

Grand Traverse Band of Ottawa and Chippewa Indians

Renewable Energy & Energy Efficiency Feasibility Study
DOE Tribal Energy Program Review
Denver, Colorado
November 14 - 20, 2008

November 2008

Grand Traverse Band

- 3,988 Members
- 2,370 Acres Checkerboard
- Six-County Service Area
- EDC: 2 Casinos, Resort Hotels (600 Rooms), Gas Station, etc.
- Gov't: Administration, Housing, Medicine Lodge, Strong Heart Center, Day Care, etc.

Grand Traverse Resort and Spa

Turtle Creek Casino Hotel (June 08)

GTB Energy Vision & Plan Three Focus Areas:

Energy Diversity

Environmental Quality

Economic Benefits

Action Plan

 Conduct energy diversification feasibility study

Financing plan

Public education campaign

Distributed renewable power study

Project Objectives

Project Goal: To conduct a feasibility study to determine the cost effectiveness and other economic, environmental, cultural and social benefits of maximizing the diversity of energy sources used at GTB facilities.

Grant Timeline: 9/15/05 to 12/31/08

Project Partnership

Traverse City Light & Power (TCLP)

MOU between GTB and TCLP

Sharing wind energy monitoring and evaluation

Sharing electric utility expertise

GTB Renewable Energy Options

- Biomass (wood and crops) & District Heat
- Solar thermal
- Solar electric (photovoltaics)
- Passive solar buildings and designs
- Small scale wind power
- Large scale wind power
- Economic integration of renewable energy
- Energy efficiency & Combined Heat & Power

Site Specific Resource Monitoring

- Comprehensive survey of all GTB properties and energy consumption
- Review and documentation of energy data: solar, wind, biomass
- On-site wind resource monitoring, and preparation of a regional GTB wind map
- Wind data sharing with TCL&P wind monitoring activities in adjacent twp

GTB Energy Demand

- Total Cost: \$6 million/yr
- Electric Cost: \$3 million/yr
- Natural Gas Cost: \$2.4 million /yr
- LP Gas Cost: \$600,000
- Electric kW-hrs/yr: 42 million
- Natural Gas ccf/yr: 2 million ccf
- LP: 435,000 gallons/yr
- Peak KW: 5,700 (Commercial/Public)

Total Energy Consumption Per Yr

Grand Traverse Band Breakdown of GTB Energy Use

Year 2005 (w/ 2008 adj)	Electric	Electric		Natural Gas	Natural Gas		LP Gas	LP Gas				
	kW-hrs/yr	Cost / Yr		CCF's/yr	Cost/yr		Gal/yr	Cost/yr		Total Cost		Percent
Peshawbestown (Commercial/Public)	5,891,286	\$	388,802	144,624	\$	173,549	834	\$	1,084	\$	563,434	9.3%
Peshawbestown Residential W	842,400	\$	75,816	98,150	\$	117,779	39,167	\$	54,834	\$	248,430	4.1%
Peshawbestown Residential E	770,400	\$	69,336	123,553	\$	148,263				5	217,599	3.6%
Turtle Creek Casino (Comm/Public)	15,513,551	\$	1,035,664	376,024	\$	451,229		\$	-	5	1,486,893	24.5%
GT Resort & Spa	12,545,244	\$	878,167	528,570	\$	634,284				\$	1,512,451	25.0%
Traverse City (Commercial/Public)	453,760	\$	40,838	6,954	\$	8,345				\$	49,183	0.8%
Benzie (Admin)	60,585	\$	5,950				5,640	\$	7,896	\$	13,846	0.2%
Benzie (Residential)	381,600	\$	34,344	-	\$	-	64,871	\$	90,819	\$	125,163	2.1%
Charlevoix (Admin)	30,560	\$	2,576				3,437	\$	4,812	\$	7,388	0.1%
Charlevoix (Residential)	266,400	\$	23,976		\$	-	45,287	\$	63,402	\$	87,378	1.4%
Antrim (Residential)	187,200	\$	16,848		\$	•	31,824	\$	44,553	5	61,401	1.0%
Balance of Residential	5,745,600	\$	517,104	691,088	\$	829,306	244,184	\$	341,858	\$	1,688,268	27.9%
	42,688,586	\$	3,089,421	1,968,962	\$	2,362,755	435,245	\$	609,259	\$	6,061,436	100.0%

Energy Breakdown (With New Turtle Creek Casino)

GTB Energy Breakdown By Fuel Type (2008 Est.)

Total Cost per Year: \$6,061,436

Public, Commercial & Residential

(Does not include wood heat)

GRAND TRAVERSE BAND ENERGY PLANNING CHART GTB STRATEGIC ENERGY PLANNING: GTB Department of Natural Resources

Question: How do we make GTB 100% renewable energy heated and powered?

Peshawbestown

Low Density Residential \$217,599/yr High Density Residential \$248,430/yr Government Facilities

Casino, Hotel, Gas Station \$544,920/yr

Charleviox

Low and High Density Residential Government Satellite Center \$87,378 Energy Costs/year

GT & Outlying Members

Low Density Residential \$1,688,268 Government Facilities & Hotel \$49,183 Energy Cost/yr

Antrim

Low Density Residential

\$61,401 Energy Costs/year

Benzie

Golf Course

GTB Land

Low and High Density Residential \$125,163/yr Government Satellite Center \$13,846 /yr

Wind Turbine Area

"Hoxie Property"

Sub-station

5 MVA

Energy

Consumers

GTB Land

Room for 2 WTG's

2 - 6 mW Peak Cap.

4 - 12 million kWhr/yr

GRAND TRAVERSE RESORT

Energy Loads

Electric: 12,600 MWhrs Jyr Natural Gas: 15,528 MWhrs,/yr

Natural Gas Heating Load

53,000 MCF Natural Gas/yr 53,000 Million BTU/yr 56,000 Giga-Joule/yr

Annual Gas Cost US\$455,396

Electric Loads (with Air conditioning)

Electric Supplier: Consumers Energy

12,600,000 kW-hrs/yr

2.600 Peak kW

1,432 Average kW

Annual Cost US\$752,715

Total Annual Cost: US\$1,208,111

Wind Turbine Area GTB Public Utility Wind Turbine Area PUBLIC Waste and Potable Water WATER & GTB Land SEWER New Turtle Creek Casino FOR Electric Loads: 15,513 MWhr/yr (est) Room for 4 WTG's GT RESORT Thermal Loads: 1,200 MWhr/yr (est) 4 - 12 mW Peak Capacity TURTLE 8 - 25 million kWhr/yr Nat Gas Heating Load CREEK 23% - 25% Capacity Factor 376,024 CCF ETC 5,000 Million BTU/yr BIOMASS Railroad PUBLIC Annual Nat Gas Cost: US\$148,263 (est) Industrial Zone HEAT & Electric Supplier: Cherryland Coop ELECTRIC Generation Cooperative: (WPSC) Biomass Plant (CHP?) Sub-station PLANT 15,513,000 kWh/yr NEW 7.5 MVA GTB 2.700 kW Peak TURTLE WPSC Land 1,770 kW Average CREEK 69 kV line Annual Electric Cost: US\$1,035,664 (est) CASINO Total Annual Cost: US\$1,486,000

THE POTENTIAL OF RENEWABLE ENERGIES WORLDWIDE

Accomplishments: Technology and Economic Evaluation

- Wind Power (small and large)
- Biomass (heat and power)
- Solar Thermal (hot water)
- Solar Electric (photovoltaic)

Wind Accomplishments

- MOU with Traverse City Light & Power
- Wind monitoring report completed on GTB GT Resort "Hoxie" property
- GT Resort wind data collection continuing for expanded data base and improved wind resource studies
- TCL&P monitoring in Long Lake Twp completed August 2007
- Resource & Economic Feasibility for wind power

50 Meter (164 ft.) Meteorological Towers

Energy Cost Comparison 2008										
Ranked By Lowest to Highest		Unit		En	ergy Only	Αll	Costs	W / Enviro		
	Unit		Cost		Cost / kWh		/ kW-hr		Costs/kWh	
Efficiency /Passive Solar	kW-hr	\$	-	\$	-	\$	0.03	\$	0.03	
Wood Chips	US Ton	\$	26.00	\$	0.007	\$	0.03	\$	0.04	
Large Wind	kW-hr	\$	-	\$	-	\$	0.06	\$	0.06	
Cord Wood	Face Cord	\$	70.00	\$	0.065	\$	0.06	\$	0.07	
Dryed Cherry Pits or Pellets	Ton	\$	200.00	\$	0.067	\$	0.08	\$	0.08	
Natural Gas CHP (electric)	CCF	\$	1.20	\$	0.055	\$	0.07	\$	0.09	
Natural Gas CHP (heat)	CCF	\$	1.20	\$	0.055	\$	0.07	\$	0.09	
Natural Gas Large	CCF	\$	1.20	\$	0.055	\$	0.08	\$	0.10	
Natural Gas Res /Comm	CCF	\$	1.25	\$	0.057	\$	0.09	\$	0.11	
Lg Commercial Grid Electricity	kW-hr	\$	0.070	\$	0.070	\$	0.09	\$	0.13	
Solar Hot Water	kW-hr	\$	-	\$	-	\$	0.15	\$	0.15	
Sm Commercial Electricity	kW-hr	\$	0.100	\$	0.100	\$	0.11	\$	0.15	
Residential Electricity	kW-hr	\$	0.100	\$	0.100	\$	0.11	\$	0.15	
LP Gas	Gallons	\$	2.50	\$	0.121	\$	0.14	\$	0.18	
New Coal Fired Electricity	kW-hr	\$	0.170	\$	0.170	\$	0.17	\$	0.19	
Gasoline	Gallons	\$	3.90	\$	0.160	\$	0.18	\$	0.22	
Heating Oil	Gallons	\$	4.85	\$	0.162	\$	0.18	\$	0.23	
New Atomic Electricity	kW-hr	\$	0.23	\$	0.230	\$	0.23	\$	0.25	
Small Wind	kW-hr	\$	-	\$	-	\$	0.28	\$	0.28	
Solar PV Electric	kW-hr	\$	-	\$	-	\$	0.60	\$	0.60	

GTB RE Cost Comparisons

<u>Integrated Renewables For GTB</u>

- Integrating all the renewable energy sources such as wind, solar (thermal & electric), & biomass
- And enhancing them with efficiency, combined heat and power, and district heating systems
- And implementing them on a community basis-can meet our 100% renewable energy goal!

GT Resort Site - Large Wind

- Annual wind speed average at 50 m (164 ft)— 4.8 m/s (10.8 mph)
- Annual wind speed average at 100 m (328 ft) 6.3 m/s (14 mph)

Energy Per Swept Area in kilowatt-hours per square meter per year

- Wind Turbine Annual kW-hrs/sq.meter/year 80 m 719 kW-hrs/m²/yr
- Wind Turbine Annual kW-hrs/sq.meter/year 100 m 790 kW-hrs/m²/yr

Reference Note:

- Existing TCLP V-44 600 kW-hrs/sq.meter/year 522 kW-hrs/m2/yr
- Percent increase in energy for GT Resort 100m vs. V44 in Elmwood 51%

Summary Financials 1 WTG

New Turbe Creek Wind Sites 1 WTG ASSUMPTIONS		11	PRO PORSUL 1 85 mater 1800 bell		OUNCTIONS NIME WHILE ON THE ROSEN DES		Contill 700 MWHaljurish El meler		
Total Cost: Date: 21% Easts: 21% Wind Prover Purchase Bearts Rape or Office: Exclac econodios cos: Annua Cospet NetAs MATO: Inginomence beay: MATO: All Post Insustrice T100: All Post Insustrice T100: All Post Insustrice CredonMater			12,800,000 11,850,000 percent 10,000 1,000,000 1,000,000 10,000 10,000		Princip Tomo Interest Flats Federal Tree Federal Tree Co Cold Likely Br Mg. Swig MT Using See M Land Rendy M Lood Prignely 1	ett. Listation-rate: ic Listatio; Tric	12 years 7.00A, year 0A, per annulu 80.000 personne 90.000 1.00A 80.000 91.000 90.000 90.000 90.000		
YEAR Property Outputper Ending Sales Prevenues First Receivable Incentive Prec All Britishes Credos GROSS INCOME	2008 1 6-0500 2000711 340136 76734 16004 340,604	2010 2 0.0008 3790711 251009 17249 18212 267,620	2911 2 0 00076 2796711 298680 18764 19868 284572	90876 20082	3090711 299428 81977	2016 0 0.6718 2096711 207154 83617 20004 274,275	2016 7 0-0782 3180711 217180 85280 21822 360,601	2916 8 000'47 2398711 220723 50885 21740 261,677	
EXPENSES Land Rest Management Indicates Look Trace All ask becames Performance Input. Using It Surceases Total, EXPENSES	6,000 34,000 6 4,075 6 1,200 36,075	0 8,120 24,490 0 4,913 0 1,228 36,797	6,343 34,870 6,973 6 1,346 26,520	6,387 21,489 6,172 6 1,273 3 ,233	8,405 25,918 0 5,317 0 1,309	0 8,400 26,406 0 1,380 0 1,305 30,600	0,717 27,038 0 5,480 0 1,351	0 0,002 27,568 0 0,000 0 1,278 41,430	
HET REMERCE	201,729 241,564 501,564 50,220 124 50,054 50,056 506,000	210,628 282,805 96,216 1,27 80,876 90,854 118,689 128,669	217,940 345,500 383,941 71,521 1,20 80,076 90,054 134,668 130,745	201,001 361,000 361,767 71,873 1,133 80,076 40,056 133,541	284,918 84,340 1.34 10,078 81,073	200,446 245,850 265,850 80,657 1.37 10,656 15,056 82,618	245,500 245,500 245,005 97,006 1,40 80,005 165,568 81,010	260,028 240,500 260,648 164,028 1.43 80,028 82,085 175,544 30,464	
FINANCIAL SUMMARY D SEMBINOSITRATIO PYOTEMINOSIMPIEPI PYOTOME Rind year Totali en Castr 31 TN PRETAZION RPV BESSE CHERNAL DECEMBRAS	ata	1.66 \$6,641,680 \$3,874,584	Bingle \$2.0	Hat Present \ 92,386,485	/akse (25 yr)				

- \$2.6 Million
- 3.7 Million/kwh/yr
- \$.06 \$.07/kWh
- \$.04 \$.05/kWh w/REPI
- NPV \$2.5 million
- Levelized \$.035/kWh
- IRR = 18%
- Benefit/Cost 1.6

Summary

Grand Traverse Band of Ottawa & Chippewa Indians November 2008

Commercial Wind Power Project
Capital Cost: Range from \$1.3 million to \$28 million
Capital Cost: Single wind turbine (minimum recommendation) \$1.3 million.

Capital Cost: To meet 100% net electric needs of the GT Resort/New Turtle Creek Casino with wind power: Capital Cost: \$18 million to displace \$2 million annual electric cost and 28 million kW-hrs per year. Capital Cost: To account for 100% of GTB commercial, public and residential electric use of \$3 million with wind power - \$28 million.

Accomplishments:

Biomass

Extensive Biomass Energy Evaluation

Why Burn Wood? Biomass is:

- Humanity's Oldest Fuel
- Locally Available
- Often a Waste Product
- Can Be Low Cost
- Low In Sulfur, Nitrogen,
 Mercury and Other Pollutants
- Carbon Dioxide Neutral
- A Renewable Resource
- Low Cost Fuel \$20/ton (\$2 vs \$10 per MMBTU

Biomass Fuel Supply

- Wood chips (MC 35 50%)
- Well established market for delivery with 30 – 40 tons per truck
- Cost: \$18 \$26 per ton (\$2 \$3 / MMBTU)
- Need to ensure good forestry practice and sustainable utilization
- Supply 10 X GTB needs....

Biomass: Local, sustainable, renewable, clean, and efficient with the appropriate type & scale.

Biomass Prices: Stable prices with a competitive market (courtesy of Force

Technologies: A. Evald)

Medium Scale Biomass Supply Options (Sustainable!)

- Wood lot improvement whole tree chips
- Straw
- Pellets
- Farm Wood MillWaste
- Other (clean waste, cherry pits, corn...)

Larger Scale District Heating Plants (Denmark)

Wood Chip Biomass Heat Plant

(courtesy of Force Technology A. Evald)

Central Michigan University Biomass Heat and Electric Plant

CMU Biomass Combined Heat & Power (CHP) District Heat System

District Heat Distribution System

- Buried Supply and Return Pipelines
- Pre-Insulated Twin-Pipe
- Use Sidewalks and Some Roads
- Individually Metered

Photo courtesy of Force Technology

Residential Connection

Photo courtesy of Force Technology

Biomass District Heat Study Options

- Peshawbestown (West & East)
- Charlevoix
- Benzie
- GT Resort, New Turtle Creek, New Acme

Preliminary Residential Biomass Feasibility

- Up to 100 homes in district
- \$16,676 per home
- 100% wood space& hot water heat
- 12 year simple payback
- Added O&M savings, social & environmental benefits

Peshawbestown District Heating Loop

COST ESTIMATE

HURST HOT WATER BOILER, 600 GPM ~ 130F IN TO 180 F OUT \$411,825.00
FREIGHT TO JOBSITE \$25,000.00
FOUNDATION \$9,000.00
FIELD ERECTION \$125,000.00
START-UP & OPERATOR TRAINING \$95,000.00
FUEL HANDLING \$95,904.00
OPTIONAL EQUIPMENT \$62,905.00

TOTAL BOILER COST, INSTALLED AND RUNNING

\$739,138,00 BUDGET

\$525.00 AIR HANDLING UNIT COST \$200.00 AIR HANDLING UNIT INSTALLATION---GUESS ONLY \$725.00 TOTAL COST PER INSTALLED AIR HANDLING UNIT 120.00 AIR HANDLERS REQUIRED \$87,000.00TOTAL AIR HANDLING UNITS COST

BUDGET

PIPING COST

\$650,000.00 PLACE HOLDER ONLY. NEED SITE SPECIFIC DETAILS ON INSTALLATION.

BUDGET

ENGINEERING AND PROJECT MANAGEMENT

\$200,000.00 PLACE HOLDER ONLY

BUDGET

TOTAL INSTALLED COST

\$1,676,138.00

BUDGET

WOOD FUEL COST

4500 BTUILB WOOD HEAT CONTENT
4350 POUNDS PER HOUR OF WOOD REQUIRED
2.175 TONS PER HOUR OF WOOD CHIPPED AND DELIVERED
518.00 DOLLARS PER TON FUEL COST

\$39.15 FUEL COST PER HOUR FOR 120 HOMES \$0.200 PER THERM WOOD FUEL COST

NATURAL GAS FUEL COST

80,000 BTUH PER HOUSEHOLD

0.8 THERMS PER HOUSEHOLD

\$1.20
PER THERM NATURAL GAS COST

100 HOMES

85,00% NATURAL GAS FURNACE EFFICIENCY

\$1.12.94 FUEL COST PER HOUR FOR 120 HOMES

New Turtle Creek & GT Resort District Heat 5 MW electric, with TCL&P Cooperation

\$25 Million Capital Cost

\$.04 - \$.05 / kWh \$8.50 / MMBTU

TCL&P Biomass CHP District Heat				Il Lage to Pres	279
Good Fired Steam CVP 60 MMBTU Peak			a cap most	***	
	456		Willen		
	4.00				ATM 4
Peak Wood Heat Output (million BTU)			mmbhu		276,4
Wood Fuel Cost per for	\$		/US ton		236,
Peak Blectric Capacity (MI)		5,000		Heat Cost per mmbtu 5	
Becitic CHP Operating Capacity Factor 1		100	CF	Total Heat Fuel Costlyn S	946,5
Utility Electric State Price ShW-fir			AW-hr	W-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1 P-1 P	
Local Electric Sale Price (to set) Skillin			AW-hr	Heat Only Simmblu (wicepted & ORM) 5	
Thermal Heating Capacity Factor % Thermal Heating Sales Price Shamili TU	N		CF mmbtu	Heat Energy Simmble (fuel only) \$	2.
Therea Heating want Price Status IV		8.47	STATE OF	H. Gas Cost Sitematru @75% eff. 5	10.
CAPITAL COSTS				H. Gas Cost Strategy (gray, etc.)	10.
		17 000 000			
Wood Fired Unit at Site or Boiler & storag		12,000,000		Thermal Heat States @50%HG Cost 5	
Nechanical Interconnection		\$4,000,000		Yutal Blectric Expense perlyr S	
Steam Turbine		\$3,000,000		Electric Output kW-familyear	32,950,
Building Retroft & Prep		\$2,000,000		First Year Electric Cost per kill-for S	
Utility interconnection witransforces		\$500,000		Electricity killibly: Available for Gale	(11,150,0
Engineering & Developmen	1	\$3,000,000		Value of Excess Disclyr at 5.00 bish 5	(999.)
Legal & Financial Expense	_	\$100,000			10.000.0
TOTAL CAPITAL COST	3	30,500,900		Local Consumption Electric kWh	44,000,0
				Percent Local Electric to Total Gen	12
COST SUMMARY ARALYSIS	_			Halumi Gas Cost/CCF 5	
Installed Capital Cost		20,500,000		Energy Cost to Electric kH4-for Price S	1,735,1
First Year Fuel, ORM & Admin Cost		\$1,495,321		(assumes thermal energy sold at 75% NG)	
First Year Capital Recovery Cost		\$2,142,000			
First Year Expense (Debt & OSM)	1	\$3,627,321		Executivest and Electric Suise S	1,223,1
Installed Cost per KWe		5,139			
Installed Cost per kW-helys		0.922	AW-hr		
First Year Cost per IW-for wio REPI			AW-hr		
First Yr Cost per kWh wREP!	\$	0.025	AW-hr	Energy Efficiency	
				Total Wood Fuel Energy in numbraly:	394,3
				Heat Output numbrulyear	236,
First Year Operating Cost Data			Permi	Electric Output kW-hm/year	22,950,
Pusi	9	1,100,971		military and a second	113,1
Rent	9		0.0%		
Admin	9	65,769			
CGM	1	391,375			
Taoes			0.0%		
Insurace		57,375			
Capital Recovery	1	2,142,009		•	
	TAL \$	3,607,301		Total OSM & K Cost less Excess Sale \$	2,494,1
Note: Chancers Rain for Present Votes Cale.		661		Present Total Contive & T.Ck & GTR 5	2,000.0

Solar Thermal

- Small systems for each home and building
- Large commercial systems for casino, hotels, public institutions, residential districts, resorts, etc.
- A large solar thermal system can provide most of the domestic hot water and process water (cleaning, etc.) to displace natural gas and summer peak electricity
- Cost: Less than \$.15 / kWh energy depending on subsidies, etc.

Solar Thermal: Just face south without shade!

Solar (thermal) hot water

Solar electric (photovoltaics): Peak power when we need it.

Solar Electric (photovoltaic)

- Small and large systems: 1 kW to 1000 kW +
- Home, commercial and public applications based on the solar resource
- Most expensive, but most reliable electric power source
- Cost: \$.40 to \$.60 / kWh depending on incentives and scale

GTB: 100% Solar Electric Technology & Energy Resources

- Solar irradiation per year on one acre:
 4.87 Million kW-hrs/yr (assumes 1,200 kWhrs/yr/m2)
- To meet 100% Net Annual 42 Million kW-hrs/yr Electric Consumption with Solar PV:
 - –Acres Required with 50% PV land coverage and 14% efficient solar PV: = 124 acres

Energy Efficiency Review

Total Tribal non-residential cost of energy \$2 million +

10% - 20% potential savings \$200,000 to \$400,000 per year suggest investment of \$1 to \$2 million easily justified

Top measures to consider:

- Lighting upgrades: T8's, controls, CFL's, LED's
- HVAC system retrofits

- Outreach to Tribal Members & Outside Community
- Articles in GTB newsletter, local newspaper, community forum
- Educational Brochure: "The Path to Energy Sovereignty"

Power Market Assessment

Transmission & Interconnection Discussions with Local Utilities

Technical Issues

Power Market Assessment

- Small scale: net metering
- GTB Self-supply
- TCL&P & MPPA green power supply
- Wolverine Power (Cherryland), CE, etc.
- Renewable Energy Production Incentive Payment (REPI) 10 yr - 2 cents/kW-hr
- Carbon credits, green tags, Native Energy
- Other markets...

- Environmental Evaluation
- Benefit Assessment
- Preliminary System Design
- Long-Term O&M Plan
- Business & Organizational Planning
- Financing Plan

Future Plans

- Council guidance on what, where & when
- GTB energy organization?
- Set policy for:
 - Homes: Solar thermal, solar PV, small district heat, energy efficiency services
 - Government: Larger scale biomass district heat, solar PV, wind power, efficiency
 - Commercial: Large wind power, solar, biomass district heat. Begin wind permitting at GT Resort?
 - Economic Development: Commercial wind power, regional biomass district heat

Thank you!

Suzanne McSawby
GTB Natural Resources Mgr.
Tom Callison, Project Mgr.
Steve Smiley, Consultant