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Specific and existing problems, interests, needs
pss————————————————————————————————————

Geomechanics Research Department

1-Potential Microbial and Chemical Impact of CAES in a
Sandstone, M. Kirk

2-Assessment of Ignition/Explosion Potential in a Depleted
Hydrocarbon Reservoir from Air Cycling Associated with
CAES, M. Grubelich

3-Flow Analysis Parametric Study: S. Webb

4-Material Degradation (T-M-C-H effects) Due to Cyclic
Loading, SJ Bauer and ST Broome

Started November 2009
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Potential Microbial and Chemical Impact of
CAES in a Sandstone

Matthew Kirk
Geochemistry Department
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Groundwater Microbiology

Example: Middendorf coastal plain aquifer, South Carolina
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Considerations for Explosion Potential for
CAES in a Depleted Natural Gas Reservoir @

Geomechanics Research Department

Mark Grubelich
Geothermal Energy




Results & Conclusions: Mitigation & Safety @

Geomechanics Research Department

Purge reservoir before use

Low pressure air cycling below UFL to remove gas
(~90 psi)

In-situ gas monitor

Never draw down air below the LFL (370 psi)

Insure no surface breach if ignition occurs (sufficient
overburden)

Monitor NG content enterlng surfac equipmen

m"‘ A

Further study required T
» Buoyancy issues, etc. e = M




CAES Borehole Study: Steve Webb

T ——————
Geomechanics Research Department
= Objective
= [Look at Flow in Individual Boreholes
= Simple 2-d Models
= Estimate Number of Boreholes and CAES Footprint

= Assumptions
* Representative Borehole/Formation Geometry

* Include Two-Phase Behavior
= Capillary Pressure and Relative Permeability
= Bubble Formation
= Air Injection and Withdrawal — 10 Weekly Cycles



Conclusions
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- Permeability Variation Much More Important
than Porosity Variation

« Procedure Can Quantify Differences Between
Various Sets of Formation Parameters

= Borehole Spacing, Number of Boreholes

- Borehole Arrays Will Be Investigated in the
Future
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Material Degradation (T-M-C-H effects)
Due to Cyclic Loading
SJ Bauer and ST Broome
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Hourly fluctuations in wind speed could translate to frequent
pressurization/depressurizations of salt caverns

Bauer-CAES
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Concluding Comments @

Preliminary cyclic tests.completed on salt
Change in volume strain observed
Young's Modulus changes-observed
Acoustic emissions detected

Cracks observed in thick sections
Results consistent with previous w.erk

Implication that cyclic loading caused
cracking at low differential stresses .



Summary/Conclusions

1- Sandstone in a reducing environment could effect
biologic and mineralogic changes that could lead to
changes in porosity and permeability

2-Recommendations given for mitigation of potential
use of a natural gas reservoir for CAES

3- Permeability variation much more important than
porosity variation; procedure can help determine
borehole spacing, number of boreholes (CO%$T)

4-Salt strength observed-to degrade in cyclic
loading

Bauer-CAES
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Work Products
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1- “Potential Effects of Compressed Air Energy Storage on
Microbiology, Geochemistry, and Hydraulic Properties of Porous
Aquifer Reservoirs”, Kirk, Altman, and Bauer, SAND2010-4721

“Potential Subsurface Environmental Impact of Compressed Air
Energy Storage in Porous Bedrock Aquifers” Env. Sci. & Tech.
(in Prep, Kirk et al)

2- "Considerations for Explosion Potential for CAES in a
Depleted Natural Gas Reservoir® , M. Grubelich

3- “Borehole and Formation Analyses in Reservoirs to Support
CAES Development” , S. Webb

4- “Experimental Deformation of Salt in Cyclic Loading”, S. Bauer
and S. Broome, Solution Mining Research Institute April 2010
SAND2010-1805

Bauer-CAES
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Statement about future tasks @

Ly Dév'e.lop map for US regions with
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Questions?
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Geomechanics Research Department

Potential Microbial and Chemical Impact of
CAES in a Sandstone

Matthew Kirk
Geochemistry Department
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Groundwater microbiology

Example: Middendorf coastal plain aquifer, South Carolina
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Metabolic energy available for Fe(ll) and Mn(ll)
oxidation in the Mt. Simon

Geomechanics R kJ/mol reductant Formation*
-80 -60 -40 -20 0
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O Fe(ll) oxidation
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Threshold for microbial metabolism —+
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Effect of pyrite oxidation on groundwater compositior@
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7 | N B N R R 1 | — N EE S R E—
@
6 31 e .
1:10 pyrite:calcite = .
c _ % no calcite
S 7
- * 11 |8
Q- 3 1:1 pyrite:calcite _ﬁ 5
k:
2T no calcite —g 3
1+ 11 |2
o 1
| | | | | | | | |
02 0.4 0.6 0.8 1.0 02 0.4 06 0.8 1.0
Pyrite reacted (cm?) Pyrite reacted (cm?)
Geochemist’'s Workbench reaction path model assuming 0.2 fO,
* no calcite: pyrite + 3.75 O, + 3.5 H,0 2 Fe(OH); + 2 SO,> + 4 H*
« with calcite: pyrite + 2 calcite + 3.75 O, + 1.5 H,0> Fe(OH); + 2 SO,> + 2 Ca** + 2 CO,

Bauer-CAES
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Effect of Pyrite Oxidation on Porosity
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Mineral volume

7 T T T 1 —
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Considerations for Explosion Potential for
CAES in a Depleted Natural Gas Reservoir @
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Mark Grubelich
Geothermal Energy
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Fuel, Oxygen & Ignition Source

Geomechanics Research Department

Detonation, reaction
proceeds at supersonic
speeds (shock wave).

Combustion or Deflagration
10’s to 100’s of ft/sec reaction rates.



Why worry? (h)

Geomechanics Research Department

= The pressure rise ratio for a confined
deflagrating (unvented) fuel air mixture is ~9:1

= The peak pressure ratio for a detonating fuel
alr mixtureis ~ 18:1

» Both events could be severe: (rough calculation
INn progress)




Autoignition Temperatures in Air
Alkane Hydrocarbon Family

Important Points

CL ||
Geomechanics Research Department : N \
Depleted gas reservoir i \ T e
« What does depleted mean? = \‘|
« At atmospheric pressure? ERERE 5 AT A

« What is the residual natural gas composition?
- Why is this important?

— Heavy hydrocarbons change the ignition window and decrease
the ignition temperature

Natural gas composition Table 6. — Limits of flammability of combustible

- - o 1
component Typical Analysis Range vapors in air and oxygen at 25° C and 1 atm
(mole %) (mole %)
Flammability limits, vol pct
Methane 95.2 87.0 - 96.0
S e 15 51 Combustible Air Oxygen

Propane 0.2 0.1-1.5 L25 U25 L25 U25

0 - Butane 001 - 03 HYDROCARBONS
normal - Butane 0.03 0.01 - 0.3 Methane ..................... 5.0 15.0 50 61
Ethane ...................... 3.0 12.4 3.0 66
iso - Pentane 0.01 trace - 0.14 J Propane ..................... 21 9.5 2.3 55
race - nButane ..................... 1.8 8.4 1.8 49
normal - Pentane 0.0t race - 004 | n-Hexane ..., 1.2 7.4 1.2 250
Hexanes plus 0.01 trace - 0.06 n-Heptane .................... 1.1 6.7 9 247
Nitrogen 1.3 0.7 - 5.6 Acetylene .................... 2.5 100 =25 100
— Ethylene .................. ... 2.7 36 2.9 80
Carbon Dioxide 07 01-10 Propylene .................... 2.4 11 2.1 53
Oxygen 0.02 0.01 - 0.1 CI'.‘BUtylene ................... 1.6 10 1.8 58
Hydrogen trace trace - 0.02 Cyclopropane ................. 22.4 12 0.4 2.5 60
| | Benzene ..................... 1.3 79 =1.3 NA




Ilgnition Window

Geomechanics Research Department

= Lower Flammablllty Limit (aka Lower Explosive Limit, LFL or LEL)
= Below the LFL the mixture of fuel and air lacks sufficient fuel to react
= Above the LFL deflagration or detonation possible

= Upper Flammablllty Limit (aka Upper Explosive Limit, UFL or UEL)
= Above the UFL the mixture of fuel and air lacks sufficient air to react.
= Below the UFL deflagration or detonation possible

« ~Ignition possible between 90 and 370 psi
= Assuming well mixed conditions and starting at 1latmosphere NG
= ~Below 90 psi too rich and above 370 psi too lean

= Example: Flight 800 center tank explosion
= Lean on the ground & rich at cruise altitude
= Above the LFL and below the UFL during climb
= |gnition source present
= Boom!




Ignition Sources 0.3 mJ=0.0002 ft-Ib=“not much”

Geomechanics Research Department

« Adiabatic compression

Static discharge
Lightning strike
Frictional heating

Adiabatic Compression of Air

Piezo-electric discharge ‘

ture [*F)

Temp

li] 500 i
Pressure (psi,)

X
—
= oulput

10 1000
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Results & Conclusions: Mitigation & Safety @

Geomechanics Research Department

Purge reservoir before use

Low pressure air cycling below UFL to remove gas
(~90 psi)

In-situ gas monitor

Never draw down air below the LFL (370 psi)

Insure no surface breach if ignition occurs (sufficient
overburden)

Monitor NG content enterlng surfac equipmen

m"‘ A

Further study required T
» Buoyancy issues, etc. e = M
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CAES Borehole Study
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Stephen W. Webb

Sandia
/ﬁ?v"‘.’ag_é‘é Sandiais a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National .
Natkonal Wuciear Socuriy acminisiration for the United States Department of Energy’s National Nuclear Security Administration Laboratories

under contract DE-AC04-94AL85000.



Conclusions

Geomechanics Research Department

- Permeability Variation Much More Important
then Porosity Variation

« Procedure Can Quantify Differences Between
Various Sets of Formation Parameters

= Borehole Spacing, Number of Boreholes

- Borehole Arrays Will Be Investigated in the
Future



Study geometry views
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CAES Borehole Schematic (from Smith and Wiles, 1979)



CAES Borehole Study (h)

Geomechanics Research Department

L Wellbore

~{ PorousMedia

Reservoir Formation Radius Varies

Representative Borehole/Formation Geometry



Study Parameters

Geomechanics Research Department

Formation Height — 100 ft high
Depth — 2000 ft
Borehole Diameter — 7 inches
Partial Completion
Permeability — 100 mD to 2000 mD (500 mD Nominal)
Porosity — 0.1 to 0.3 (0.2 Nominal)
Formation Radius - Varies
Based on P, ., and P, Values
Mass Flows
See Cycle
Two-Phase Characteristic Curves
Leverett J-Function Scaling

max



Ailr Pressure Considerations
R R R RRBRBRRRERDRERERERDRED=RDDD—D—_IE==

Geomechanics Research Department

P

min
Turbine Inlet Pressure =45 bar (4.5 MPa)
Pressure Drop to Surface = ~5 bar (0.5 MPa)
Minimum Borehole Pressure = 5.0 Bar

Pmax

0.6 x Lithostatic = 8.4 MPa
Maximum Borehole Pressure = 8.4 MPa



Pressure Cycling Model @

Geomechanics Research Department

CAES Cycle
— Based on Smith and Liles (1979)
— 10% Mass Cycled Per Week
— 40% Air Added on the Weekend

— Mass Rates Based on Available Mass
» Function of Formation Radius, Porosity, Gas Saturation

1

~ | Typical Cycle

WD

Rate (kg/s)

o & A N O N BN O O O
-

C
L
L

Time (Days)




Borehole pressure @
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Typical Cycle Results for Borehole Pressure
— After Formation of Bubble
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Procedure for Given Permeability and Porosity
pss————————————————————————————————————

Geomechanics Research Department

= Formation Radius Increase

* Mass Rates Increase — Larger
Available Mass in Formation

= P, Increases
= P_.. Decreases

= Optimum Formation Radius and Mass
Flow Rate When P, ., and/or P.;, Met

maxX



CAES Borehole Study @

Geomechanics Research Department

Typical Results (k =500 mD, ¢ =0.2)

9.00 20.00

8.00 / 18.00
7.00 — 16.00 /

14.00
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5.00 /

10.00 /
£ 2 800
3.00 \ e Pmax
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200 \ 4.00 /
1.00 2.00 /
0.00 T T T T T T T 1 0'00 T T T

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Max/Min Pressure (MPa)
sy
8
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Optimum Formation Radius = 111 m Based on P,




Permeability Variation (h)
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Porosity Variation
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Permeability/Porosity vs. Power (]
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Using Typical Turbine Parameters

Based on lowa CAES Power Density (=5
MW/m?3) Scaled by Formation Pressure (Succar,

40 40
35 / 35
S 30 < 30
< / =
@ 25 o 25
2 / o
@ 20 @ 20
e / m
Q 15 ;— 15
O T 0
0 500 1000 1500 2000 0 0.05 0.1 0.15 0.2 0.25 0.3
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Number of Boreholes vs Permeability & Porosity @
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Number of Boreholes per 100 MW
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Conclusions

Geomechanics Research Department

- Permeability Variation Much More Important
then Porosity Variation

« Procedure Can Quantify Differences Between
Various Sets of Formation Parameters

= Borehole Spacing, Number of Boreholes

- Borehole Arrays Will Be Investigated in the
Future



Material Degradation (T-M-C-H effects)
Due to Cyclic Loading @
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Experimental Deformation of Salt in Cyclic Loading
SJ Bauer and ST Broome
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Hourly fluctuations in wind speed could translate to frequent
pressurization/depressurizations of salt caverns

Bauer-CAES
47



Experimental Deformation of Salt in Cyclic Loading @
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Quasi- Static Loading

O Apply constant O
+ Increase 05 until specimen
fails
E— — + Measure strains
O
iC
— e — -
Oa ™ Oc Peak Strength
~._Elastic
Unload/Reload
g €a

Bauer-CAES
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Dilatant behavior of salt determined from quasi-static

tests and stress states for this study
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Test assembly

m)
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Axial
LVDT's

Heat
shrink
jacket

Radial
LVDT's

AE pin
location

Sample end
caps

Bauer-CAES
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Acoustic Emissions System @
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-« Sample rates up to 25 MHz

= Typically acquire 3000
samples/event

= Tailor a discriminator to
only sample events of a
given criteria

= 60 dB amplifier

= Location of events is
possible with many pins

=20 10 4] 10 20 -10 0 10 0 05 1 0 0.02 0.04 0.0%
Y (mm) X(}ﬂ‘" 19

Bauer-CAES

51



Differential stress versus axial strain, Test 3. @
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Test3 —=A53
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Test data
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Differential stress, axial and volume strain versus time, Test 3.

Differential Stress (psi
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Differential stress versus volume strain, Test 3 @
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Concluding Comments @

Preliminary cyclic tests.completed on salt
Change in volume strain observed
Young's Modulus changes-observed
Acoustic Emissions detected

Cracks observed in thick sections
Results consistent with previous w.erk

Implication that cyclic loading caused
cracking at low differential stresses .



Questions?
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