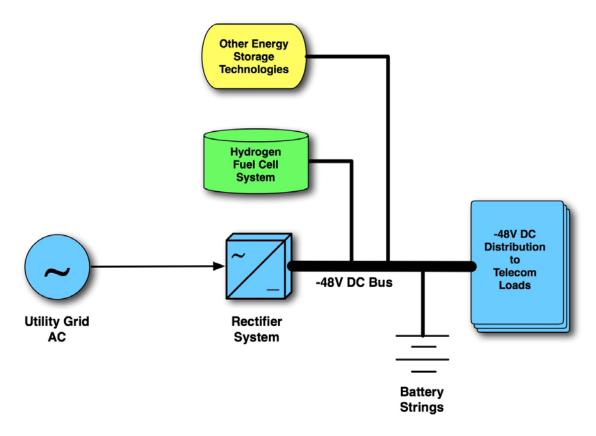


DOE Peer Review – Energy Storage

Kevin Kenny November 3, 2006

DOE Peer Review – Energy Storage The Need

National Drivers


- > Telecom & Electric Utilities have been identified as critical infrastructure
- > This infrastructure is vulnerable to natural and / or man-made disasters
- > National Security & Electronic Banking are dependent upon telecom **Industry Drivers**
 - > Growing wireless dependence "No Landline" Homes, Mobile Workforce
 - > Most telecom sites depend solely upon a constrained number of lead acid batteries for backup power which can experience performance issues that compromise reliability
 - > Industry spends \$650M annually for battery replacement

Corporate Drivers

- > Customer expects & market demands uninterrupted telecom service
- > Sprint is known for its "walkie-talkie" service (widely used by emergency first responders), Internet backbone, and as a provider of corporate networks
- > Sprint is committed to a high standard of environmental performance in all decisions (sponsor of DOE Solar Decathlon)
- > Total life cycle costs drive technology deployment decisions which impact shareholders

DOE Peer Review – Energy Storage Typical -48vDC Telecom Schematic

DOE Peer Review – Energy Storage The Requirements

Technical

- > Most applications are -48vDC, 24vDC; some AC applications
- > Focus on wireless cell site DC loads ranging from 3KW to 30KW
- > Also evaluating solutions for 200KW (POPs) and MW (Switch site) loads Operational
 - > Sites designated as "Critical" may require days of unattended operation
- > Some applications have size, weight and / or temperature constraints Financial
 - Sprint has thousands of sites where new energy storage solutions could be applicable
- > While initial costs are a factor, total life cycle costs are most important Environmental
 - > Sprint is a big proponent of recycling and environmental performance, so improvements in this area are important

DOE Peer Review – Energy Storage The Project

Goal

> Determine which energy storage technologies offer the greatest match to the technical, operational, financial and environmental requirements

Time Line

> Conclusions to be reached by August 2008

Next Steps

- Identify potential technology solutions (see next slide)
- > Create test plan for each
- > Collect and evaluate lab test data against requirements
- Downselect from list, field test and evaluate field data against requirements

DOE Peer Review – Energy Storage Technologies Being Evaluated (Preliminary)

Batteries

- > Valve Regulated Lead Acid (VRLA)
- > Lithium Metal Polymer (LMP)
- > Lithium Ion
- Nickel Cadmium (NiCad)
- > Vanadium Redux

Fuel Cells

- > Hydrogen Proton Exchange Membrane (PEM)
- > Zinc Bromide
- > Fuel Cells in Conjunction with Hydrogen Reformers
 - Various Fuel Types
 - Various Fuel Mixtures

Super / Ultra Capacitors

Flywheel

Other Technologies, As Yet Undefined

