

Flow Battery Solution for Smart Grid Renewable Energy Applications

Sheri Nevins, Ktech Corp. Craig Horne, EnerVault Corp.

 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory

ARRA Energy Storage Demonstration Program

Area of Interest

- Clean, renewable-energy-based National Smart Grid
- Energy storage
 - Safe, reliable, cost-effective
 - Utility-scale, national deployment
 - Scalable to specific power levels required by renewable energy technologies
 - Environmentally advantageous

ARRA Energy Storage Demonstration Program

Problem

- Irrigation wants reliable, low cost power
 - Remote locations, critical demand concurrent with highest stress in grid

Approaches	Problems	Impact of Storage
Grid electric connection	Service (to remote loc.) Reliability, Cost	Shift demand off peak: cost down, reliability up
On-site diesel generation	Emissions, fuel cost, maintenance	None
Grid electric + PV	Low value of off-peak PV generation, utility demand charges	Energy costs reduced Reliability increased Grid emissions reduced
Diesel + PV	Emissions, fuel costs, PV offset limited by sun	Enabling Energy costs reduced Emissions reduced

2010 DOE Energy Storage Program Review

ARRA Energy Storage Demonstration Program

Project Objectives

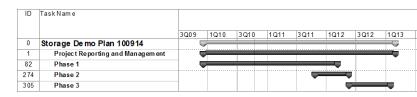
- Advance a technology that will become an essential building block of a renewable
 - energy-based Smart Grid
- Integrate an advanced, innovative Battery Energy
 Storage System with an intermittent renewable energy source
- Reduce electricity costs and environmental impacts for large energy users, such as agricultural irrigation

ARRA Energy Storage Demonstration Program

Project Description

- Scope: Demonstration of EnerVault's Vault-20 Battery Energy Storage System (250 kW, 1 MWh)
- Duration: Three years, through January 2013
- Result: Deployment of a Vault-20 beta system with a 180 kW dual tracking PV array in CA
- Team: Project team includes Montpelier Nut Company and JKB Energy

2010 DOE Energy Storage Program Review

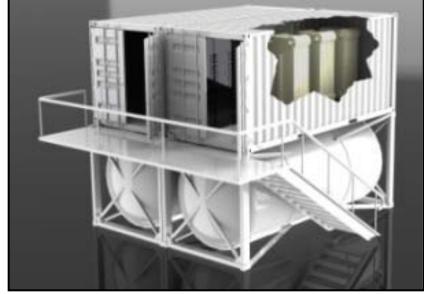


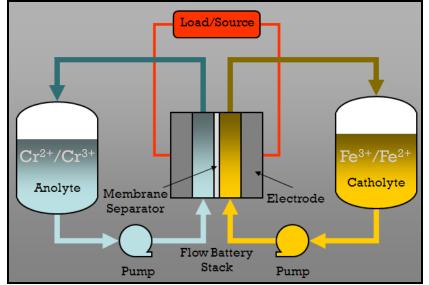
ARRA Energy Storage Demonstration Program

Project Phases

Phase 1, Dec. 2009 – Oct. 2011

- Develop EnerVault's energy storage technology into a 40 kW utility-scale system building block
- Complete preliminary design of the Vault-20 system
- Phase 2, Oct. 2011 May, 2012
 - Build 250 kW, 1 MWh Vault-20 beta system
 - Final design and full system integration
 - Power conditioning system, controls, and tanks
 - Complete off-site testing in Albuquerque, NM
- Phase 3, May 2012 Jan. 2013
 - Commission and demonstrate Vault-20 system

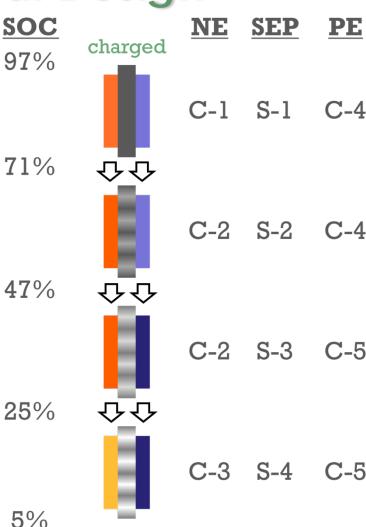




ARRA Energy Storage Demonstration Program

Features & Benefits

- Safety
 - Liquid reactants
 - Minimal vulnerability
 - No thermal runaway
- Reliability
 - Dissolved reactants
 - Less complex design
 - Simpler controls
- Cost Effectiveness
 - Low-cost design
 - Low-cost materials
 - Low-cost reactants



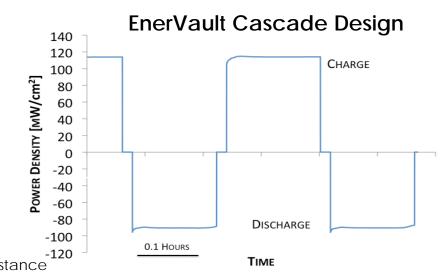
ARRA Energy Storage Demonstration Program

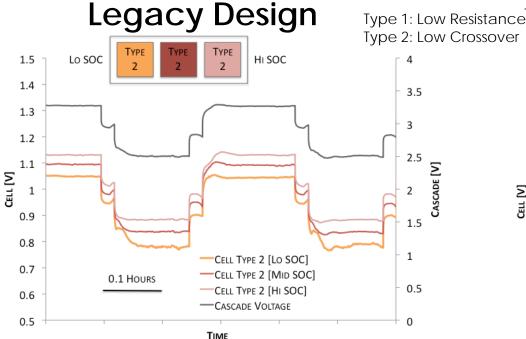
Known Chemistry, Radical Design

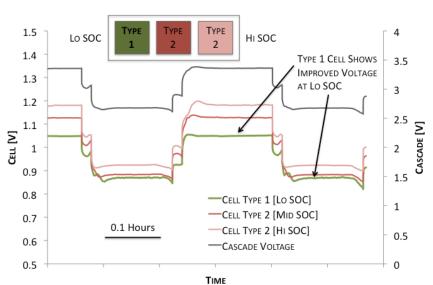
- Engineered Cascade
 - Developed by EnerVault
- US Patent # 7,820,321
 - USPTO Greentech program
- Distinctive features
 - Balances coulombic and voltaic efficiencies
 - Simplified controls
 - Steady DC voltage
 - Macroscopic state-ofcharge indicator

discharged

2010 DOE Energy Storage Program Review

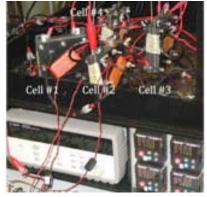





ARRA Energy Storage Demonstration Program

Design Validation

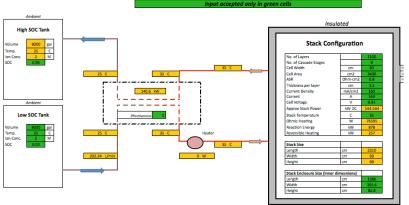
	Legacy Cell	Standard Cascade	EnerVault Cascade
Voltage Efficiency [%]	76	76	80
Energy Efficiency [%]	67	67	70

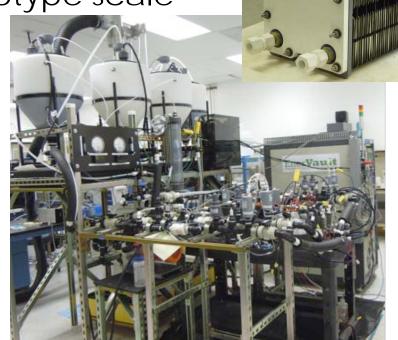


ARRA Energy Storage Demonstration Program

Progress

10x cell footprint


20x power

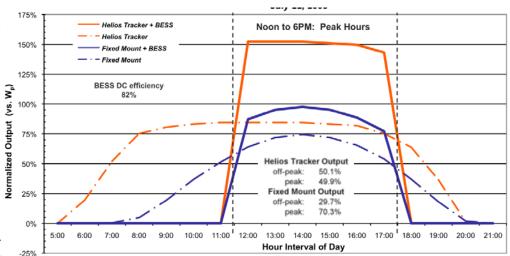

prototype scale

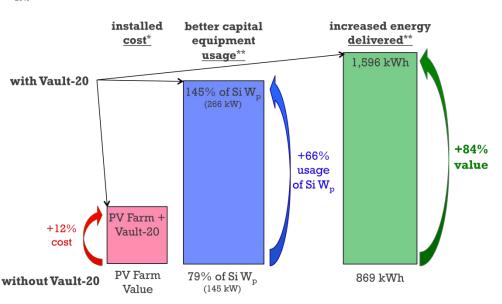
lab scale

system simulator

Thermal Balance of Fe-Cr Flow Battery System

2010 DOE Energy Storage Program Review





ARRA Energy Storage Demonstration Program

Benefits of Vault-20

- Match for application
 - Thermally robust
 - Improved efficiency curve
 - Electrolyte is permanent asset
 - Low incremental cost of added kWh
- Potential annual benefits
 - > \$100,000 savings
 - > 100 tonnes (CO₂)_e
 - > 60,000 gallons H₂O

^{*} before rebates, tax deductions

^{**} during peak hours to grid

ARRA Energy Storage Demonstration Program

Summary

- Our project demonstrates the use of a radicallydifferent flow battery technology in a large-scale renewable energy application
- EnerVault engineered cascade design validated
- Scale-up progressing according to plan
- Detailed project plan baselined;
 actual costs and progress are being captured
- Successful demonstration of the Vault-20 system in this application provides pathway to broad deployment for smart grid and renewable generation

ARRA Energy Storage Demonstration Program

Future Tasks

Phase 1 Milestones

Milestone	Description	Date	Targets
4.4	Achieve Initial Performance Targets	5/30/2010	Achieve 0.8 kW/m ²
5.2	2-5 kW Prototype System Demo	2/1/2011	Achieve 2 kW at 70% Roundtrip Efficiency for 20 cycles
6.3	Demonstrate Full Scale Stack Design	5/31/2011	Achieve 1.0 kW/m ²
6.7	Operation of 40 kW Alpha stack for 1 month	10/20/2011	Achieve 85% DC Roundtrip Efficiency for 30 cycles

Flow Battery Solution for Smart Grid Renewable Energy Applications

Q & A