

Testing and Evaluation of Energy Storage Devices

DOE Energy Storage Systems Research Program Annual Peer Review

November 2 - 4, 2010 Washington, DC

Presented by:

Tom Hund, and Wes Baca

Sandia National Laboratories
Albuquerque, NM
(505) 844-8627
tdhund@sandia.gov

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Historical Sandia Battery Testing Introduction (2002 – 2010)

ESMA Supercapacitors

Maxwell Supercaps

NessCap Supercaps

East Penn lead-acid/carbon (ALABC)

Sandia Battery TestingIntroduction FY-10

Unbiased testing is needed to establish performance improvements.

Testing:

- The large format (1,000 Ah) Furukawa and East Penn Ultrabattery
 - VRLA + Supercap incorporating an electrochemical supercapacitor in parallel with the negative electrode.
- International battery Li-ion FePO₄ prismatic cell
 - large format prismatic cell
- Hoppecke OPzS and OPzV cells
 - vented and valve regulated tubular cells
- GS Yuasa
 - granular silica tubular gel
- New test equipment installed 2010
 - Arbin SCTS 200 amp, 60V
 - Bitrode 1,000 amp, 72 volt tester 2 circuits

Sandia Battery Testing Introduction FY-10

East Penn
UltraBattery®
Lead-Acid/Supercap

Furukawa UltraBattery® Lead-Acid/Supercap

International Battery Li-FePO₄

GS Yuasa granular silica tubular gel

Results – PV-Hybrid Cycle Test UltraBattery®/Lead-Acid Carbon Supercap

Results – PV-Hybrid Cycle Test UltraBattery®/Lead-Acid Carbon Supercap

East Penn and Furukawa 1,000 Ah Ultrabattery PV Hybrid Cycle-Life Tes

Results – Utility Cycle Test UltraBattery®/Lead-Acid Carbon Supercap

Results – Utility Cycle Test UltraBattery®/Lead-Acid Carbon Supercap

Furukawa Ultrabattery Utility Cycle 400A Chr/Dch

FY-10 Conclusions

Summary

- UltraBattery® cycle performance has proven to be significantly better than conventional VRLA batteries.
 - <u>PV-Hybrid Cycle Test</u> 1 to 9% capacity loss in 1 yr vs. ~20% in 1 month (>10X cycling performance)
 - Utility Cycle Test capacity increased after 1,000 cycles
 - Utility Cycle Test cell voltage is stable over the 1,000 cycles
- UltraBattery® does cycle at higher than expected temperatures at 400 amps
 - <u>Utility Cycle Test</u> East Penn ~45C
 - <u>Utility Cycle Test</u> Furukawa >55C

FY-11 Work

- Cycle UltraBattery®
 - Continue PV-Hybrid Cycle Test >20% capacity loss or 2 yr are complete
 - Continue Utility Cycle Test >20% capacity loss or 1 yr is complete
- Utility Cycle International Li-FePO₄ Cell
 - <u>Utility Cycle Test</u> >20% capacity loss or 1 yr is complete
- Utility Cycle Altairnano Li-titanate oxide Cell
 - Utility Cycle Cest >20% capacity loss or 1 yr is complete
- Flow battery testing (UTRC & Red Flow)
 - Environmental testing, efficiency, reliability

