Next Generation Nuclear Plant

Thomas J. O'Connor, Director
Office of Gas Cooled Reactor Technologies

Nuclear Energy Advisory Committee Meeting December 18, 2009

NGNP – Features and Characteristics

Nuclear Energy

- Helium cooled noble gas does not chemically react
- High outlet temperature 700° to 950° C for high energy conversion efficiency and process heat uses
- Coated particle fuel excellent fission product retention under operating and accident conditions
- Passive safety features ensure public health and safety
- Small to medium power output good fit for industrial applications
- Improved fuel utilization up to three times the burnup of light water reactors

NGNP Appropriations

Nuclear Energy

NGNP Appropriation (\$M)				
FY 2006	FY 2007	FY 2008	FY 2009	FY 2010
43.3	29.4	108.8	178.0	169.0

NGNP R&D Focus Areas

■ Fuel Development and Qualification

Establish a licensing basis for gas-cooled reactor coated-particle fuel (several fuel tests in ATR)

Graphite Materials Qualification

Used as an internal core structural material, moderator, and reflector (several tests in ATR and HFIR)

■ High Temperature Material Qualification

Metals used in heat exchangers will be exposed to temperatures far greater than seen in Light Water Reactors

■ Design and Safety Methods and Validation

Develop and benchmark improved simulation techniques, analytical codes and methods

Fuel Development and Qualification

- Establish U.S. know-how in the manufacture of coated particle fuels
 - Multi-year experimental campaign of irradiations and testing
 - Development and application of stateof-the art analytical codes and methods for fuel performance
 - Development and application of world-class techniques for assessing fuel quality during manufacture and post-irradiation
- First fuel test began in December 2006 and completed November 6, 2009:
 - 620 full power days of irradiation with no particle failure
 - Peak fluence 4.05 x 10²⁵ n/m² (3.32 avg)
 - Peak burn-up 19.5% FIMA (16.53 avg)

Capsule Cross-section

Graphite Materials Qualification

High Temperature Materials

Mechanical Testing

Development of Material Properties and Design Rules and

ASME Codification

Materials:

- Pressure vessel steels
- Alloys for heat exchangers (up to 800 □C)
- Control rod sleeves and other core internals

Program Participants INL, ORNL, ANL

Al Oxide intergrowth

Material Characterization

Environmental Testing

Design & Safety Methods

Physics, Thermal and System Safety Methods, Code Development and Application

Design Methods and Validation

Separate Effects & Integral Testing Under Normal & Off-Normal Conditions

INL's Matched Index of Refraction (MIR) Facility to Study 3-D Flow Effects in Plena

Graphite/Air Reaction Rate Testing

Scaled Vessel Testing

NGNP Licensing Activities

■ DOE and NRC collaborate on Research and Development Needs

- DOE and NRC collaborated to develop a phenomenon identification ranking table (PIRT) for NGNP
- DOE structures R&D to meet PIRT needs as well as designer data needs
- Examples of R&D collaborations include Reactor Cavity Cooling System experiments, construction of a High Temperature Test Facility and collaboration on graphite dust issues
- DOE is preparing several white papers to initiate regulatory review of gas reactor issues including:
 - Defense in Depth
 - High Temperature Materials
 - Fuel Qualification
 - Mechanistic Source Term
- Formal pre-application licensing review scheduled to commence in FY 2011

Funding Opportunity Announcement

- Issued on September 18 Proposals received November 16
- Federal Assistance is for conceptual design, cost and schedule estimates, and business plan preparation
- Requires cost-share from industry In accordance with Section 988 of the Energy Policy Act of 2005
- Supports more than one design
- The total estimated federal contribution for the Phase 1 FOA is \$40M
- Schedule is to announce selections in January 2010
- Conceptual Design Reports are due August 31, 2010

Future NEAC Task

■ NEAC Review Fall 2010

- Review status of R&D
- Review status of licensing activities
- Review Conceptual Designs
 - Designs
 - Management plans
 - Cost and schedule estimates

■ NEAC Recommendation to NE-1

Have the accomplishments in the areas of R&D, licensing activities and conceptual design been sufficient to support initiation into Phase II for the development of a final design and, ultimately, construction of a demonstration reactor?

Schedule

Nuclear Energy

Date	Activity	
08/31/10	Detailed conceptual design reports due to DOE	
11/15/10	NEAC recommendation to S-1 on proceeding to Phase 2	
12/15/10	Submit NEAC report to Congress	
01/11/11	S-1 announcement on path forward to Phase 2	
01/15/11 – 09/30/11	Procurement process for Phase 2 Award	
09/30/11	Award cooperative agreement for final design and licensing	