EMERGING TECHNOLOGIES FOR LARGE SCALE ENERGY STORAGE - TOWARDS LOW TEMPERATURE SODIUM BATTERIES

JUN LIU

PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WA 99252

PNNL: Zhenguo Yang, Yuliang Cao, Xiaolin Li, Lifeng Xiao

Sandia: Bruce C. Bunker

Supported by PNNL's transformational Materials Science Initiative

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Pacific Northwest National Laboratories

Significant challenges for meeting the long term low cost and reliability requirement for stationary energy storage.

Current technologies are expensive for energy applications

- a) Balancing requirement has a big market;
- b) Current practice is not the least expensive option;
- c) Electrochemical storage can be cost competitive;
- d) Possible solutions:

NaS, NaS+DR, NaS+PH, Li-ion+DR, NaS+PH+DR

e) Arbitrage not economical in the near future (by 2019).

Grand Challenges for Large Scale Energy Storage

Energy storage is application and system dependent;

Fundamental understand of the materials properties and chemical processes in complex, reactive environments and systems;

New materials, chemistry and components to significantly improve the efficiency, reliability, safety and life span of current and future storage systems;

Revolutionary designs, concepts, architectures and hybrid systems that can significantly reduce the system and maintenance cost: of large energy storage systems;

Novel energy storage mechanisms, energy storage technologies that are environmentally friendly and that are not dependent on materials and chemicals of limited supply.

Batteries have been around for a long time, and Li-ion batteries are strong candidates for transportation applications.

Significant cost and safety challenges for large scale applications

Biology stores energy with Na, K, Ca ions, not Li ions (electrical eels).

Storing large amount of energy using NaCl?

Cell membrane

Cell membrane

Gate

J. Xu, D. A. Lavan, Nature Nanotechnology 2008, 3, 666.

Ion channels in biology

Charge-discharge processes in biological channels

Important properties of ion transport:

Fast transport, high selectivity, and ion pumping (charge) and gating (prevent discharge)

A wide range of open structures can be explored as the host materials for Na ion

Mesoporous carbon

Artificial channels based on functionalized mesoporous materials

X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, and J. Liu, K. M. Kemner, *Science*, 276, 913, 1997.

Y. G. Wang, H. Q. Li, Y. Y. Xia, Adv. Mater. 2006, 18, 2619.

Open inorganic crystalline structures

Layered and crystalline Na_XMnO₂

The Na ion insertion in Na_xMnO₂ is complex, and the stability remains a big issue.

New cathode materials based on Na_xMnO₂ by controlling the chemistry and the particle morphology

Reasonable stability and capacity are possible.

Pacific Northwest
NATIONAL LABORATORY

Voltage / V

Anode and full cell behavior for Na-ion

Summary

It is possible to achieve good capacity and stability for room temperature Na ion battery using the appropriate ion transport materials for the cathode and anode.

