CAES Modeling

Geomechanics Research Department

Stephen J. Bauer Sandia National Laboratories sjbauer@sandia.gov

Matt Kirk, Mark Grubelich, Steve Webb, Scott Broome SAND 2010-6940C

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

Specific and existing problems, interests, needs

Geomechanics Research Department

- 1-Potential Microbial and Chemical Impact of CAES in a Sandstone, M. Kirk
- 2-Assessment of Ignition/Explosion Potential in a Depleted Hydrocarbon Reservoir from Air Cycling Associated with CAES, M. Grubelich
- 3-Flow Analysis Parametric Study: S. Webb
- 4-Material Degradation (T-M-C-H effects) Due to Cyclic Loading, SJ Bauer and ST Broome

Started November 2009

Geomechanics Research Department

Potential Microbial and Chemical Impact of CAES in a Sandstone

Matthew Kirk Geochemistry Department

Compressed Air Energy Storage

Groundwater Microbiology

Example: Middendorf coastal plain aquifer, South Carolina

Conclusions: Potential Microbial and Chemical Impact of CAES in a Sandstone

- Sandstone evaluated in a reducing environment
- Microbial Fe(II) and Mn(II) oxidation will become favorable
- Pyrite oxidation could lead to considerable changes in pH, salinity, and mineralogy
- Microbiology and mineralogy changes would impact porosity

Considerations for Explosion Potential for CAES in a Depleted Natural Gas Reservoir

Geomechanics Research Department

Mark Grubelich Geothermal Energy

Results & Conclusions: Mitigation & Safety

- Purge reservoir before use
- Low pressure air cycling below UFL to remove gas (~90 psi)
- In-situ gas monitor
- Never draw down air below the LFL (370 psi)
- Insure no surface breach if ignition occurs (sufficient overburden)
- Monitor NG content entering surface equipment
- Further study required
 - Buoyancy issues, etc.

CAES Borehole Study: Steve Webb

- Objective
 - Look at Flow in Individual Boreholes
 - Simple 2-d Models
 - Estimate Number of Boreholes and CAES Footprint
- Assumptions
 - Representative Borehole/Formation Geometry
 - Include Two-Phase Behavior
 - Capillary Pressure and Relative Permeability
 - Bubble Formation
 - Air Injection and Withdrawal 10 Weekly Cycles

Conclusions

- Permeability Variation Much More Important than Porosity Variation
- Procedure Can Quantify Differences Between Various Sets of Formation Parameters
 - Borehole Spacing, Number of Boreholes
- Borehole Arrays Will Be Investigated in the Future

Geomechanics Research Department

Material Degradation (T-M-C-H effects) Due to Cyclic Loading SJ Bauer and ST Broome

Hourly fluctuations in wind speed could translate to frequent pressurization/depressurizations of salt caverns

Concluding Comments

- Preliminary cyclic tests completed on salt
- Change in volume strain observed
- Young's Modulus changes observed
- **Acoustic emissions detected**
- Cracks observed in thick sections
- Results consistent with previous work
- Implication that cyclic loading caused cracking at low differential stresses

Summary/Conclusions

- 1- Sandstone in a reducing environment could effect biologic and mineralogic changes that could lead to changes in porosity and permeability
- 2-Recommendations given for mitigation of potential use of a natural gas reservoir for CAES
- 3- Permeability variation much more important than porosity variation; procedure can help determine borehole spacing, number of boreholes (CO\$T)
- 4-Salt strength observed to degrade in cyclic loading

Work Products

- 1- "Potential Effects of Compressed Air Energy Storage on Microbiology, Geochemistry, and Hydraulic Properties of Porous Aquifer Reservoirs", Kirk, Altman, and Bauer, SAND2010-4721
- "Potential Subsurface Environmental Impact of Compressed Air Energy Storage in Porous Bedrock Aquifers" Env. Sci. & Tech. (in Prep, Kirk et al)
- 2- "Considerations for Explosion Potential for CAES in a Depleted Natural Gas Reservoir", M. Grubelich
- 3- "Borehole and Formation Analyses in Reservoirs to Support CAES Development", S. Webb
- 4- "Experimental Deformation of Salt in Cyclic Loading", S. Bauer and S. Broome, Solution Mining Research Institute April 2010 SAND2010-1805

Statement about future tasks

- 1- Develop map for US regions with geology potentially suitable for CAES
- 2- Borehole parametric study
- 3-Continue evaluation of cyclic loading effects on salt and reservoir rocks

Geomechanics Research Department

Potential Microbial and Chemical Impact of CAES in a Sandstone

Matthew Kirk
Geochemistry Department

Compressed air energy storage

Groundwater microbiology

Example: Middendorf coastal plain aquifer, South Carolina

Metabolic energy available for Fe(II) and Mn(II) oxidation in the Mt. Simon

Effect of pyrite oxidation on groundwater composition

Geomechanics Research Department

Geochemist's Workbench reaction path model assuming 0.2 fO₂

• no calcite: pyrite + 3.75 O₂ + 3.5 H₂O \rightarrow Fe(OH)₃ + 2 SO₄²⁻ + 4 H⁺

• with calcite: pyrite + 2 calcite + 3.75 O_2 + 1.5 $H_2O \rightarrow Fe(OH)_3$ + 2 SO_4^{2-} + 2 Ca^{2+} + 2 CO_2

Effect of Pyrite Oxidation on Porosity

Geomechanics Research Department

Mineral volume

Conclusions: Potential Microbial and Chemical Impact of CAES in a Sandstone

- Sandstone evaluated in a reducing environment
- Microbial Fe(II) and Mn(II) oxidation will become favorable
- Pyrite oxidation could lead to considerable changes in pH, salinity, and mineralogy
- Microbiology and mineralogy changes would impact porosity

Considerations for Explosion Potential for CAES in a Depleted Natural Gas Reservoir

Geomechanics Research Department

Mark Grubelich Geothermal Energy

Compressed Air Energy Storage

Fuel, Oxygen & Ignition Source

Detonation, reaction proceeds at supersonic speeds (shock wave).

Combustion or Deflagration 10's to 100's of ft/sec reaction rates.

Why worry?

- The pressure rise ratio for a confined deflagrating (unvented) fuel air mixture is ~9:1
- The peak pressure ratio for a detonating fuel air mixture is ~ 18:1
- Both events could be severe: (rough calculation in progress)

Important Points

Geomechanics Research Department

Depleted gas reservoir

- What does depleted mean?
- At atmospheric pressure?
 - What is the residual natural gas composition?
 - Why is this important?
 - Heavy hydrocarbons change the ignition window and decrease the ignition temperature

Natural gas composition

Component	Typical Analysis (mole %)	Range (mole %)		
Methane	95.2	87.0 - 96.0		
Ethane	2.5	1.5 - 5.1		
Propane	0.2	0.1 - 1.5		
iso - Butane	0.03	0.01 - 0.3		
normal - Butane	0.03	0.01 - 0.3		
iso - Pentane	0.01	trace - 0.14		
normal - Pentane	0.01	trace - 0.04		
Hexanes plus	0.01	trace - 0.06		
Nitrogen	1.3	0.7 - 5.6		
Carbon Dioxide	0.7	0.1 - 1.0		
Oxygen	0.02	0.01 - 0.1		
Hydrogen	trace	trace - 0.02		

Table 6. — Limits of flammability of combustible vapors in air and oxygen at 25° C and 1 atm¹

tupoto in an ana oxygen at 20 o ana t ann						
	Flammability limits, vol pct					
Combustible	Air		Oxygen			
	L ₂₅	U ₂₅	L ₂₅	U ₂₅		
HYDROCARBONS						
Methane Ethane Propane n-Butane n-Hexane n-Heptane	5.0 3.0 2.1 1.8 1.2 1.1	15.0 12.4 9.5 8.4 7.4 6.7	5.0 3.0 2.3 1.8 1.2	61 66 55 49 ² 52 ² 47		
Acetylene Ethylene Propylene α-Butylene	2.5 2.7 2.4 1.6	100 36 11 10	≤2.5 2.9 2.1 1.8	100 80 53 58		
Cyclopropane	2.4 ² 1.3	10.4 ² 7.9	2.5 ≤1.3	60 N A		

Ignition Window

- Lower Flammability Limit (aka Lower Explosive Limit, LFL or LEL)
 - Below the LFL the mixture of fuel and air lacks sufficient <u>fuel</u> to react
 - Above the LFL deflagration or detonation possible
- Upper Flammability Limit (aka Upper Explosive Limit, UFL or UEL)
 - Above the UFL the mixture of fuel and air lacks sufficient <u>air</u> to react.
 - Below the UFL deflagration or detonation possible
- ~Ignition possible between 90 and 370 psi
 - Assuming well mixed conditions and starting at 1atmosphere NG
 - ~Below 90 psi too rich and above 370 psi too lean
 - Example: Flight 800 center tank explosion
 - Lean on the ground & rich at cruise altitude
 - Above the LFL and below the UFL during climb
 - Ignition source present
 - Boom!

Ignition Sources 0.3 mJ=0.0002 ft-lb= "not much"

- Adiabatic compression
- Piezo-electric discharge
- Static discharge
- Lightning strike
- Frictional heating

Results & Conclusions: Mitigation & Safety

- Purge reservoir before use
- Low pressure air cycling below UFL to remove gas (~90 psi)
- In-situ gas monitor
- Never draw down air below the LFL (370 psi)
- Insure no surface breach if ignition occurs (sufficient overburden)
- Monitor NG content entering surface equipment
- Further study required
 - Buoyancy issues, etc.

Geomechanics Research Department

Stephen W. Webb

Conclusions

- Permeability Variation Much More Important then Porosity Variation
- Procedure Can Quantify Differences Between Various Sets of Formation Parameters
 - Borehole Spacing, Number of Boreholes
- Borehole Arrays Will Be Investigated in the Future

Study geometry views

Geomechanics Research Department

CAES Borehole Schematic (from Smith and Wiles, 1979)

CAES Borehole Study

Representative Borehole/Formation Geometry

Study Parameters

Geomechanics Research Department

Formation Height – 100 ft high

Depth – 2000 ft

Borehole Diameter – 7 inches

Partial Completion

Permeability – 100 mD to 2000 mD (500 mD Nominal)

Porosity – 0.1 to 0.3 (0.2 Nominal)

Formation Radius - Varies

Based on P_{max} and P_{min} Values

Mass Flows

See Cycle

Two-Phase Characteristic Curves

Leverett J-Function Scaling

Air Pressure Considerations

Geomechanics Research Department

```
P<sub>min</sub>
Turbine Inlet Pressure = 45 bar (4.5 MPa)
Pressure Drop to Surface = ~5 bar (0.5 MPa)
Minimum Borehole Pressure = 5.0 Bar
P<sub>max</sub>
0.6 x Lithostatic = 8.4 MPa
```

Maximum Borehole Pressure = 8.4 MPa

Pressure Cycling Model

Geomechanics Research Department

CAES Cycle

- Based on Smith and Liles (1979)
- 10% Mass Cycled Per Week
- 40% Air Added on the Weekend
- Mass Rates Based on Available Mass
 - » Function of Formation Radius, Porosity, Gas Saturation

Typical Cycle

Borehole pressure

Geomechanics Research Department

Typical Cycle Results for Borehole Pressure

After Formation of Bubble

Procedure for Given Permeability and Porosity

- Formation Radius Increase
 - Mass Rates Increase Larger Available Mass in Formation
 - P_{max} Increases
 - P_{min} Decreases
- Optimum Formation Radius and Mass Flow Rate When P_{max} and/or P_{min} Met

CAES Borehole Study

Geomechanics Research Department

Typical Results (k = 500 mD, ϕ = 0.2)

Optimum Formation Radius = 111 m Based on P_{min}

Permeability Variation

Porosity Variation

Permeability/Porosity vs. Power

Geomechanics Research Department

Using Typical Turbine Parameters

Based on Iowa CAES Power Density (~5 MW/m³) Scaled by Formation Pressure (Succar, 2008)

Number of Boreholes vs Permeability & Porosity

Conclusions

- Permeability Variation Much More Important then Porosity Variation
- Procedure Can Quantify Differences Between Various Sets of Formation Parameters
 - Borehole Spacing, Number of Boreholes
- Borehole Arrays Will Be Investigated in the Future

Material Degradation (T-M-C-H effects) Due to Cyclic Loading

Geomechanics Research Department

Experimental Deformation of Salt in Cyclic Loading SJ Bauer and ST Broome

Hourly fluctuations in wind speed could translate to frequent pressurization/depressurizations of salt caverns

Experimental Deformation of Salt in Cyclic Loading

Dilatant behavior of salt determined from quasi-static tests and stress states for this study

Test assembly

Acoustic Emissions System

- Sample rates up to 25 MHz
- Typically acquire 3000 samples/event
- Tailor a discriminator to only sample events of a given criteria
- 60 dB amplifier
- Location of events is possible with many pins

Test data

Geomechanics Research Department

Differential stress, axial and volume strain versus time, Test 3.

Test3

Differential stress versus volume strain, Test 3

55

Bauer-CAES

Time (s)

Concluding Comments

- Preliminary cyclic tests completed on salt
- Change in volume strain observed
- Young's Modulus changes observed
- Acoustic Emissions detected
- Cracks observed in thick sections
- Results consistent with previous work
- Implication that cyclic loading caused cracking at low differential stresses

