Evaluation of Lead-Carbon Devices DOE Energy Storage Program Contract # 407411

Benjamin J Craft

Specialty Chemicals Division
MeadWestvaco Corporation
843-746-8312
bjc11@meadwestvaco.com

November 3, 2006 Washington DC

Participants

- MeadWestvaco
 - Developing carbons for energy storage
 - Lab scale and battery testing
- DOE Energy Storage Program and Sandia National Labs
 - Verification and battery testing
 - Analytic Support
- NorthStar Battery Company
 - Manufacturing and Battery Testing
 - Battery Expertise
- ETA
 - Testing
 - System Estimates
- WPS Energy
 - Valuation

Program Overview

Phase 1

- Evaluate lead based energy storage technologies
- Develop <u>carbon</u> for lead based technologies
 - Increase cycle life for some applications
 - Improve charging characteristics

Phase II

Select best technology for 1MW utility demonstration

History

- 1. Lead Carbon Asymmetric
 - Research Cells
- Evaluation of carbon modified lead acid batteries
 - Research Cells
 - 2 battery trials (250 Batteries)
- 3. Testing of Batteries and cells under several tests

Utility Market Opportunity

10 seconds to 20 minutes charge/discharge requires device that has capacitor and battery properties.

Carbons Under Review

Current Theories

- Activated Carbon
 - Pore Former (Acid Reservoir)
 - Increase Capacitance
- Graphite
 - Conductivity
- Carbon Black
 - Conductivity

Properties

Carbon	Surface Area (m2/g)	Capacitance (F/g)	Conductivity (ohm-cm)	Pore Volume (cc/g)
Graphite	1-20	1-5	0.001-0.1	0-0.1
Activate Carbon	500-2000	50-200	0.5-2.0	0.5-1.3
Carbon Black	50-1700	5-100	0.1	0.1-0.3

Standard Negative Electrode

Battery Build

Negative activate material (NAM) modifications

Standard Standard Battery Formulation

MWV 0
 2% C-black and 2% graphite (Hammond-ALABC)

MWV 1 4% activated carbon

A-type Activated Carbon

MWV 2
 4% activated carbon and 1.5% C-black

A-type Activated Carbon

MWV 3
 3% activated carbon

B-type Activated Carbon

MWV 4 3% activated carbon and 1.5% C-black

B-Type Activated Carbon

PSoC Screening test on 30Amphr Batteries

MeadWestvaco

PSoC Screening test on 50AmpHr Batteries

Simulated Utility algorithm

- Develop algorithm based on real data supplied by WPS Energy
- Profile developed
 - 30-80% SOC operation
 - same Ah balance as actual duty
 - SOC adjustment every 24 h
 - recharge 1-2 times per week
- Laboratory cycling of MWV0 and Standard

Fast Charge Cycle 108% Cycling

Carbon modified batteries has 8 cycles compared to 1 for standard product

Tafel Data

Carbon modified batteries have an increase in current at all voltages

Gas lost and float current at 2.45 volts per cell

Battery	Gassing rate to Standard	Float current to Standard	Molar Ratio H2:0
Standard	1	1	21
MWV0	22	20	2
MWV1	20	22	2
MWV3	2	10	3

Conclusion

- Carbon additives increase cycle life under some conditions.
- Carbon improves charging characteristics
- Carbon increases gas evolution and float currents.

Future Work

- Build new batteries with improved carbons
- Verify mechanisms for carbon effect
 - Develop new carbons
- Standardizing testing of batteries
- Develop actual system cost for Utility Demonstration

Thanks to Those Involved

Leading with Imagination

