

The Global Nuclear Energy Partnership: Program Integration at the National Laboratories

Phillip J. Finck
Associate Laboratory Director
Idaho National Laboratory

NERAC

- GNEP Architecture
- Program Integration Challenges
- Review of Multi-lab Activities
 - Technology Demonstration Program Preliminary Plan
 - Insights from the Multi-Lab Process
- Critical Technology Issues
- Review Processes
- Summary

The Deployement of GNEP Requires the Successful Development and Integration of Several Technologies

Integration of Capabilities and Demonstrated Competence are Critical Element for GNEP Success

A successful GNEP program requires:

- An integrated program with a clear vision and measurable goals
- Participation of industry, laboratories, and universities

■ INL, as the NE lab, was asked to integrate the early GNEP related activities:

 Technology Development Requirements based on a systematic Systems Analysis

Demonstrated competence:

- Involve the foremost national and international expertise
- A requirements driven process to systematically organize and execute the GNEP

Integration has Several Challenges

U.S. nuclear resources are dispersed and aging

- All laboratories need to participate
- Experienced manpower is becoming scarce
- Many aging facilities, with capabilities that have declined

Diversity of technical alternatives

- Strong need for systems analysis
- Critical role of peer review and quality assurance

■ Need to transform the nuclear R&D approach

 Define a path from the current empirical approach to science and simulationsupported research methods

Need to enable collaboration with industry

Support industrial needs in the short term, drive the technologies for the long term

Need to support the regulatory approach

- Framework needs to be redefined for new facilities
- Regulatory expertise needs to be rebuilt

GNEP Technology Demonstration Program Preliminary Plan

Key assumptions

- The development model described in the FY 2007 budget request (engineering scale demonstration of reactor and advanced recycling technologies, advanced fuel cycle facility)
 - Assumed a Secretarial decision in Summer 2008
 - Described what needs to be done to demonstrate the GNEP technologies (not who and not where)
- 10 national laboratories participated in the development of the plan
- Red team review by seven senior outside experts representing industry, labs, universities, and the Nuclear Regulatory Commission
 - Provided external validation of content
 - Membership: Henry Stone, John Sackett, Roger Mattson, Neil Todreas, Salomon Levy, Daniel Wilkins, Doug Chapin

The Multi-Lab Effort Provided Insights for Improved Program Execution

Need for basis documents to document the technical underpinnings of GNEP

- Deployment System Architecture
- Systems Requirements and Criteria
- Demonstration System Facility Timing
- Proliferation Risk Assessment (NA-24)
- Support Facility Assessment
- Technical Basis for Reference Technologies
 - UREX+1a
 - Sodium Fast Reactor
 - Oxide or Metal fuel for transmutation fuel
- Selection of Fast Reactor Driver Fuel Type

Need for an integrated waste strategy

- Recognizing the role that waste forms play in the success of GNEP
- Need for involving non-traditional (AFCI) elements crucial for success
 - Developed the role of basic science and simulation in formulating the GNEP model

GNEP: Critical Technology Issues

Program Information Undergoes a Multi-Level Review and Validation Process

- The program inputs, processes, tools, and results all require some level of benchmarking or V&V
- Major reports are first reviewed by the originating laboratory (or laboratories), then independently by peers at other laboratories
- The laboratory peer review is often augmented by university participants
- Significant results are further reviewed by DOE technical staff and managers
- This internal review process is being extended to include independent external reviews
- Independent technical advice is provided by the Nuclear Energy Research Advisory Committee (NERAC) via the Advanced Nuclear Transformation Technology subcommittee chaired by Dr. Burton Richter
- A National Academy of Sciences review of the DOE's science and technology R&D program is currently in progress

The Role of Integration will Continue to Evolve

- The established requirements-driven process will drive execution
- Peer review is being emphasized
- The technology development plan will continue evolving
 - To account for programmatic and strategic changes
 - To incorporate alternatives
 - To account for industry involvement
- The transformation of the R&D process will require multi-level coordination

