillary activities. This survey looks at the impact of U.S. government R&D activities, and specifically at the impact of DOE's R&D efforts, on the energy performance of air conditioners and heat pumps. Two major technological contributions enabling the improvements in energy performance were the Heat Pump Design Model (HPDM) developed and maintained by Oak Ridge National Laboratory (ORNL) and the DOE and other government agencies' (EPA, NIST) research on alternative refrigerants that supported industry in successfully phasing out chlorofluorocarbons (CFCs) in accordance with the Montreal Protocol. Your perspective will help guide DOE's planning and investment process. Participation in this study is confidential; only aggregated information will be included in any deliverables or communications. Your name and your company's/organization's name will not be disclosed.

Our research products will be an economic analysis, final report, and presentation materials. All deliverables will be publicly available in late summer 2017, and these will be shared with you as soon as they are released.

If you have questions, please contact:

- Michael Gallaher, RTI Project Director, 919-541-5935 or mpg@rti.org
- Troy Scott, RTI Project Manager, 503-428-5680 or tjscott@rti.org
- Antonio Bouza, DOE Project Officer, 202-586-4563 or Antonio.Bouza@ee.doe.gov
- John Mayernik, Evaluation Advisor, 202-448-2209 or John.Mayernik@nrel.gov

#### Paperwork Reduction Act Burden Disclosure Statement

This data is being collected to evaluate DOE Office of Energy Efficiency and Renewable Energy (EERE) Building Technologies Office R&D investments. The data you supply will be used for estimating the economic benefits and costs of R&D investments.

Public reporting burden for this collection of information is estimated to average 60 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Office of the Chief Information Officer, Records & Privacy Management Division, IM-23, Paperwork Reduction Project 1910-5186, U.S. Department of Energy, 1000 Independence Ave SW, Washington, DC, 20585-1290; and to the Office of Management and Budget (OMB), OIRA, Paperwork Reduction Project 1910-5186, Washington, DC 20503.

Notwithstanding any other provision of the law, no person is required to respond to, nor shall any person be subject to a penalty for failure to comply with a collection of information subject to the requirements of the Paperwork Reduction Act unless that collection of information displays a currently valid OMB control number. Submission of this data is voluntary.

#### Background on Alternative Refrigerants and Heat Pump Design Model

Over the past 15 years the average efficiency of air conditioners and heat pumps has almost doubled. Federal Minimum Energy Performance Standards (MEPS) rose from about 9.5 SEER in 1990 to over 15 SEER today. These trends, as depicted in Figure 1, were influenced by a wide range of public and private sector investments and activities which included DOE and other major government research activities.

Since 1981, DOE has conducted and funded technical research that played a key role in the industrywide phaseout of CFCs—an ozone-depleting greenhouse gas commonly used in refrigerants—from refrigerators, air conditioners, and other applications. Major DOE activities include the following:

- Mixed Refrigerants Research (1981–1992)
- Generic Research on New Refrigerants (1986–1992)
- Alternative Fluorocarbons Environmental Acceptability Study (AFEAS) Collaborative R&D Agreement (1989–1997)
- Materials Compatibility and Lubricants Research (MCLR) Program (1991–1999)

DOE also developed the Heat Pump Design Model (HPDM) which been used by ORNL and industry (often in collaboration) to develop next-generation products. The HPDM also played a part in transitioning to non-CFC refrigerants, modeling system design modifications that were needed to accommodate and optimize for the new fluids.

### Figure 1 shows the trend in U.S. shipment-weighted average SEER of air conditioners and heat pumps since 1990.



Figure 1. U.S. shipment-weighted average SEER.

Research activities that were happening during the development of the HPDM and Alternative Refrigerants. Some major milestones include:

- 1982-1991: Mixed Refrigerants Research DOE investigated the heat transfer characteristics and the system performance, design, and operability of zeotropic refrigerant mixture.
- 1986-1992: ORNL conducts generic research on CFC alternative refrigerants resulted in a public domain performance data from an experimental vapor compression cycle system. DOE also funded the National Institute for Standards and Technology (NIST) [1982-1986] to evaluate the availability of thermophysical properties of alternative refrigerants and develop consensus property formulations internationally.
- 1988: ORNL updates the HPDM to model variable-speed designs.
- 1989-1997: DOE contributes major role to the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS) CRADA established by 17 of the world's Chemical companies. DOE tested alternatives to CFC refrigerants for their environmental, health, and safety characteristics. DOE/ORNL developed the Total Equivalent Warming Impact (TEWI) metric.
- 1991-1999: DOE funds and participates in the Materials Compatibility and Lubricants Research (MCLR) Program, researching refrigerant and lubricant properties and related system design issues.
- 1992: DOE establishes Minimum Energy Performance Standards (MEPS) of 10 SEER for both air conditioners and heat pumps.
- Driven by the Montreal Protocol, DOE, NIST, EPA and industry conduct R&D to develop alternative (non CFC) refrigerants.
- ASHRAE, AHRI and other research organizations contribution to the knowledge base.
- 1995: ORNL updates the HPDM to model non-chlorinated refrigerant mixtures.
- 2006: DOE establishes Minimum Energy Performance Standards (MEPS) of 13 SEER for both air conditioners and heat pumps.
- Financial incentives were provided by electric utilities for installing energy-efficient equipment.

Section I. The first set of questions pertains to your background and involvement in the development or use of the heat pump design model, efficiency improvements in vapor-compression equipment, and/or development of CFC alternative refrigerants.

#### Respondent Background

- 1. Please give a brief description of your background in relation to the HPDM, efficiency improvements in vapor-compression equipment and/or alternative refrigerants research:
- If your background involves research/development/testing/other technical/engineering efforts, on which of the following types of vapor compression equipment have you worked?
   Heat pump equipment
  - □ Worked for a manufacturer that conducted research/testing/other technical efforts
    - \_\_\_ Refrigerant manufacturer
    - \_\_\_ HVAC equipment manufacturer
    - \_\_ Other: \_\_
  - □ Led public-private collaboration on technical efforts
  - □ Participated in public-private collaboration on technical efforts
  - □ Led industry-only technical efforts
  - □ Participated in industry-only technical efforts
  - □ Employed in a federal agency or research lab
  - □ Employed in a state energy office
  - □ Worked for a trade association
  - □ Worked for a university or research institute
  - □ Other: \_\_\_\_\_
- 3. Were you involved in or familiar with any of the DOE programs/activities related to alternative refrigerants? Check all that apply.

|                                                          | Directly<br>Involved | Very<br>Familiar | Somewhat<br>Familiar |
|----------------------------------------------------------|----------------------|------------------|----------------------|
| <ul> <li>Mixed Refrigerants Research</li> </ul>          |                      |                  |                      |
| <ul> <li>Generic Research on New Refrigerants</li> </ul> |                      |                  |                      |
| AFEAS CRADA                                              |                      |                  |                      |
| <ul> <li>MCLR Program</li> </ul>                         |                      |                  |                      |
| <ul> <li>Other</li> </ul>                                |                      |                  |                      |

Please give a brief description:

4. Have you ever received DOE funding for your work or participated in collaborative R&D activities with a DOE-funded laboratory such as Oak Ridge National Laboratory or the National Energy Technology Laboratory?

 $\Box$  No  $\Box$  Yes. Please give a brief description:

- 5. In the past 15 years, have you been involved in commercial R&D related to refrigerants, air conditioning, or heat pumps?
  - No (please skip down to Section III)Yes

# SECTION II. This next set of questions pertains to DOE's involvement in and impact on the R&D activities that you were involved in. We will be asking you to quantify these impacts to the best of your ability. *Ask these questions if the respondent answered Yes to Question 5.*

We are trying to isolate the impact of DOE R&D investments and activities as much as possible, and this poses some challenges. For example, efficiency standards and regulated phaseout of certain refrigerants affect companies' incentives to perform R&D and commercialize new products, and the DOE R&D activities we are focused on have indirect effects on the evolution of standards and regulations. Similarly, EnergyGuide labeling, ENERGY STAR qualification and rebates rely on test methods linked to DOE R&D activities.

Therefore, if we were to hold fixed the exact timeline of these factors (for instance, the timing of updates to standards) we would be assuming away a part of the impact we are trying to estimate. What we would like to try to do instead is to think about holding constant the environment—the institutional frameworks—in which standards, labeling, and subsidies evolve, and consider what would happen without the DOE R&D-related activities and investments described in Question 6:

6. In what ways has your R&D work been influenced by DOE?

Provide a number from 0 to 3 (0 = DOE did not contribute in this way; 1 = minimal DOE contribution; 2 = moderate DOE contribution; 3 = major DOE contribution).

- \_\_\_\_\_Through DOE's contributions to the knowledge base on which R&D work drew (e.g., formal science literature, conference presentations and discussions, patents, knowledge and training of yourself and your colleagues)
- \_\_\_\_\_Through access to scientific and engineering data produced by DOE laboratories
- \_\_\_\_\_Through the licensing/transfer of technology that DOE helped to develop
- \_\_\_\_\_Through consultations with DOE scientists and engineers
- \_\_\_\_\_Through access to DOE laboratory facilities
- \_\_\_\_\_Through equipment/component testing performed at DOE laboratories
- \_\_\_\_\_Through direct R&D funding from DOE
- \_\_\_\_Other: \_\_\_\_\_

DOE had no influence (please skip down to question 8)

Please give a brief description of DOE influences:

- 7. Would your R&D work have been undertaken without the DOE factors identified above? (please select the most likely scenario)
  - □ The work would not have been undertaken
  - □ At least some of the work would still have been undertaken, but the effort levels, costs, timelines, and/or outcomes would have been different
  - □ The work would still have been undertaken, without significant difference in effort levels, costs, timelines, or outcomes (please skip down to question 9)

Please give a brief description of how effort levels, costs, timelines, and/or outcomes would have been different (or why the work would not have been undertaken). (Note: If the work would not have been undertaken at all, please skip down to question 8):

- 8. Without the DOE factors identified above:
  - □ The level of effort, in terms of research personnel years, would have been

\_\_\_\_\_ research personnel years [ MORE LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

□ The cost of the work would have been

\$\_\_\_\_\_\_ x1000 \$ [□ MORE □ LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

□ To reach the same outcomes (in terms of energy efficiency and other performance attributes) would have taken

\_\_\_\_\_ calendar years [☐ MORE ☐ LESS] (a range is fine).

OR \_\_\_\_\_\_ % [ MORE LESS] (a range is fine).

If any of the DOE factors identified in question 6 were especially important for one or more of these impacts, please give a short explanation:

- What were the technical outcomes of your R&D work? Where possible, please provide the baseline parameter and improved parameter (e.g., pre and post energy efficiency, or pre and post equipment cost).
  - □ Improvements in energy efficiency

Please describe:

□ Improvements in other performance attributes

Please describe:

□ Improvements in equipment cost for which these levels of energy efficiency or other performance attributes could be achieved

Please describe and include cost savings:

10. If DOE factors identified above had any impact on these outcomes, what was the DOE effect in terms of the proportion of the improvements you view were attributable to DOE activities?



Please give a short explanation of your reasoning. Please note if any of the DOE factors checked above were especially important for one or more of these impacts:

- 11. Was a new product commercialized as a result of this R&D work?
  - □ No (please skip down to Section III)
  - 🗆 Yes
- 12. Without the DOE factors identified in question 6, taking into account the impacts on energy efficiency, other performance attributes, and equipment cost described above:
  - c. How likely is it that your company would have commercialized the product in the same time frame (please select one)?

No chance the product would have been commercialized.

0% to 25% chance

25% to 50% chance

50% to 75% chance

\_\_\_\_ 75% to 100% chance

The product would have been commercialized in the same time frame without the DOE factors identified above.

d. If your company had commercialized the product without the DOE factors identified above, how would its sales volume today compare with that of the product actually commercialized?

No difference in sales (i.e., any difference in price, energy efficiency, and performance attributes would have negligible effect on sales)

Sales would have been lower by roughly \_\_\_\_\_% (a range is fine).

Sales would have been higher by roughly\_\_\_\_\_% (a range is fine).

Please give a short explanation of your reasoning:

#### (Respondents answering Section II questions skip to Section IV)

### SECTION III. This next set of questions pertains to your opinion of DOE's influence on the market and industry trends for refrigeration systems in general.

We are trying to isolate the impact of DOE R&D investments and activities as much as possible, and this poses some challenges. For example, efficiency standards and regulated phaseout of certain refrigerants affect companies' incentives to perform R&D and commercialize new products, and the DOE R&D activities we are focused on have indirect effects on the evolution of standards and regulations. Similarly, EnergyGuide labeling, ENERGY STAR qualification and rebates rely on test methods linked to DOE R&D activities.

Therefore, if we were to hold fixed the exact timeline of these factors (for instance, the timing of updates to standards) we would be assuming away a part of the impact we are trying to estimate. What we would like to try to do instead is to think about holding constant the environment—the institutional frameworks—in which standards, labeling, and subsidies evolve, and consider what would happen without the DOE R&D-related activities and investments described in Question 13:

13. <u>How did DOE impact</u> the commercial R&D (performed in the last 15 years) necessary for companies to bring new refrigerants and more energy-efficient air conditioning and heat pump systems to market?

Provide a number from 0 to 3 (0 = DOE did not contribute in this way; 1 = minimal DOE contribution; 2 = moderate DOE contribution; 3 = major DOE contribution).

- \_\_\_\_\_Through DOE's contributions to the knowledge base on which R&D work drew (e.g., formal science literature, conference presentations and discussions, patents, knowledge and training of yourself and your colleagues)
- \_\_\_\_\_Through access to scientific and engineering data produced by DOE laboratories
- \_\_\_\_\_Through the licensing/transfer of technology that DOE helped to develop
- \_\_\_\_\_Through consultations with DOE scientists and engineers
- \_\_\_\_\_Through access to DOE laboratory facilities
- \_\_\_\_\_Through equipment/component testing performed at DOE laboratories
- \_\_\_\_\_Through direct R&D funding from DOE
- \_\_\_\_\_Other: \_\_\_\_\_\_
- \_\_\_\_\_DOE had no influence (please skip down to question 16)

Please give a brief description of DOE influences:
- 14. Without the DOE impacts discussed in Question 13, would the commercial R&D necessary to bring new refrigerants and more energy-efficient air conditioning and heat pump systems to market still have been undertaken within the same time frame?
  - □ The commercial R&D would not have been undertaken.
  - □ At least some of the commercial R&D would still have been undertaken, but the effort levels, costs, timelines, and/or outcomes would have been different.
  - □ The commercial R&D would still have been undertaken, without significant difference in effort levels, costs, timelines, or outcomes.

Please give a brief explanation:

15. Given your answers to Question 13, how would the market for refrigerants, air conditioning systems, and heat pumps look different than it does today without the DOE impacts discussed above?

| Average energy use would be:     | 🗆 higher   |    |
|----------------------------------|------------|----|
|                                  | □ lower    |    |
|                                  | by roughly | %. |
| □ Average price would be:        | 🗆 higher   |    |
|                                  | 🗆 lower    |    |
|                                  | by roughly | %. |
| □ Average sales volume would be: | 🗆 higher   |    |
|                                  | □ lower    |    |
|                                  | by roughly | %. |

□ There would be no difference (the market would be exactly as it is today).

Please give a brief explanation:

#### Section IV. Additional Comments

16. Are there any additional comments you would like to share?

#### **Respondent Contact Information (optional)**

| •                     | · · · / |      |      |
|-----------------------|---------|------|------|
| Name:                 |         |      |      |
| Title:                |         | <br> | <br> |
| Division:             |         | <br> | <br> |
| Company/Organization: |         |      | <br> |
| Location, if not USA: |         | <br> | <br> |
|                       |         |      |      |

Would you be willing to be contacted for a brief follow-up discussion of your responses to this survey?

| □ Yes, by phone |  |
|-----------------|--|
|-----------------|--|

🗆 No

THANK YOU for contributing your time and insight to the study.

## Appendix B: Design of Knowledge Benefit Assessment

### **B-1 IDENTIFYING DOE PATENTS FOR THE STUDY**

Using a multi-step process (described below), we identified a final list of 110 HVAC US patents funded by BTO; 49 Appliances US patents funded by DOE; and 25 Water Heating US patents funded by DOE. We then searched for equivalents of each of these patents in the EPO and WIPO systems. An equivalent is a patent filed in a different patent system covering essentially the same invention. We also searched for US patents that are continuations, continuations-in-part, or divisional applications of each of the patents in the final set. Having identified these equivalents, we then grouped the patents into families by matching priority documents (see earlier discussion of patent families).

A summary of the number of DOE funded patents and patent families in each of the three technologies is shown in Table 2.

| rannies by recimology |          |         |         |         |  |  |  |  |
|-----------------------|----------|---------|---------|---------|--|--|--|--|
|                       | # Patent | # US    | # EPO   | # WIPO  |  |  |  |  |
|                       | Families | Patents | Patents | Patents |  |  |  |  |
| HVAC                  | 106      | 115     | 19      | 28      |  |  |  |  |
| Appliances            | 47       | 50      | 6       | 11      |  |  |  |  |
| Water Heating         | 23       | 25      | 2       | 6       |  |  |  |  |

 Table 1 – Number of BTO-attributed Patents and Patent

 Families by Technology

In HVAC, we identified a total of 115 US patents, 19 EPO patents, and 28 WIPO patents that are related to the initial 110 US patents (including these initial patents). These patents were grouped into 106 patent families.

In Appliances, we identified a total of 50 US patents, 6 EPO patents, and 11 WIPO patents that are related to the initial 49 US patents (including these initial patents). These patents were grouped into 47 patent families.

In Water Heating, we identified a total 25 US patents, 2 EPO patents, and 6 WIPO patents that are related to the initial 25 US patents (including these initial patents). These patents were grouped into 23 patent families.

The resulting list of patents used in the study is included at the end of this Appendix.

# **B1.1** The process for constructing the DOE-attributed HVAC, Appliances and Water Heating patents in brief was the following:

**Identify DOE-Funded Patents** - identifying patents funded by government agencies is often more difficult than identifying patents funded by companies. When a company funds internal research, any patented inventions emerging from this research are likely to be assigned to the company itself. In order to construct a patent set for a company, one simply has to identify all patents assigned to the company, along with all of its subsidiaries, acquisitions etc.

Constructing a patent list for a government agency is more complicated, because the agency may fund research carried out at many different organizations. For example, DOE operates a number of laboratories and research centers, such as Ames, Argonne, Berkeley, Brookhaven, Livermore, Los Alamos, Oak Ridge and Sandia. Patents emerging from these laboratories and research centers may be assigned to DOE. However, the patents may also be assigned to the organization that manages a given laboratory or research center. For example, patents from Sandia may be assigned Lockheed Martin, while Livermore patents may be assigned to the University of California.

A further complication is that DOE does not only fund research in its own labs and research centers. It also funds research carried out by private companies. If this research results in patented inventions, these patents are likely to be assigned to the company carrying out the research, rather than to DOE.

For the purpose of studies such as this, 1790 Analytics has constructed a database of DOE funded patents. These include patents assigned to DOE itself, and also patents assigned to individual labs, lab managers and other organizations funded by DOE. The database is constructed using three primary sources:

- 1. OSTI Database the first source is a database of DOEfunded patents put together by DOE's Office of Scientific & Technical Information (OSTI), and available on the web at www.osti.gov/doepatents/. This database contains information on research grants provided by DOE. It also links these grants to the organizations or DOE labs that carried out the research, the sponsor organization within DOE, and the US patents that resulted from these DOE grants.
- 2. Patents assigned to DOE we identified a small number of US patents assigned to DOE that were not in the OSTI database. These patents were added to the list of DOE patents.
- **3.** Patents with DOE Government Interest a US patent has on its front page a section entitled 'Government Interest', which details the rights that the government has in a particular invention. For example, if a government agency funds research at a private company, the government may have certain rights to patents granted based on this research. We identified all patents that refer to 'Department of Energy' or 'DOE' in their Government Interest field, along with patents that refer to government contracts beginning with DE- or ENG-, since these abbreviations typically denote DOE grants. Patents in this set that were not in the OSTI database, or assigned to DOE, were added to our list of DOE patents.

The DOE patent database constructed from these three sources contains a total of 26,014 US patents issued between January 1976 and June 2015 (when the patent sets for this analysis were collated).

Identify Relevant DOE-Funded Patents via Classifications

 having defined the universe of DOE-funded patents, the next step was to determine which of these patents are relevant to HVAC, Appliances and Water Heating technologies.

We used a two-step process to locate relevant patents within the DOE patent database. First, we identified a set of International Patent Classifications (IPCs) and Cooperative Patent Classifications (CPCs) related to the three technologies included in the analysis.

We then retrieved all patents in the DOE database that are contained at least one of these patent classifications. The result of this first step is a superset of patents that could potentially be relevant to the analysis. The superset contained a total of 970 patents. Clearly, not all patents in this superset are relevant. For example, A47J contains patents related to kitchen equipment, and we are only interested in the subset of these patents related to appliances. Similarly, F25 contains patents related to refrigeration and cooling, and we are only interested in the subset of these patents related to refrigerators, air conditioners etc, and not patents related to cooling turbines, reactors etc.

One option to narrow the superset would have been to use keywords in addition to the patent classifications (which is the traditional approach to building a patent filter). However, given the manageable size of the superset, it was possible to use a more detailed, manual approach. Specifically, we read the titles and abstracts of all patents within the superset, in order to determine which of them appeared relevant to each of the three technologies.

#### Identify Relevant DOE Funded Patents based on BTO List

- in addition to identifying patents via classifications, we were also provided with a set of relevant patents put together by staff at DOE's Building Technologies Office (BTO). We combined this set with the patent list generated via classifications. This resulted in a draft list of DOE funded patents in HVAC, Appliances and Water Heating technologies.

**Review of Draft Patent List by DOE** - we provided the draft patent list to DOE for review. We received feedback from DOE scientists and program managers as to which of the candidate patents should be included in our final set of DOE funded HVAC, Appliances and Water Heating patents, and which should be omitted.

### **B-2.** Identifying HVAC, Appliances and Water Heating Patents Assigned to Leading Organizations

The purpose of the backward tracing element of our analysis is to evaluate the impact of DOE funded research upon HVAC, Appliances and Water Heating technologies produced by leading companies in each of these industries. To identify such companies, we first defined the universe of patents in these three technologies using patent filters. We then located the ten most prolific patenting companies in each technology<sup>40</sup>.

These patent filters were much more detailed than the one used to identify relevant DOE patents. The detailed filters were used due to practical considerations. In defining the DOE patent sets, candidate patents were read individually, first by 1790 and then by DOE, in order to determine their relevance. This process was possible because the number of patents involved was relatively small. The same process of reading individual patents is not practical when the patent set is drawn from the entire universe of patents, not just those patents funded by DOE.

The patent filters used to define the universes of HVAC, Appliances and Water Heating patents thus had to avoid introducing large numbers of irrelevant patents, since these patents could not be removed by reading them individually. These filters thus went beyond broad patent classifications, and instead used combinations of more specific classifications and keywords, as outlined below.

*Identifying Top 10 Patenting HVAC Companies* - the filter used to define the universe of HVAC patents is shown in Table 3.

| Table | 3 – | Filter | used t | to | Identify | HVAC | Patents |
|-------|-----|--------|--------|----|----------|------|---------|
|-------|-----|--------|--------|----|----------|------|---------|

| Filter | = (Search | 1 OR | Search | 2 | OR | Search | 3) | ANDN | OT ( | Search | h |
|--------|-----------|------|--------|---|----|--------|----|------|------|--------|---|
| 4)     | -         |      |        |   |    |        | -  |      |      | -      |   |
| Search | า 1       |      |        |   |    |        |    |      |      |        |   |

IPC = F24F (Air Conditioning/Ventilation) or F24D 1-15 (Space Heating and Central Heating Systems) or F24H 3 (Air Heaters)

Search 2 IPC = (F25 (Refrigeration/Cooling) or F28 (Heat Exchange)) AND Title/Abstract = (air(?)condition\* or ventilat\* or HVAC)

Search 3

<sup>&</sup>lt;sup>40</sup> These companies are sometimes referred to hereafter as the leading HVAC/Appliances/Water Heating companies. This is based on patent portfolio size, and is not a reflection number of units sold or revenues, profits etc. A fuller description would be the leading patenting HVAC/Appliances/Water Heating companies, but this is a cumbersome description to use throughout the results section of the report.

#### IPC = F24 (Heating/Ventilating) AND IPC = F25 (Refrigeration/Cooling) Search 4

IPC = B60H (Heating/Cooling for Vehicles) OR Title/Abstract = (car or cars or vehicle\* or automobile\*)

This filter consists of a total of four separate searches. Search 1 contains a series of specific IPCs that are related directly to HVAC technologies. Search 2 uses broader IPCs in combination with keywords, in order to locate patents relevant patents that are outside the specific IPCs in Search 1. Search 3 identifies patents that are classified in both refrigeration and heating/ventilation. These patents are mainly concerned with air conditioning, particularly the use of coolant materials. Patents identified by any of the three searches are included in the initial HVAC set.

Search 4 differs from the other three searches in the filter, in that it is used to remove patents from this initial HVAC set, specifically patents directed to heating and air conditioning systems for vehicles. There are large numbers of such patents, and their inclusion would skew the analysis towards automobile companies, rather than domestic HVAC companies. The final patent set thus contains patents identified by any of the three initial searches, minus patents identified by the final vehiclerelated search.

Using this HVAC filter, we identified a total of 10,006 US patents, 12,484 EP patents and 11,447 WO patents, a total of 33,937 patent documents overall. We grouped these documents into 28,828 patent families based on matching priority documents.

The ten companies with the largest number of HVAC patent families are shown in Table 4. This includes patent families associated with all variant names under which the companies have patents, including all subsidiary names. The HVAC patent families of these ten companies form the starting point of the backward tracing in this technology.

| Company             | # HVAC Patent Families |
|---------------------|------------------------|
| Daikin Industries   | 1278                   |
| Mitsubishi Electric | 1265                   |
| LG Electronics      | 957                    |
| Panasonic           | 883                    |
| United Technologies | 798                    |
| Samsung Electronics | 346                    |

Table 4 – Top 10 Patenting HVAC Companies

| Toshiba                 | 308 |
|-------------------------|-----|
| Sharp                   | 265 |
| Hitachi                 | 260 |
| Honeywell International | 239 |

The largest HVAC patent portfolios are owned by Daikin Industries (1,278 patent families) and Mitsubishi Electric (1,265 families). There is then a gap to the next three companies: LG Electronics (957 patent families); Panasonic (883 families); and United Technologies (798 families). In turn, there is a further gap to the five companies that round out the top ten list: Samsung (346 families); Toshiba (308); Sharp (265); Hitachi (260) and Honeywell (239).

**Identifying Top 10 Patenting Appliances Companies** - of the filters used to define the universe of patents in each of the three technologies, the one directed to Appliances patents is the most complicated. Patents for different types of Appliances are allocated to different patent classifications, rather than being contained in a single Appliances classification. As a result, we designed separate searches for the various types of Appliances, as shown in Table 5. These searches cover the following types of Appliances: refrigerators, dishwashers, washing machines, clothes dryers, stoves, and microwaves. We did not extend the searches to cover smaller appliances (such as coffee makers, toasters, blenders etc), since there are many such appliances, each of which would require a separate search, thus making the final filter very complicated and timeconsuming to construct.

Table 5 – Filter used to Identify Appliances Patents

| Filter = (Search 1 OR Search 2 | OR | Search | 3 | OR | Search | ı 4 |
|--------------------------------|----|--------|---|----|--------|-----|
| OR Search 5 OR Search 6)       |    |        |   |    |        |     |

| Search 1 (Refrigerators)                              |   |
|-------------------------------------------------------|---|
| IPC = F25D 11 (Domestic Refrigerators) OR (IPC = F25D | ) |
| (Refrigerators) and Title/Abstract = (domestic* or    | ٢ |
| house(?)hold*))                                       |   |

Search 2 (Dishwashers)

IPC = A47L 15 (Washing Machines for Crockery or Tableware) OR (IPC = B08B 3 (Cleaning using Liquid/Steam) and Title/Abstract = (dish(?)wash\* or wash\*(?)dish\*))

Search 3 (Washing Machines)

(IPC = D06F 9-39 (Washing Machines for Textile Articles) andnot (IPC = A47L 15 (Washing Machines for Crockery or Tableware))

Search 4 (Dryers)

(IPC = D06F 49 (Domestic Spin Dryers) or D06F 58 (Domestic Laundry Dryers)) ANDNOT IPC = A47L 15 (Washing Machines for Crockery or Tableware) Search 5 (Stoves)

IPC = F24C 5, 7, 13-15 (Stoves/Ranges) AND Title/Abstract = (hob\* or oven\* or range\* or stove\* or cook(?)top\*

Search 6 (Microwaves) IPC = F24C 7/02 (Stoves using Microwaves) OR (IPC = H05B 6/64-80 (Heating using Microwaves) and Title/Abstract = (food\* or oven\* or cook\*)) OR (IPC = F24C (Stoves/Ranges) and Title/Abstract = micro(?)wave\*)

Using this Appliances filter, we identified a total of 7,900 US patents, 14,625 EP patents and 9,107 WO patents, a total of 31,632 documents overall. We grouped these documents into 25,346 patent families based on matching priority documents.

The ten companies with the largest number of Appliances patent families (including all variant and subsidiary names) are shown in Table 6. The Appliances patent families of these ten companies form the starting point of the backward tracing in this technology.

BSH Hausgeräte<sup>41</sup> has the largest Appliances patent portfolio with 2,893 families, followed by LG Electronics with 1,980 families, AB Electrolux (1,955 families) and Whirlpool (1,798 families). There is then a gap to Samsung (1,054 families), Koc Holding (821 families) and Panasonic (766 families) and the list is completed by Miele & Cie, General Electric and Sharp, with 553, 466 and 290 families respectively.

| # Appliances Patent Families |
|------------------------------|
| 2893                         |
| 1980                         |
| 1955                         |
| 1798                         |
| 1054                         |
| 821                          |
| 766                          |
| 553                          |
|                              |

Table 6 – Top 10 Patenting Appliances Companies

<sup>&</sup>lt;sup>41</sup> BSH Hausgeräte was set up in 1967 as a joint venture between Bosch and Siemens. In 2015, Bosch purchased Siemens' share of BSH, making a wholly-owned subsidiary of Bosch. However, for almost all of the period studied in this analysis, BSH was still a joint venture, and so is kept separate from the Bosch parent company in the analysis.

| General Electric | 466 |
|------------------|-----|
| Sharp            | 290 |

**Identifying Top 10 Patenting Water Heating Companies** the filter used to identify Water Heating patents is shown in Table 7. This filter consists of three separate searches. Search 1 contains a series of IPCs directed specifically to water heaters, while Search 2 contains broader IPCs in combination with keywords. Patents identified by either search are included in the initial Water Heating set. Search 3 is then used to eliminate patents from this initial set, specifically patents describing vehicle applications, and patents describing water heating in small appliances, such as coffee makers and tea kettles.

#### Table 7 – Filter used to Identify Water Heating Patents

Filter = (Search 1 OR Search 2) ANDNOT Search 3 Search 1

IPC = F24D 17 (Domestic Hot Water Supply Systems) or IPC = F24H 1, 4, 6, 7, 9 (Water Heaters with Heat Generating Means)

Search 2 IPC = (F24 (Heating/Ventilating) or F25 (Refrigeration/Cooling) or F28 (Heat Exchange)) AND Title/Abstract = ((boiler or water(?)heat\*) AND (domestic or house(?)hold or central(?)heat\*)) Search 3

Search 3 IPC = A47 (Domestic Appliances) OR IPC = B60H (Heating/Cooling for Vehicles) OR Title/Abstract = (kettle\* or coffee or beverage\* or food\* or car or cars or vehicle\* or automobile or air(?)condition\*)

Using this Water Heating filter, we identified a total of 2,191 US patents, 3,694 EP patents and 2,557 WO patents, a total of 8,442 patent documents overall. We grouped these documents into 7,328 patent families based on matching priority documents.

The ten companies with the largest number of Water Heating patent families (including all variant and subsidiary names) are shown in Table 8. The Water Heating patent families of these ten companies form the starting point of the backward tracing in this technology.

| Table 8 – Top 10 Patenting Water Heating Companies |                        |
|----------------------------------------------------|------------------------|
| Company                                            | # Water Heating Patent |
|                                                    | Families               |
| Bosch                                              | 188                    |
| Vaillant                                           | 154                    |
| A.O. Smith                                         | 139                    |
| Panasonic                                          | 127                    |
| Viessmann                                          | 126                    |
| Paloma Industries                                  | 87                     |
| Daikin Industries                                  | 73                     |
| Mitsubishi Electric                                | 61                     |
| Kyung Dong Navien                                  | 60                     |
| BSH Hausgeräte                                     | 59                     |

There are five companies with more than 100 Water Heating patent families: Bosch (188 families); Vaillant (154); A.O. Smith (139); Panasonic (127); and Viessmann (126). The remaining five companies each have between 50 and 100 patent families – Paloma (87 families); Daikin (73); Mitsubishi Electric (61); Kyung Dong Navien (60) and BSH Hausgeräte (59).

#### **B-3. CONSTRUCTING CITATION LINKS**

Through the processes described above, we constructed starting patent sets for both the forward tracing and backward tracing elements of the analysis. The patent set for the forward tracing consisted of DOE-funded patent families in HVAC, Appliances and Water Heating. The patent set for the backward tracing consisted of patent families assigned to the top ten patenting companies in each of these three technologies.

Having defined these patent sets, we then traced forward through two generations of citations from the DOE patents, and backward through two generations of citations from the leading company patents. These included citations listed on US, EPO and WIPO patents, and required extensive data cleaning to account for differences in referencing formats across these systems. The citation linkages identified, along with characteristics of the starting patent sets, form the basis for the results presented in the body of the report.