U.S. DEPARTMENT OF ENERGY

Office of Electricity Delivery & Energy Reliability

DOE Strategy for Energy Sector Cybersecurity

Hank Kenchington
Deputy Assistant Secretary, Cybersecurity and Emerging Threats R&D
September 14, 2017

Energy Sector Partners Are Critical to Success

109 public-private partners drive R&D

Energy Sector Roadmap – Framework to Guide Public-Private Partnership

- Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones
- Provides strategic framework to:
 - Ensure public and private R&D is relevant and meets the needs of energy utilities
 - Stimulate investments in control systems security

Roadmap Vision

Resilient energy delivery systems are designed, installed, operated, and maintained to survive a cyber incident while sustaining critical functions

Roadmap Milestones and Goals

	1.	Assess and Monitor Risk	2.	Manage Incidents	3.	Develop and Implement New Protective Measures to Reduce Risk	4.	Manage Incidents	5.	Sustain Security Improvements
Near-term Milestones (By 2013)	1.1	Executive Engagement and support of cyber resilience efforts Industry-driven safe code development and software assurance awareness workforce training campaign launched	2.1	Common terms and measures specific to each energy subsector available for baselining security posture in operational settings	3.1	Capabilities to evaluate the robustness and survivability of new platforms, systems, networks, architectures, policies, and other system changes commercially available	4.1	across all levels of energy delivery system networks commercially available	5.1	Cyber threats, vulnerability, mitigation strategies, and incidents timely shared among appropriate sector stakeholders Federal and state incentives available to accelerate investment in and adoption of resilient energy delivery systems
Mid-term Milestones (By 2017)	1.4 1.5	Vendor systems and components using sophisticated secure coding and software assurance practices widely available Field-proven best practices for energy delivery systems security widely employed Compelling business case developed for investment in energy delivery systems security	2.2	Majority of asset owners baselining their security posture using energy subsector specific metrics	3.3	system devices available Next-generation, interoperable, and upgradeable solutions for secure serial and routable communications between devices at all	4.4 4.5	Incident reporting guidelines accepted and implemented by each energy subsector Real-time forensics capabilities commercially available Cyber event detection tools that evolve with the dynamic threat landscape commercially available	5.4	Collaborative environments, mechanisms, and resources available for connecting security and operations researchers, vendors, and asset owners Federally funded partnerships and organizations focused on energy sector cybersecurity become self-sustaining
Long-term Milestones (By 2020)	1.6	Significant increase in the number of workers skilled in energy delivery, information systems, and cybersecurity employed by industry	2.3	Tools for real-time security state monitoring and risk assessment of all energy delivery system architecture levels and across cyber- physical domains commercially available	3.4 3.5 3.6	Self-configuring energy delivery system network architectures widely available Capabilities that enable security solutions to continue operation during a cyber-attack available as upgrades and built-in to new security solutions Next-generation, interoperable, and upgradeable solutions for secure wireless communications between devices at all levels of energy delivery system networks implemented	4.6	Lessons learned from cyber incidents shared and implemented throughout the energy sector Capabilities for automated response to cyber incidents, including best practices for implementing these capabilities available	5.6	Private-sector investment surpasses federal investment in developing cybersecurity solutions for energy delivery systems Mature, proactive processes to rapidly share threat, vulnerabilities, and mitigation strategies are implemented throughout the energy sector
Goals	all e leve is w	tinuous security state monitoring of energy delivery system architecture els and across cyber-physical domains ridely adopted by energy sector asset ners and operators	abl as i nor less and	orgy sector stakeholders are to mitigate a cyber incident t unfolds, quickly return to mal operations, and derive tions learned from incidents I changes in the energy tivery systems environment	prov that cont	t-generation energy delivery system architectures orde "defense in depth" and employ components are interoperable, extensible, and able to cinue operating in a degraded condition during a er incident	to i unf ope lea in t	ergy sector stakeholders are able mitigate a cyber incident as it folds, quickly return to normal erations, and derive lessons rned from incidents and changes the energy delivery systems vironment	aca	laboration between industry, demia, and government maintains ersecurity advances

49 DOE Technologies Contribute to 28 Milestones

Energy Sector: A Major Target of Cyber Attacks

- Aggressive attacks are outpacing defense
- Growing attack surface of U.S. energy infrastructure
- Public examples of attacks on foreign ICS demonstrate attack knowledge (Ukraine)

Cyber Incidents Reported to DHS ICS-CERT (2013-2015)

Total Reported Incidents: 796

Source: ICS-CERT Monitors (Oct-Dec 2013, Sept 2014-Feb 2015, Nov-Dec 2015)

More Targeted and Sophisticated Attacks

SHODAN

Developed in 2009

- Search engine to find Internetconnected devices (including control system field devices)
- Increase in IoT devices increases potential exploits

METASPLOIT

October 2010 - First SCADA exploit

- Open-source penetration testing tool developed in 2003 to expose vulnerabilities
- First modules to exploit control system devices (PCS and SCADA) released 2011

UKRAINE POWER GRID

December 2015

- 225,000 customers lost power in coordinated attack
- · SCADA systems targeted and damaged
- Military-like planning and execution
- Utility companies infiltrated 9 months prior to attack
- Launched with easily available attack tools (malware and denial of service)

STUXNET July 2010

- Advanced persistent threat (APT) attack on SCADA control systems in Iranian nuclear centrifuge facilities
- Relied on zero-day exploits
- OT centrifuge equipment irreparably damaged by operating out of bounds

SHAMOON August 2012

 Virus destroys data on workstations as means to disrupt operations

- 2012 weaponized malware hit 15 state bodies and private companies in Saudi Arabia, wiping >35,000 hard drives of Aramco oil supplier
- Iranian-backed hackers suspected
- 2017 version hit 3 state agencies and 4 privatesector companies in Saudi Arabia

SHAMOON 2

January 2017

Electricity Delivery System is Evolving to Meet Customer Needs and Changing Generation Mix

Graphic Source: International Energy Agency

HISTORICAL

- Human-based grid management
- Centralized generation/control
- One-way power and info flow

EMERGING

- Increasing distributed generation/control
- Multi-level coordination
- Increasing reliance on sensors and information and control technologies (ICT)
- Two-way power and info flow

Communications

DOE Multiyear Plan for Energy Sector Cybersecurity

Multiyear Plan for Energy Sector Cybersecurity

DRAFT

- DOE's stratety/plan for partnering with industry to enhance cybersecurity of U.S. energy system
- Guided by direct industry input on cybersecurity needs and priorities – complements the Roadmap
- Market-based approach encourages investment and cost-sharing of promising technologies and practices
- Establishes goals, objectives, and activities to improve both near- and long-term energy cybersecurity

Energy Sector Needs inform DOE Strategy

Federal Strategies

Federal Cybersecurity Research

and Development Strategic

Plan (2016)

Joint US-Canada Electric Grid

Security and Resilience

Strategy (2016)

DOE's Strategy for Energy Sector Cybersecurity

Leverage strong partnerships with the energy sector to:

1 Strengthen today's cyber systems and risk management capabilities

Develop innovative solutions for tomorrow's inherently secure and resilient systems

GOAL 1

Strengthen energy sector cybersecurity preparedness

- Information sharing and situational awareness
- Bi-directional, real-time, machine-to-machine information sharing tools
- Risk management tools and technical assistance
- Cybersecurity supply chain risk reduction

GOAL 2

Coordinate cyber incident response and recovery

- Coordinate national cyber incident response for the energy sector
- Build cyber incident response and incident reporting
- Cyber incident response exercises

GOAL 3

Accelerate game-changing RD&D of resilient energy delivery systems

- RD&D to prevent, detect, and mitigate a cyber incident in today's systems
- RD&D of next-generation resilient energy delivery systems
- Build National Lab core capabilities and university collaborations

GOAL 1: Strengthen Energy Sector Cybersecurity Preparedness

PRIORITIES AND EXAMPLE OUTCOMES

1. Enhanced situational awareness and information sharing

→ Sensors to capture OT data for electricity and oil and natural gas, private-sector clearances, and intelligence information sharing

2. Real-time, machine-to-machine cyber defense

→ Distributed malware analysis platform that safely enables automated and manual analysis of malicious code

3. Risk management tools, guidelines, and training

→ Enhance state-federal coordination (Energy Assurance Plans) and planning (exercises and workforce), and update Cybersecurity Capability Maturity Model (C2M2); expand oil and gas emphasis

4. Improved understanding of cyber supply chain risks

→ Collaborative public-private partnerships to gain insight into systemic vulnerabilities

Cybersecurity Risk Information Sharing Program (CRISP)

Identify threat patterns across the electric industry by analyzing real-time traffic using U.S. Intelligence capabilities

Approach

- Unique platform enables energy companies to voluntarily share IT network data
- Delivers cyber threat information – enriched with intelligence insights and tools – to help identify malicious activity and prioritize mitigation

Industry Impact

- Participating utilities account for ~75% of U.S. electric customers
- Developed by DOE and transitioned to the E-ISAC starting in 2014
- Allows IT data sharing for threat mitigation

Advanced Tools to Enhance Threat Detection and Information Sharing

Cyber Analytics Tools and Techniques (CATT)

- Improve the speed, value, and cost of CRISP analysis, reports, and mitigations
- Improve IT threat detection by adding new analytic tools and capabilities to CRISP platform (working with PNNL, INL, ORNL, ANL)
- Better leverage U.S. Intelligence by enabling direct analysis of CRISP data in secure government storage using unique and sophisticated intelligence tools

CYbersecurity for the Operational Technology Environment (CYOTE)

- Pilot a two-way OT data sharing and analysis capability (similar to CRISP) with 4 utilities for the complex OT environment – where threat monitoring and detection is not widespread
- Map the OT cyber "kill chain" the attack pathways hackers could use to compromise utility OT systems
- Identify OT network sensors that monitor the right data and meet demanding OT network requirements

Working With Small and Medium-Sized Utilities (over 2,000) to Enhance Cybersecurity

Program Objectives

 Engage with public power distribution utilities to better understand cyber security posture and implement programs to improve

Industry Impact

 Support smaller distribution utilities that typically have limited resources invest in cyber resilience and stay ahead of rapidly evolving sophisticated cyber threats

Approach

- Work through leading trade associations to provide resources, training, and technical assistance to member utilities
- Conduct cyber security risk assessments
- Conduct onsite vulnerability assessments
- Pilot existing or emerging cybersecurity technologies
- improve/develop process to better share threat information

Partners

APPA – Trade association for >2,000 local- and state-owned utilities serving >48 million Americans

APPA partners include Axio and Energetics, Inc.

NRECA – Trade association for >900 not-for-profit rural electric cooperatives and public power districts serving >42 million customers in 47 states

- R3C The Rural Cooperative Cyber Security Capabilities Program
- Partners include Cigital and BlackByte Cyber Security LLC

Cybersecurity Capability Maturity Model (C2M2)

- Public-private partnership program to help energy sector asset owners and operators assess their capabilities and continuously improve their cybersecurity posture
- C2M2 strengthens organizational cybersecurity capabilities; shares best practices, and employs the National Institute of Standards and Technology (NIST) Cybersecurity Framework.
- The C2M2 helps organizations regardless of size, type, or industry to evaluate, prioritize, and improve their own cybersecurity capabilities.

GOAL 2: Coordinate Cyber Incident Response and Recovery

1. Coordinated national cyber incident response for the energy sector

- Fulfill our SSA responsibilities
- Educate stakeholders on processes, roles, responsibilities, and resources; integrated into the DOE unified command structure

2. Build additional Cyber incident response capability

- Build energy specific OT teams and capability to support cyber incident response
- ESF-12 responders across the nation trained on coordination needs for intersection of cyber incidents and physical response through FEMA
- Improve cyber incident reporting process for private-sector partners
- 3. Annual cyber incident response exercises with industry and federal/state/local stakeholders

DOE Cyber Response Partnership (CRP) Teams

Vision: Mission-ready access to energy sector specific cybersecurity expertise, capabilities, and resources for cyber incident response

- Deliver expert assistance to industry cyber victims
- Establish energy sector cyber response structure and processes
- Agreements in place with 5 National Labs
- Scalable technical assistance capability

GOAL 3: Accelerate Game-Changing RD&D of Resilient Energy Delivery Systems

PRIORITIES AND PATHWAYS

Research, develop, and demonstrate tools and technologies to:

1. Prevent, detect, and mitigate cyber incidents in *today's energy* delivery systems

- Decrease the cyber attack surface and block attempted misuse
- Decrease the risk of malicious components inserted in the supply chain
- Enable real-time, continuous cyber situational awareness
- Automatically detect attempts to execute a function that could de-stabilize the system when the command is issued
- Characterize cyber incident consequences and automate responses

2. Change the game so that *tomorrow's resilient energy delivery* systems can survive a cyber incident

- Anticipate future grid scenarios and design cybersecurity into systems from the start
- Enable power systems to automatically detect and reject a cyber attack, refusing any commands/actions that do not support grid stability
- Build strategic partnerships and core capabilities in National Labs

Cybersecurity for Energy Delivery Systems (CEDS) R&D Program Approach

Long- Term, Foundational Projects

- Core and Frontier National Laboratory Research Program
- Academia Projects

Mid-Term Projects

National Laboratory Led Projects

Partnerships

Shorter-Term Projects

 Energy Sector Led Projects

GOAL: Transition R&D to Practice in the Energy Sector

- Funds innovative R&D in areas critical for national security where the industry lacks a clear business case
- Builds R&D pipeline through partnerships with energy sector utilities, suppliers, universities and national laboratories
- Successfully transitioned more than 30 tools and technologies used TODAY to better secure U.S. energy infrastructure
- Over 990 utilities in 50 states have purchased technologies developed by CEDS

R&D Successes Include Advanced Technologies That Enhance Cybersecurity AND Lower Operating Costs

Commercially Available in FY16

Reference: UTC Journal, 3rd Quarter 2016

Software Defined Networking (SDN):

- Monitors network traffic using a whitelist approach and quarantines unauthorized or suspicious devices
- Improves network performance with <100uS network heal times
- Market-ready solution resulting from strong partnerships and real-world demonstration

SEL-led research partnership with:

- Pacific Northwest National Laboratory (PNNL)
- University of Illinois at Urbana Champaign
- Ameren

Cybersecurity Intrusion Detection and Monitoring for Field Area Networks

- Detects anomalies and attacks in smart grid wireless mesh networks for smart meters and distribution automation
- Demonstrated at 4 utilities and commercialized as SecureSmart technology
- Now used today to give operators great visibility into critical smart grid networks
- · Deployments -

PROJECT LEAD

Now Vencore Labs

PARTNER

Using Physics of Electric Power Flow to Thwart Cyber Attacks

CODEF – Collaborative Defense of Transmission and Distribution Protection and Control Devices

- Automatically detects and rejects malicious commands that could jeopardize physical grid operations if acted on
- Anticipates the effects of each command and only enacts those that will support grid stability
- Demonstrated transmission level cybersecurity functions at Bonneville Power Administration
- Four CODEF functions detected and blocked cyber attacks targeting substation circuit breakers and intelligent electronic devices

PROJECT LEAD

PARTNERS

& Energy Reliability

Quantum Encryption Key Distribution Techniques

Quantum Key Distribution Benefits:

- LANL is developing Quantum Security Modules (QSMs) that securely transmit and receive data from grid control devices encrypted with quantum keys
- When an adversary attempts to intercept an encryption key, it causes an unavoidable distortion in the signal that alerts operators
- Recent technology advances reduced the facility footprint and improved the performance:
 - Size of the installed hardware reduced by a factor of five
 - Operating range doubled and increased the key generation rate by 73%

Reduced Footprint of Quantum Communication System

Computer
Laser
Single photon detectors
Temperature controllers
Timing circuitry
Polarization Control
Power supplies

New Installation

Developing Strategic Cybersecurity Core Capabilities at DOE National Laboratories

National Laboratory	CEDS R&D Strategic Core Capability Examples							
ANL	Power system applications that are cyber-aware							
BNL	Cybersecurity for energy sector forecasting data							
INL	Cyber-informed development and engineering for next generation resilient energy delivery systems.							
LANL	Quantum Key Distribution (QKD) for the energy sector							
LBNL	Detecting cyber incidents in the distribution-level grid							
LLNL	Reliable active mapping for operational networks							
ORNL	Detecting adversarial presence in energy delivery control systems							
PNNL	Enhanced situational awareness using federated power system data							
SNL	Energy delivery systems that confront the adversary with a moving target							

DOE Awards for Next Generation Cybersecurity Technologies and Tools

DOE awarded \$20 million for 20 new projects to

- Support critical early stage R&D of next-generation tools and technologies
- Build capacity throughout the energy sector for day-to-day operations such as cyber-threat information sharing
- Next-Generation Attack-Resilient Electricity Distribution Systems
- (FIT) Firmware Indicator Translation
- Adaptive Control of Electric Grid Components for Cyber-Resiliency
- Cyber Interconnection Analysis for High Penetration of DER
- GPS Interference Detection
- Secure SCADA Protocol Characterization and Standardization
- Quantum Key Distribution for the Energy Sector:
 Trusted Node Relays and Networks
- (Module-OT) Modular Security Apparatus for Managing Distributed Cryptography for Command & Control Messages on Operational Technology (OT) Networks
- DarkNet
- Quantum Physics Secured Communications for the Energy Sector

- Energy Delivery Systems with Verifiable Trustworthiness
- Malware Operational Mitigation (MOM)
- KISS (Keyless Infrastructure Security Solution)
- MEEDS (Mitigation of External-exposure of Energy Delivery System Equipment)
- SASS-E (Safe & Secure Autonomous Scanning Solution for Energy Delivery Systems)
- SDN4EDS (Software Defined Networking for Energy Delivery Systems)
- UUDEX (Universal Utility Data Exchange)
- VERITAS (Vulnerability, Exploit, and Risk Identification Toolset and Source)
- Containerized Application Security for Industrial Control Systems
- Survivable ICS

THE END

Today's Energy Delivery Systems: More Complex with an Increasing Attack Surface

Managing Cyber Risks Must Be a Shared Responsibility

Security Roles and Responsibilities for Physical and Cyber Risks

Source: NIAC Cyber Scoping Study, February 2017