Developing the Next Generation Nuclear Plant Evolving Strategy and Risk

Phil Hildebrandt
Project Director
Next Generation Nuclear Plant Project

Nuclear Energy Research Advisory Committee

February 21, 2007

Outline

- Summary update on the NGNP Project
- Developing the Commercial Alliance and the Public-Private Partnership
- Selected design and technology development risks

The NGNP Concept - HTGR Demonstration

Reference Commercial Demo

Where are we?

- 1. Partial project organization
- 2. Commercial alliance essential to obtain adequate funding for development
- 3. Preliminary project risk assessment/management plan
- 4. Engineering studies and pre-conceptual design in process
- 5. Preliminary R&D plan acquisition studies for fuels and materials and pre-conceptual design will re-define
- ROM cost and schedule estimates better defined by preconceptual design
- 7. Technical and functional requirements to be developed from preconceptual design work

Defining Documents

- Business Strategy A Public-Private Partnership to Develop the Next Generation Nuclear Plant Commercial Demonstration, October 2006
- Technology Review Design Features and Technology Uncertainties for the Next Generation Nuclear Plant, June 30, 2004
- Technology Risk Assessment Next Generation Nuclear Plant Project – Preliminary Project Management Plan, March 2006

Near Term Priorities for NGNP

- Engineering Studies and Preconceptual Design
- Selected R&D
- Licensing Strategy
- Quality Assurance Excellence
- Planning for Project Success

Execution is a Multi-Phased Effort

Phase 1	Phase 2	Phase 3	Phase 4
Program Development & Project Definition	Plant Design & Licensing	Plant Construction & Operation	Commercial Deployment
 Conceptual Design & Engineering Licensing Strategy Development Reference Cost & Schedule Baseline 	 Complete Detailed Design License NGNP Obtain Construction License Detail Design Cost & 	 Construct Facilities Train Operators Conduct Confirmatory Testing Operation & Demonstration Runs 	Commercial CertificationDeployments

Key Issues Will Define Successful Execution

- NRC license application and licensing process
- Technology development and qualification
- Acquisition strategy and long lead procurement
- Startup testing and initial operations

Steps to Assure Viable Commercial HTGR

- 1. Establish commercial industry alliance to enter into a public/private partnership
- 2. Complete the conceptual, preliminary and final design of a prototype HTGR that produces process heat, hydrogen and electricity
- 3. License with the Nuclear Regulatory Commission
- 4. Build and operate a demonstration plant sufficient time to confirm performance
- 5. Certify standardized HTGR designs for commercial deployment in a broad range of applications

Proposed Partnership Organization

NGNP Public-Private Partnership

What are the near-term objectives of the Public-Private Partnership activities?

- Demonstrate commercial energy industry interest in the HTGR concept and related technologies, including hydrogen production
- Attract private funding and value-in-kind contributions from endusers and technology developers/vendors
- Obtain political support and Government agreement to cost-share development and demonstration
- Steps to achieve these objectives include:
 - Preparing a credible business strategy and project plan
 - Developing a commercial Alliance of major end-users and technology developers/vendors
 - Forming a public-private partnership to share the development and demonstration costs for these advanced technologies

What does the Alliance/Partnership want to demonstrate and commercialize?

Balance

- Economics
- Performance
- Reliability
- Design risk
- Technology development risk
- Timing

Selected Design and Technology Development Risks (1)

- TRISO Fuel
 - Performance
 - Acquisition (e.g., fabrication facility, timing)
- Graphite
 - Design requirements
 - Qualification methods
 - Acquisition
- Intermediate Heat Exchangers
 - Design
 - Materials

Selected Design and Technology Development Risks (2)

- Heat Transport
 - Medium
 - Operating conditions
 - Degree of isolation
- Process Heat Applications
 - Processes
 - Scalability

