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Specific and existing problems, interests, needs

1-Potential Microbial and Chemical Impact of CAES in a 
Sandstone,  M. Kirk

2-Assessment of Ignition/Explosion Potential in a Depleted 
Hydrocarbon Reservoir from Air Cycling Associated with 
CAES,  M. Grubelich

3-Flow Analysis Parametric Study: S. Webb

4-Material Degradation (T-M-C-H effects) Due to Cyclic 
Loading, SJ Bauer and ST Broome

Started November 2009
Bauer-CAES
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Potential Microbial and Chemical Impact of 
CAES in a Sandstone

Matthew Kirk
Geochemistry Department
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Compressed Air Energy Storage

Succar and Williams (2008) Princeton University Bauer-CAES
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Groundwater Microbiology

Example: Middendorf coastal plain aquifer, South Carolina
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Conclusions: Potential Microbial and 

Chemical Impact of CAES in a Sandstone

• Sandstone evaluated in a reducing 
environment

• Microbial Fe(II) and Mn(II) oxidation will 
become favorable

• Pyrite oxidation could lead to considerable 
changes in pH, salinity, and mineralogy

•Microbiology and mineralogy changes would 
impact porosity

Bauer-CAES
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Considerations for Explosion Potential for 
CAES in a Depleted Natural Gas Reservoir

Mark Grubelich
Geothermal Energy
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Results  & Conclusions: Mitigation & Safety 

 Purge reservoir before use
 Low pressure air cycling below UFL to remove gas 

(~90 psi)
 In-situ gas monitor
 Never draw down air below the LFL (370 psi)
 Insure no surface breach if ignition occurs (sufficient 

overburden)
 Monitor NG content entering surface equipment 
 Further study required 
 Buoyancy issues, etc.
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CAES Borehole Study: Steve Webb

 Objective
 Look at Flow in Individual Boreholes
 Simple 2-d Models
 Estimate Number of Boreholes and CAES Footprint

 Assumptions
 Representative Borehole/Formation Geometry
 Include Two-Phase Behavior
 Capillary Pressure and Relative Permeability
 Bubble Formation
 Air Injection and Withdrawal – 10 Weekly Cycles
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Conclusions

 Permeability Variation Much More Important 
than Porosity Variation

 Procedure Can Quantify Differences Between 
Various Sets of Formation Parameters
 Borehole Spacing, Number of Boreholes

 Borehole Arrays Will Be Investigated in the 
Future
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Material Degradation (T-M-C-H effects) 
Due to Cyclic Loading

SJ Bauer  and ST Broome

Bauer-CAES
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Hourly fluctuations in wind speed could translate to frequent 
pressurization/depressurizations of salt caverns
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Concluding Comments

 Preliminary cyclic tests completed on salt
 Change in volume strain observed
 Young’s Modulus changes observed
 Acoustic emissions detected
 Cracks observed in thick sections
 Results consistent with previous work
 Implication that cyclic loading caused 

cracking at low differential stresses

Bauer-CAES
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Summary/Conclusions

1- Sandstone in a reducing environment could effect 
biologic and mineralogic changes that could lead to 
changes in porosity and permeability
2-Recommendations given for mitigation of potential 
use of a natural gas reservoir for CAES
3- Permeability variation much more important than 
porosity variation; procedure can help determine 
borehole spacing, number of boreholes (CO$T)
4-Salt strength observed to degrade in cyclic 
loading
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Work Products

1- “Potential Effects of Compressed Air Energy Storage on 
Microbiology, Geochemistry, and Hydraulic Properties of Porous 
Aquifer Reservoirs”, Kirk, Altman, and Bauer, SAND2010-4721
“Potential Subsurface Environmental Impact of Compressed Air 

Energy Storage in Porous Bedrock Aquifers” Env. Sci. & Tech. 
(in Prep, Kirk et al)

2- "Considerations for Explosion Potential for CAES in a 
Depleted Natural Gas Reservoir“ , M. Grubelich

3- “Borehole and Formation Analyses in Reservoirs to Support 
CAES Development” , S. Webb

4- “Experimental Deformation of Salt in Cyclic Loading”, S. Bauer 
and S. Broome, Solution Mining Research Institute April 2010 
SAND2010-1805
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Statement about future tasks

1- Develop map for US regions with 
geology potentially suitable for CAES 

2- Borehole parametric study

3-Continue evaluation of cyclic loading 
effects on salt and reservoir rocks
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Questions?

thanks
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Potential Microbial and Chemical Impact of 
CAES in a Sandstone

Matthew Kirk
Geochemistry Department
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Compressed air energy storage

Succar and Williams (2008) Princeton University Bauer-CAES
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Groundwater microbiology

Example: Middendorf coastal plain aquifer, South Carolina
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Metabolic energy available for Fe(II) and Mn(II) 
oxidation in the Mt. Simon

Bauer-CAES
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Effect of pyrite oxidation on groundwater composition

Geochemist’s Workbench reaction path model assuming 0.2 fO2

• no calcite: pyrite + 3.75 O2 + 3.5 H2O  Fe(OH)3 + 2 SO4
2- + 4 H+

• with calcite: pyrite + 2 calcite + 3.75 O2 + 1.5 H2O Fe(OH)3 + 2 SO4
2- + 2 Ca2+ + 2 CO2

Bauer-CAES
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Effect of Pyrite Oxidation on Porosity

Mineral volume

Microbial biomass

Edwards et al. Science vol. 287 1796-1799
Bauer-CAES
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Conclusions: Potential Microbial and 

Chemical Impact of CAES in a Sandstone

• Sandstone evaluated in a reducing 
environment

• Microbial Fe(II) and Mn(II) oxidation will 
become favorable

• Pyrite oxidation could lead to considerable 
changes in pH, salinity, and mineralogy

•Microbiology and mineralogy changes would 
impact porosity
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Considerations for Explosion Potential for 
CAES in a Depleted Natural Gas Reservoir

Mark Grubelich
Geothermal Energy
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Compressed Air Energy Storage
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Fuel, Oxygen & Ignition Source

Combustion or Deflagration
10’s to 100’s of ft/sec reaction rates.

Detonation, reaction 
proceeds at supersonic 
speeds (shock wave).
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Why worry?

 The pressure rise ratio for a confined 
deflagrating (unvented) fuel air mixture is ~9:1

 The peak pressure ratio for a detonating fuel 
air mixture is ~ 18:1

 Both events could be severe: (rough calculation 
in progress)   
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Important Points

Depleted gas reservoir
• What does depleted mean?
• At atmospheric pressure?

• What is the residual natural gas composition?
• Why is this important?

– Heavy hydrocarbons change the ignition window and decrease 
the ignition temperature

Natural gas composition
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Ignition Window

 Lower Flammability Limit (aka Lower Explosive Limit, LFL or LEL)

 Below the LFL the mixture of fuel and air lacks sufficient fuel to react 
 Above the LFL deflagration or detonation possible

 Upper Flammability Limit (aka Upper Explosive Limit, UFL or UEL)

 Above the UFL the mixture of fuel and air lacks sufficient air to react. 
 Below the UFL deflagration or detonation possible

 ~Ignition possible between 90 and 370 psi
 Assuming well mixed conditions and starting at 1atmosphere NG
 ~Below 90 psi too rich and above 370 psi too lean
 Example: Flight 800 center tank explosion 

 Lean on the ground & rich at cruise altitude
 Above the LFL and below the UFL during climb 
 Ignition source present
 Boom!
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Ignition Sources 0.3 mJ=0.0002 ft-lb= “not much”

 Adiabatic compression
 Piezo-electric discharge
 Static discharge
 Lightning strike 
 Frictional heating
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Results  & Conclusions: Mitigation & Safety 

 Purge reservoir before use
 Low pressure air cycling below UFL to remove gas 

(~90 psi)
 In-situ gas monitor
 Never draw down air below the LFL (370 psi)
 Insure no surface breach if ignition occurs (sufficient 

overburden)
 Monitor NG content entering surface equipment 
 Further study required 
 Buoyancy issues, etc.
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CAES Borehole Study

Stephen W. Webb

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.
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Conclusions

 Permeability Variation Much More Important 
then Porosity Variation

 Procedure Can Quantify Differences Between 
Various Sets of Formation Parameters
 Borehole Spacing, Number of Boreholes

 Borehole Arrays Will Be Investigated in the 
Future
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Study geometry views

CAES Borehole Schematic (from Smith and Wiles, 1979)
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CAES Borehole Study

Representative Borehole/Formation Geometry

Wellbore

Porous Media 
Reservoir Formation Radius Varies
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Study Parameters

Formation Height – 100 ft high
Depth – 2000 ft
Borehole Diameter – 7 inches

Partial Completion
Permeability – 100 mD to 2000 mD (500 mD Nominal)
Porosity – 0.1 to 0.3 (0.2 Nominal)
Formation Radius - Varies

Based on Pmax and Pmin Values
Mass Flows

See Cycle
Two-Phase Characteristic Curves

Leverett J-Function Scaling
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Air Pressure Considerations

Pmin

Turbine Inlet Pressure = 45 bar (4.5 MPa)
Pressure Drop to Surface = ~5 bar (0.5 MPa)
Minimum Borehole Pressure = 5.0 Bar

Pmax

0.6 x Lithostatic = 8.4 MPa
Maximum Borehole Pressure = 8.4 MPa



Geomechanics Research Department

Pressure Cycling Model

CAES Cycle
– Based on Smith and Liles (1979)
– 10% Mass Cycled Per Week
– 40% Air Added on the Weekend
– Mass Rates Based on Available Mass

» Function of Formation Radius, Porosity, Gas Saturation
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Borehole pressure

Typical Cycle Results for Borehole Pressure
– After Formation of Bubble
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Procedure for Given Permeability and Porosity

 Formation Radius Increase
 Mass Rates Increase – Larger 

Available Mass in Formation
 Pmax Increases
 Pmin Decreases

 Optimum Formation Radius and Mass 
Flow Rate When Pmax and/or Pmin Met
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CAES Borehole Study

Typical Results (k = 500 mD, φ = 0.2)

Optimum Formation Radius = 111 m Based on Pmin
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Permeability Variation
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Porosity Variation

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2 0.25 0.3

Fo
rm

at
io

n 
Ra

di
us

 (m
)

Porosity



Geomechanics Research Department

Permeability/Porosity vs. Power

Using Typical Turbine Parameters
Based on Iowa CAES Power Density (~5 
MW/m3) Scaled by Formation Pressure (Succar, 
2008)
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Number of Boreholes vs Permeability & Porosity
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Conclusions

 Permeability Variation Much More Important 
then Porosity Variation

 Procedure Can Quantify Differences Between 
Various Sets of Formation Parameters
 Borehole Spacing, Number of Boreholes

 Borehole Arrays Will Be Investigated in the 
Future
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Experimental Deformation of Salt in Cyclic Loading
SJ Bauer  and ST Broome

Hourly fluctuations in wind speed could translate to frequent 
pressurization/depressurizations of salt caverns

Bauer-CAES
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Material Degradation (T-M-C-H effects) 
Due to Cyclic Loading
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Experimental Deformation of Salt in Cyclic Loading

Bauer-CAES
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Dilatant behavior of salt determined from quasi-static
tests and stress states for this study
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Test assembly

Heat 
shrink 
jacket

Axial 
LVDT’s

Radial 
LVDT’s

Sample end 
caps

AE pin 
location

Bauer-CAES
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Acoustic Emissions System

 Sample rates up to 25 MHz
 Typically acquire 3000 

samples/event
 Tailor a discriminator to 

only sample events of a 
given criteria

 60 dB amplifier
 Location of events is 

possible with many pins
8 pins 14 pins

Bauer-CAES
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Differential stress versus axial strain, Test 3.

Bauer-CAES
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Differential stress, axial and volume strain versus time, Test 3.

Test data

Bauer-CAES
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Differential stress versus volume strain, Test 3

Bauer-CAES
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Geomechanics Research Department Acoustic emission 
events and strain 
versus test time.

Young’s Modulus 
versus test time

Bauer-CAES
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Concluding Comments

 Preliminary cyclic tests completed on salt
 Change in volume strain observed
 Young’s Modulus changes observed
 Acoustic Emissions detected
 Cracks observed in thick sections
 Results consistent with previous work
 Implication that cyclic loading caused 

cracking at low differential stresses

Bauer-CAES
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Questions?

thanks
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