October 16, 2012

Office of Electricity
Delivery & Energy
Reliability

The Impact of Smart Grid Projects Funded by the Recovery Act of 2009

Joe Paladino
US Department of Energy
Electricity Advisory Committee Meeting, Oct 15-16, 2012

SGIG Deployment Status

Peak and Overall Demand Reduction via AMI, Pricing and Customer Systems

62 SGIG projects (pricing and customer systems offered mostly at pilot scales):

- 56 offering web portals; 46 offering (DLC, PCTs, and/or IHDs)
- 32 offering pricing (TOU, CPP, CPR, VPP)

Project Elements	OG&E	MMLD	SVE
Project Liements	770,000 customers	11,000 customers	18,000 customers
Customers Tested	6,000 residential	500 residential	600 mostly residential
Time-Based Rate(s)	TOU and VPP, w/CPP	СРР	СРР
Customer Systems	IHDs, PCTs, and Web	Web Portals	Web Portals
	Portals		
Peak Demand	Up to 30%	37%	Up to 25%
Reduction	1.3 kW/customer	0.74 kW/customer	0.85 kW/customer
	(1.8 kW/customer w/CPP)		
Outcome	Deferral of 210 MW of	Lowers total	Lowers total purchase
	peak demand by 2014	purchase of peak	of peak electricity
	with 20% participation	electricity	
Customer Acceptance	Positive experience, many	Positive experience,	Interested in continued
	reduced electricity bills	but did not use the	participation, many
		web portals often	reduced electricity bills

Advanced Volt/VAR Control to Improve Energy Efficency

25 SGIG projects are deploying advanced VVC:

- 11 are applying conservation voltage reduction (CVR) to reduce peak load -
 - Up to 200 MW reduction for one utility (over 100's of circuits)
- 7 are using CVR to reduce energy consumption
- Multitude of equipment integration and control schemes
 - Many are applying distributed management systems
 - Some are using smart meter data

OG&E Example:

- Implementing a control algorithm to set voltage levels at the substation
 - Applying smart meter data
 - Capability turned on when power price exceeds \$0.22/kWh
- Achieved 8 MW reduction from application of VVC technology on 50 circuits during Summer 2011
- Goal 74 MW reduction over 400 circuits by 2017 (SGIG contributes to 16 MW)

Reliability Improvements

48 SGIG projects are applying distribution automation technologies to improve reliability:

- 42 deploying automated feeder switches (1 to > 1000's of switches)
 - Enables fault location, isolation and service restoration functions (FLISR)
- Multitude of system integration schemes (AMI/OMS/DMS/SCADA/GIS)
 - 26 projects are applying distribution management systems
 - 36 implementing AMI outage notification
 - 22 deploying equipment health sensors

Initial results from 4 Projects (1,250 feeders) – April 1, 2011 through March 31, 2012

Reliability Index	Description	Weighted Average (Range)
SAIFI	System Average Interruption Frequency Index (outages)	-22 % (-11% to -49%)
MAIFI	Momentary Average Interruption Frequency Index (interruptions)	-22 % (-13% to -35%)
SAIDI	System Average Interruption Duration Index (minutes)	-18 % (+4% to -56%)
CAIDI	Customer Average Interruption Duration Index (minutes)	+8 % (+29% to -15%)

Weighted average based on numbers of feeders

AMI: Operational Efficiency Improvements

63 SGIG projects deploying AMI are expecting to see operational efficiency improvements derived from smart meter features:

- Automated meter reading
- Remote service connections / disconnections
- Voltage and power quality monitoring
- Outage and restoration notification

Data from 15 AMI projects over one year shows a 36% reduction in operating costs and 39% reduction in vehicle miles –

- Benefits are attributable to fewer labor resources, overtime hours and truck rolls
- Observations:
 - Projects with low customer density are reducing overtime labor and fuel usage, but staffing requirements are not expected to change significantly
 - Large projects with high customer density are reducing (or shifting) labor resources to 10% of the levels needed prior to SGIG

Application of Synchrophasor Technology

Investments in synchrophasor technology are being made by 10 SGIG projects

Midwest Independent System Operator (MISO):

- 161 synchrophasor measurement devices installed and now operating along the 50,000mile interconnected system in the MISO 11-state region.
- MISO expects to make available synchrophasor data to its real-time system operators in April 2013

MISO Applications:

- System Modeling Dynamic model enhancement process to more accurately determine transfer limits on the system
- After-the-fact event analysis To determine an accurate sequence of events and accurate picture of how equipment responded, resulting in more timely and accurate evaluations of disturbances

Questions

