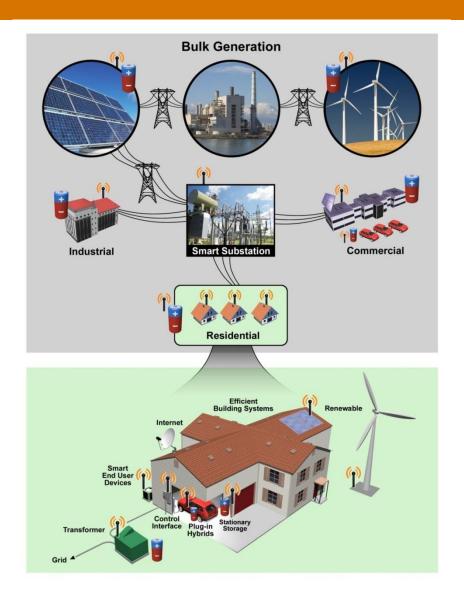
Low Cost, Long Cycle Life, Li-ion Batteries for Stationary Applications

Daiwon Choi, Wei Wang, Vish V. Viswanathan and Gary Z. Yang


Pacific Northwest National Laboratory 902 Battelle Boulevard P. O. Box 999, Richland, WA 99352, USA

Department of Energy, Washington DC Nov. 2, 2010

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Pacific Northwest National Laboratories

Introduction

- Investigate the Li-ion battery for stationary energy storage to compliment the renewable energy resources such as solar/ wind power and load leveling for grid integration.
- Energy storage unit for possible community application ~kWh level.
- ☐ Li-ion battery energy storage with effective thermal management to improve its cycle and calendar life.
- ☐ Design Li-ion battery pack suitable for large scale energy storage system.



Objectives

- ☐ Screen possible electrode materials and its combinations suitable for large scale Li-ion battery.
- ☐ Characterization of inherent heat generation of possible electrode candidates and its combinations.
- Cost analyses of the full cell battery per energy density.
- ☐ Improve the cycle life of Li-ion battery >1000cycles at 1C rate in coin cell configuration.

Cost Analyses

Figure 1. Cost per kWh on various cathode / anode combination Li-ion battery (40kWh).¹⁻³

Ref) ¹ Entek projected cost

- ² TIAX estimate
- ³ Estimate based on numbers provided by Andrew Jansen at ANL

- □ Based on EV battery configuration.
- Li₄Ti₅O₁₂ anode is more expensive due to lower specific capacity
 175mAh/g over graphite (372mAh/g).
- LiFePO₄ cathode in full cell is slightly expensive due to lower potential 3.45V vs. Li⁺/Li.
- Overall cost analyses depends on safety and cycle life of the full cell battery.
- lacksquare LFP : LiFePO $_{\scriptscriptstyle 4}$
- LMO: LiMn₂O₄
- NCA: LiNi_xCo_yAl_zO₂
- NCM: LiNi_xCo_vMn_zO₂
- LTO: Li₄Ti₅O₁₂

Entropy vs. State of Charge (SOC)

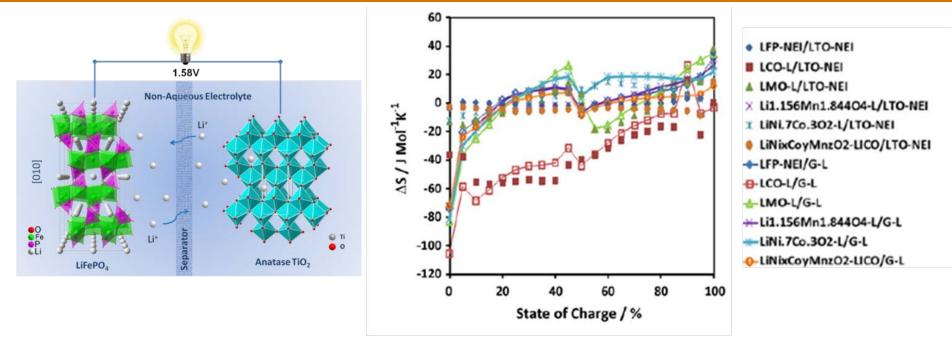
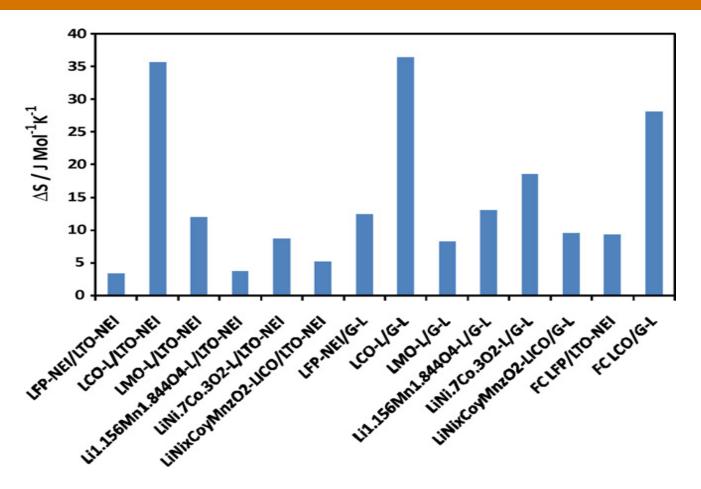
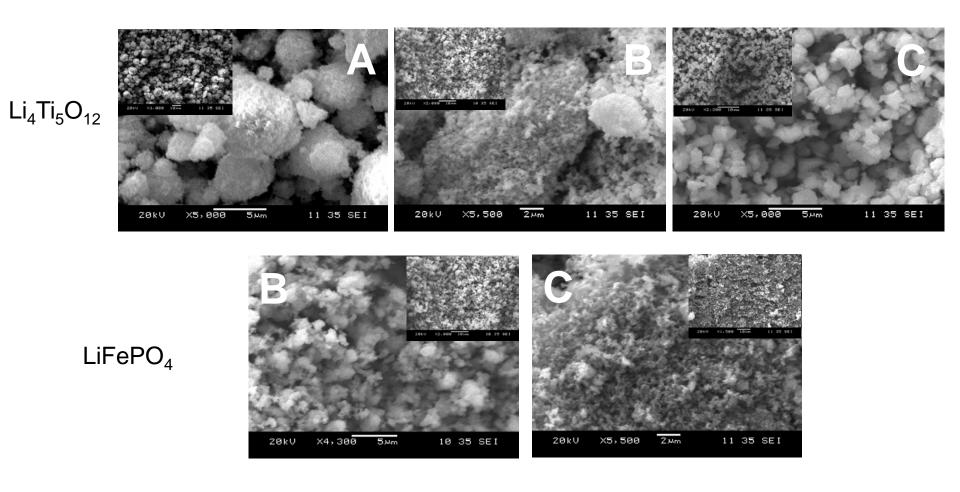



Figure 2. Entropy measurements on various electrode materials vs. state-of-charge (SOC).1


- □ Entropy changes at various state of charge (SOC) have been screened for selection of various electrode combinations with effective heat management and safety (thermal runaway).
- □ LiFePO₄ cathode and Li₄Ti₅O₁₂ or TiO₂ anode combination show the low internal heat generation, due to minimum crystal structural changes "zero strain" during the Li insertion/extraction.
- □ LiFePO₄, Li₄Ti₅O₁₂ and TiO₂ redox potentials lie within stable window of conventional electrolyte where SEI layer formation is prevented.

Entropy Measurements

Figure 3. Average of absolute value of computed full cell entropy change over the 0~100% SOC range. FC LFP/LTO-NEI and FC LCO/G-L (last 2 columns) correspond to average of measured entropy change for full cells.

Microstructures of LiFePO₄ & Li₄Ti₅O₁₂

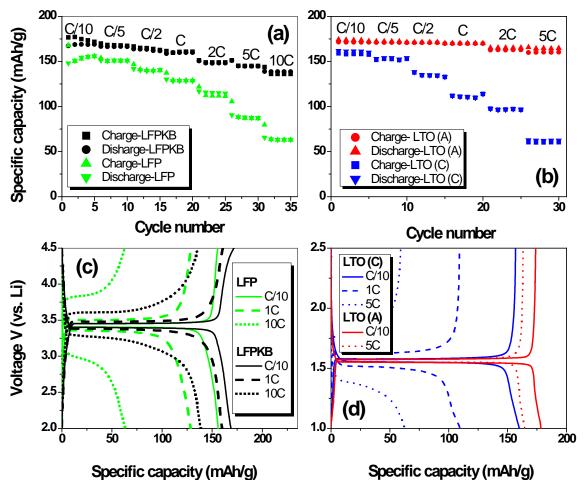


Figure 4. SEM micrographs of LiFePO₄ and Li₄Ti₅O₁₂ electrode materials from different commercial sources (Company A, B, and C).

Pacific Northwest

NATIONAL LABORATORY

Cathode & Anode Half-Cell Rate Analyses

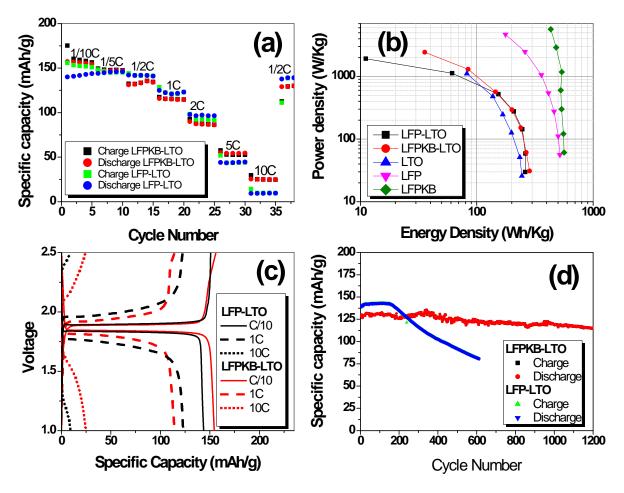


Figure 5. Electrochemical cycling at various C rates (a) LiFePO₄ and Ketjen black modified LiFePO₄, (b) Li₄Ti₅O₁₂ (company A and C) and voltage profiles of charge/discharge at various C rates (c) LiFePO₄ and Ketjen black modified LiFePO₄, (d) Li₄Ti₅O₁₂ (company A and C).

- LiFePO₄ from company B and C was similar. Li₄Ti₅O₁₂ from company C was not as good as those from company A and B.
- □ Ketjen Black modified
 LiFePO₄ by milling shows much improved rate performance.
- ☐ Effective carbon mixing with electrode material and preparation step is critical for achieving the high rate and cycling stability

LiFePO₄-Li₄Ti₅O₁₂ Full Cell Evaluation

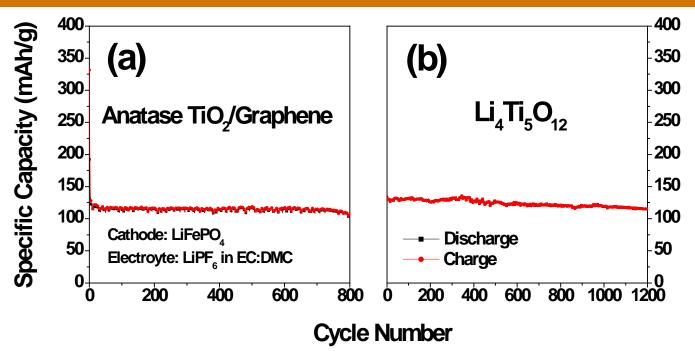


Figure 6. Electrochemical cycling at various C rates of (a) LiFePO₄-Li₄Ti₅O₁₂ full cell with and without Ketjen black modified LiFePO₄, (b) Ragone plot of full cell and half cell, (c) voltage profiles of charge/discharge at various C rates and (d) long term cycling of LiFePO₄-Li₄Ti₅O₁₂ full cell with and without Ketjen black modification.

- □ Ketjen Black modified LiFePO₄ by milling shows improvement in rate performance.
- Effective carbon mixing with electrode material and electrode preparation is critical for achieving the high rate and cycling stability.
- □ LiFePO₄ cathode plays important role in cycling stability.

Full Cell Cycling Evaluation

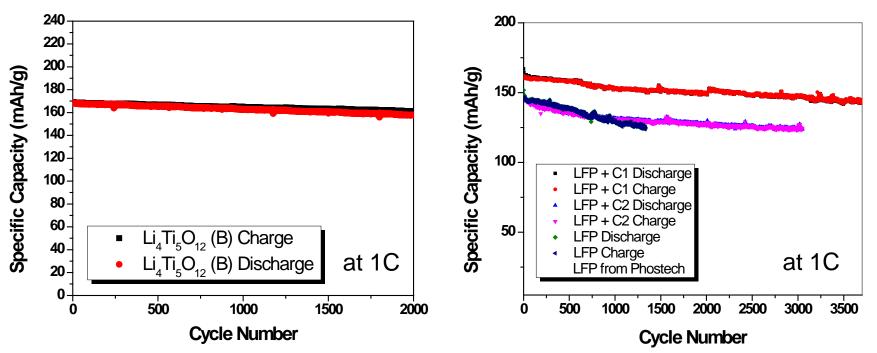
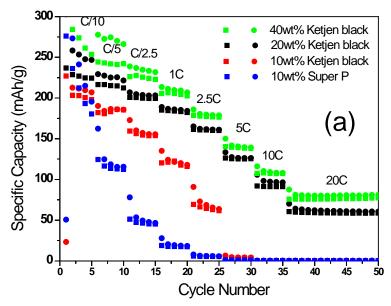
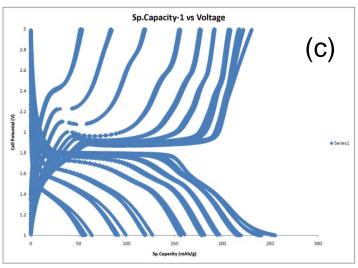


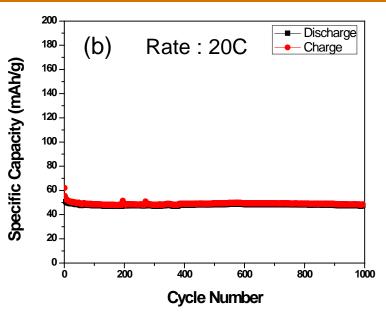
Figure 7. Cycling performance of Li-ion batteries made from LiFePO₄ cathode and (a) self-assembled anatase TiO₂/graphene (5wt%) composite anode and (b) Li₄Ti₅O₁₂ anode.¹

- Over 1000cycles without negligible capacity fade have been achieved in coin cell.
- □ Full cell cycling stability depends on LiFePO₄ cathode stability.
- □ Effective carbon coating on LiFePO₄ cathode improves rate and cycle life.

LiFePO₄ and Li₄Ti₅O₁₂ Half Cell Cycling




Figure 8. Electrochemical cycling of Li₄Ti₅O₁₂ and LiFePO₄ cathode with various carbon (C1, C2 and super P) additives (10wt%).


- □ LiFePO₄ cathode plays important role in cycling stability.
- □ Optimized cycling of LiFePO₄ cathode using different conductive carbon.
- On going test (>3500 cycles).

Commercial anatase TiO₂ Anode

Figure 9. Electrochemical rate test on (a) Ketjen black modified anatase TiO₂ (b) extended cycling at 20C and (c) voltage profiles at various C-rates.

- ☐ Cheapest anatase TiO₂ commercially available have been tested for anode.
- ☐ Working to improve the rate performance through effective carbon mixing.
- Cycling stability is excellent.

P25-843re-1cal.xls

Summary

- □ Various electrode materials have been tested for entropy (reversible heat) measurements. LiFePO₄/Li₄Ti₅O₁₂ cathode/anode combination is suitable Li-ion battery for stationary energy storage.
- □ Cost comparison on different electrode material combinations show ~\$600/kWh for LiFePO₄/Li₄Ti₅O₁₂ but life cycle cost (\$/kWh/cycle) plus safety is expected to be competitive over other combinations.
- □ Rate and cycling tests were performed on half and full cell and electrodes are being further optimized. Cathode using LiFePO₄ is critical for stable cycling.
- Cycling performance of >1000cycles at 1C rate was achieved at R.T.

Future Tasks

- □ Enhance cycling stability >1000 cycles of LiFePO₄ using cheaper route.
- □ Fabrication and testing of 18650 cell using LiFePO₄ / Li₄Ti₅O₁₂ combination electrodes.
- Calorimetric analyses of 18650 cell for total heat-generation.
- Cost analysis on 18650 cell with cost per cycle will be reported.

