	Site	Status		
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Plants		
Big tarplant ^a	-	Х	-	CNPS List 1 B
Hogwallow starfish	-	Х	-	CNPS List 4
Large-flowered fiddleneck	-	Х	FE (CH)	CNPS List 1 B
Round-leaved filaree	-	Х	-	CNPS List 2
Stinkbells	-	Х	-	CNPS List 4
Diamond-petaled poppy	-	Х	FSC	CNPS List 1 B
Gypsum rock jasmine	-	Х	-	CNPS List 4
Gypsum loving larkspur	-	Х	-	CNPS List 4
		Invertebrates		
Valley elderberry longhorn beetle	-	Х	FT	-
California linderiella fairy shrimp	-	Х	FSC	-
		Amphibians		
California tiger salamander	-	Х	FT (CH not proposed at LLNL)	CASSC
California red-legged frog	Х	Х	FT (CH proposed)	CASSC
Western spadefoot toad	-	Х	FSC	CASSC
		Reptiles		
Alameda whipsnake	-	Х	FT (CH rescinded)	ST
California horned lizard	-	Х	FSC	CASSC
Silvery legless lizard	-	Х	FSC	CASSC
San Joaquin coachwhip	-	Х	FSC	CASSC

TABLE 4.9.3–1.—Federal and California Species with Protected or Sensitive Status Known to Occur at the Livermore Site and Site 300 in 2001 and 2002

	Site	Site		Status	
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code	
		Birds			
Cooper's hawk	Х	Х	MBTA	CASSC	
Sharp-shinned hawk	-	Х	MBTA	CASSC	
Golden eagle	Х	Х	MBTA	CASSC	
Red-tailed hawk	Х	Х	MBTA	-	
Rough-legged hawk	-	Х	MBTA	-	
Red-shouldered hawk	Х	Х	MBTA	-	
Ferruginous hawk	-	Х	FSC, MBTA	CASSC	
Swainson's hawk	-	Х	MBTA	ST	
Northern harrier	-	Х	MBTA	CASSC	
White-tailed kite	Х	Х	MBTA	CASSC	
Osprey	-	Х	MBTA	CASSC	
Bushtit	Х	Х	MBTA	-	
American kestrel	Х	Х	MBTA	-	
Prairie falcon	-	Х	MBTA	CASSC	
Horned lark	-	Х	MBTA	CASSC	
Northern shoveler	-	Х	MBTA	-	
Cinnamon teal	-	Х	MBTA	-	
Mallard	Х	Х	MBTA	-	
Bufflehead	Х	Х	MBTA	-	
Common goldeneye	-	Х	MBTA	-	
Pied-billed grebe	Х	Х	MBTA	-	
Common snipe	Х	Х	MBTA	-	
Greater yellowlegs	Х	Х	MBTA	-	

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the
Livermore Site and Site 300 in 2001 and 2002 (continued)

	Site		ana 2002 (continuea) Stat	tatus	
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code	
		Birds (cont.)			
Ring-necked duck	Х	-	MBTA	-	
Coot	Х	-	MBTA	-	
Great blue heron	-	Х	MBTA	-	
Green heron	-	Х	MBTA	-	
Black-crowned night heron	-	Х	MBTA	-	
Canada goose	Х	-	-	-	
White-throated swift	-	Х	MBTA	-	
Great egret	Х	X	MBTA	-	
Snowy egret	Х	-	MBTA	-	
Belted king fisher	Х	-	MBTA	-	
Cedar waxwing	Х	Х	MBTA	-	
Common poorwill	-	X	MBTA	-	
Blue-grosbeak	-	X	MBTA	-	
Lazuli bunting	-	Х	MBTA	-	
Killdeer	Х	Х	MBTA	-	
Mourning dove	Х	Х	MBTA	-	
Rock dove	Х	Х	MBTA	-	
Western scrub jay	Х	Х	MBTA	-	
American crow	Х	Х	MBTA	-	
Common raven	Х	Х	MBTA	-	
Greater roadrunner	-	Х	MBTA	-	
Bell's sage sparrow	-	Х	FSC, MBTA	-	
Black-throated sparrow	-	Х	MBTA	-	

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the
Livermore Site and Site 300 in 2001 and 2002 (continued)

	us			
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds (cont.)		
Rufous crowned sparrow	-	Х	MBTA	-
Grasshopper sparrow	-	Х	FSC, MBTA	-
Vesper sparrow	-	Х	MBTA	-
Lark sparrow	-	Х	MBTA	-
California towhee	-	Х	MBTA	-
Oregon junco	Х	Х	MBTA	-
Lincoln's sparrow	-	Х	MBTA	-
Song sparrow	Х	Х	MBTA	-
Fox sparrow	-	Х	MBTA	-
Savannah sparrow	-	Х	MBTA	-
Golden-crowned sparrow	Х	Х	MBTA	-
White-crowned sparrow	Х	Х	MBTA	-
House finch	Х	Х	MBTA	-
Lesser goldfinch	Х	Х	MBTA	-
American goldfinch	Х	Х	MBTA	-
Cliff swallow	Х	Х	MBTA	-
Northern rough winged swallow	Х	Х	MBTA	-
Tree swallow	-	Х	MBTA	-
Red-winged blackbird	Х	Х	MBTA	-
Tricolored blackbird	-	Х	FSC, MBTA	CASSC
Brewer's blackbird	Х	Х	MBTA	-
Bullock's oriole	-	Х	MBTA	-
Brown-headed cowbird	Х	Х	MBTA	-
Western meadowlark	Х	Х	MBTA	-

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the
Livermore Site and Site 300 in 2001 and 2002 (continued)

	Site Statu				
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code	
		Birds (cont.)			
Loggerhead shrike	Х	Х	FSC, MBTA	CASSC	
Northern mockingbird	Х	Х	MBTA	-	
California thrasher	-	Х	FSC, MBTA	-	
California quail	-	Х	MBTA	-	
Oak titmouse	-	Х	FSC, MBTA	-	
Yellow-rumped warbler	Х	Х	MBTA	-	
Black-throated gray warbler	-	Х	MBTA	-	
Yellow warbler	-	Х	MBTA	CASSC	
Common yellowthroat	-	Х	MBTA	CASSC	
MacGillivary's warbler	-	Х	MBTA	-	
Orange-crowned warbler	-	Х	MBTA	-	
Wilson's warbler	-	Х	MBTA	-	
Double-crested cormorant	Х	Х	MBTA	CASSC	
Northern flicker	Х	Х	MBTA	-	
Acorn woodpecker	Х	Х	MBTA	-	
Nuttall's woodpecker	Х	Х	FSC, MBTA	-	
Phainopepla	-	Х	MBTA	-	
Ruby-crowned kinglet	Х	Х	MBTA	-	
Barn owl	Х	Х	MBTA	-	
Burrowing owl	-	Х	FSC, MBTA	CASSC	
Short-eared owl	-	Х	FSC, MBTA	CASSC	
Great horned owl	Х	Х	MBTA	-	
Western screech owl	-	Х	MBTA	-	
Western tanager	-	Х	MBTA	-	

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the	
Livermore Site and Site 300 in 2001 and 2002 (continued)	

	Site	Stat	us	
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds (cont.)		
Allen's hummingbird	-	Х	MBTA	-
Anna's hummingbird	Х	Х	MBTA	-
Costa's hummingbird	-	Х	FSC, MBTA	-
Rufous hummingbird	Х	Х	FSC, MBTA	-
Rock wren	-	Х	MBTA	-
Bewick's wren	Х	Х	MBTA	-
House wren	-	Х	MBTA	-
Hermit thrush	-	Х	MBTA	-
Swainson's thrush	-	Х	MBTA	-
Varied thrush	-	Х	MBTA	-
Mountain bluebird	-	Х	MBTA	-
Western bluebird	-	Х	MBTA	-
American robin	Х	Х	MBTA	-
Western wood pewee	Х	Х	MBTA	-
Willow flycatcher	-	Х	MBTA	SE
Pacific-slope flycatcher	-	Х	MBTA	-
Ash-throated flycatcher	-	Х	MBTA	-
Black phoebe	Х	Х	MBTA	-
Say's phoebe	Х	Х	MBTA	-
Western kingbird	-	Х	MBTA	-
Cassin's kingbird	-	Х	MBTA	-

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the	
Livermore Site and Site 300 in 2001 and 2002 (continued)	

	Site		Status	
Common Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Mammals		
Pallid bat	-	Х	-	CASSC
Long-legged myotis	-	Х	FSC	-
Yuma myotis	-	Х	FSC	-
San Joaquin pocket mouse	-	Х	FSC	-
San Joaquin kit fox ^b	-	-	FE	ST

TABLE 4.9.3–1.— Federal and California Species with Protected or Sensitive Status Known to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)

Sources: Jones and Stokes 2001, CDFG 2002a, CDFG 2002b, LLNL 2003ab, bz, by.

^a The scientific names of all plant and animal species in this table are provided in Table E.2-1 in Appendix E.

^b Although the San Joaquin kit fox has not been observed onsite in surveys from 1986 to the present, monitoring efforts continue to watch for the presence of this species onsite, due to confirmed sightings near Site 300.

-: Indicates the absence of a species at the Livermore Site or Site 300.

CASSC: California Species of Special Concern; CH: Critical Habitat (The USFWS may establish critical habitat for threatened or endangered species with the CH consisting of geographic area determined essential for the conservation of the species); CNPS List 1A: Plants presumed extinct in California; CNPS List 1B: Plants rare, threatened, or endangered in California, but more common elsewhere; CNPS List 3: Plants about which we need more information – a review list; CNPS List 4: Plants of limited distribution – A watch list; FC: federally listed candidate (plant and animal species for which the USFWS has on file sufficient information on biological vulnerability and threat to support issuance of a proposed rule for listing as threatened or endangered); MBTA: *Migratory Bird Treaty Act*; FE: federally listed endangered (any species that is in danger of extinction throughout all or a significant portion of its range); FPT: federally listed proposed threatened (A proposal to list a species as likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range pending release of a final rule); FSC: Federally listed threatened (any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range pending release of a final rule); FSC: Federally listed threatened (any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range pending release of support listing at this time; FT: federally listed threatened (any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range); ST: state listed threatened; X: Indicates the presence of a species at the Livermore Site or Site 300.

Examples of Sources	Health and Related Effects ^b	Local Concerns	Prevention and Control Strategies	
		Ozone		
Ozone is formed when POCs and nitrogen oxides react in the presence of sunlight. POC sources include any source that burns fuels (e.g., gasoline, natural gas, wood, oil), solvents, petroleum processing and storage, pesticides, and many consumer products (paint, ink, etc.). The greatest source of ozone precursors is the automobile. In the Bay Area, more than 50 percent of the POCs and nitrogen oxides come from cars and trucks.	Breathing difficulties, lung tissue damage, damage to rubber and some plastics. Contributes to visibility reduction.	Ozone is a major concern locally. Both the Bay Area and San Joaquin Valley air basins have been designated as nonattainment for state and Federal ozone standards. San Joaquin has been further ranked as serious, the highest, or most problematic, ranking. After having been designated as attainment for the 1-hour ozone standard, more recently the Bay Area was redesignated to nonattainment (August 1998), but has not yet been further ranked.	Reduce motor vehicle POCs and nitrogen oxide emissions through emissions standards, reformulated fuels, inspections programs, and reduced vehicle use. Limit POC emissions from commercial operations and consumer products. Limit POC and nitrogen oxide emissions from industrial sources such as power plants and refineries. California's automobile emissions control program, together with the district's regulatory controls, has sharply reduced ozone levels.	
	Carbo	n Monoxide		
Any source that burns fuel such as automobiles, trucks, heavy construction equipment and farming equipment, and residential heaters and stoves. Almost 70 percent of the Bay Area's carbon monoxide comes from motor vehicles, and a large fraction of the remainder is from burning wood in fireplaces and woodstoves.	Chest pain in heart patients, headaches, reduced mental alertness, death at very high levels.	Both districts are in attainment of the state and Federal ambient air quality standards. Maximum levels monitored in Livermore are approximately one-third of the standard.	Control motor vehicle and industrial emissions. Use oxygenated gasoline during winter months. Conserve energy.	

 TABLE 4.10.1–1.—Sources, Potential Health Effects, and Strategies for the Prevention and Control of Air Pollutants^a

Examples of Sources	Health and Related Effects ^b	Local Concerns	Prevention and Control Strategies					
	Nitrogen Dioxide							
Automobiles, trucks, heavy construction equipment and farming equipment, and residential heaters and stoves.	Lung irritation and damage. Reacts in the atmosphere to form ozone and acid rain. Contributes to brown haze. At higher concentrations, damage has been noticed in sensitive crops such as beans and tomatoes.	It is a major contributor to ozone formation. Both districts are in attainment of the state and Federal ambient air quality standards; however, at concentrations experienced in the Bay Area, nitrogen dioxide can be seen as a brown haze on days with otherwise good visibility.	Control motor vehicle and industrial combustion emissions.					
	Sulfur Diox	ide and Sulfates						
Coal- or oil-burning power plants and industries, refineries, and diesel engines.	Increases lung disease and breathing problems, particularly for asthmatics. Reacts in the atmosphere to form acid rain. Sulfates also contribute to reduced visibility. Sulfates and sulfuric acid can damage vegetation and affect the health of both humans and animals.	Both districts are classified attainment of the state and Federal ambient air quality standard for sulfur dioxide and the state ambient air quality standard for sulfates. Maximum levels monitored in Livermore are approximately one- third of the standard. No state or Federal excesses have been recorded at district monitoring stations since 1976.	Limit use of high sulfur fuels (e.g., use low sulfur reformulated diesel or natural gas).					

TABLE 4.10.1–1.—Sources, Potential Health Effects, and Strategies for the Prevention and Control of Air Pollutants^a (continued)

Examples of Sources	Health and Related Effects ^b	Local Concerns	Prevention and Control Strategies		
Particulate Matter					
Coarse particles (referred to as PM_{10} , i.e., particle diameter of 10 microns or less) ^c come from sources such as windblown dust from the desert or agricultural fields and dust kicked up on unpaved roads by vehicle traffic. The major human- generated (anthropogenic) sources in the Bay Area include motor vehicle travel over paved and unpaved roads, demolition and construction activity, and wood burning in fireplaces and stoves. Agricultural operations and burning also contribute significantly to particulate concentrations in rural areas. PM_{10} emissions are expected to increase in future years.	PM ₁₀ can accumulate in the respiratory system and aggravate health problems such as asthma. PM _{2.5} is more likely to be associated with premature death and increased hospital admissions and emergency room visits (primarily with elderly and individuals with cardiopulmonary disease); increased respiratory symptoms and disease (primarily children and individuals with cardiopulmonary disease such as asthma); decreased lung function (particularly in children and individuals with asthma); and alterations in lung tissue and structure and in respiratory tract defense mechanisms.	The Bay Area air district is classified as nonattainment with respect to California standards, attainment for the annual Federal PM_{10} standard, and unclassified for $PM_{2.5}$ and 24-hour PM_{10} Federal standards. The San Joaquin Valley air district is classified as nonattainment for state standards and as a serious nonattainment area for Federal PM_{10} . The designation for Federal $PM_{2.5}$ standard has not yet been determined.	Reduce combustion emissions from motor vehicles, equipment, industries, and agriculture and residential burning. Precursor controls, like those for ozone, reduce PM _{2.5} formation in the atmosphere. Control dust sources, industrial particulate emissions, and wood burning stoves and fireplaces. Reduce secondary pollutants that react to form PM ₁₀ .		
Fine particles (PM _{2.5}) are generally emitted from activities such as industrial and residential combustion and from vehicle exhaust. PM _{2.5} are also formed in the atmosphere when gases such as sulfur dioxide and nitrogen oxide, and volatile organic compounds, emitted by combustion activities, are transformed by chemical reactions in the air.	PM _{2.5} is also linked with reduced visibility (e.g., obscures mountains and other scenery) because it scatters and absorbs light, reduces airport safety, and contributes to surface soiling.				

TABLE 4.10.1–1.—Sources, Potential Health Effects, and Strategies for the Prevention and Control of Air Pollutants^a (continued)

Examples of Sources	Health and Related Effects ^b	Local Concerns	Prevention and Control Strategies
		Lead	
Metal smelters, resource recovery, leaded gasoline, deterioration of lead paint.	Learning disabilities and brain and kidney damage.	No specific information. Areas are in attainment of both state and Federal ambient air quality standards.	Control metal smelters, no lead in gasoline. Replace leaded paint with non-lead substitutes.
	Hydro	ogen Sulfide	
Geothermal power plants, petroleum production and refining, sewer gas.	Nuisance odor (rotten egg smell), headache and breathing difficulties at higher concentrations.	No specific information. Both areas are unclassified with respect to the state ambient air quality standard.	Control emissions from geothermal power plants, petroleum production and refining, sewers, and sewage treatment plants.
	Toxic Air	· Contaminants	
Cars and trucks, especially diesels; industrial sources such as chrome plating; neighborhood businesses, such as dry cleaners and service stations; and building materials and products. Over 50 percent of the public's total exposure to toxic air contaminants in the Bay Area comes from the carcinogens benzene and 1,3-butadiene, two organic compounds found in automobile exhaust.	Cancer; chronic eye, lung, or skin irritation; and neurological and reproductive disorders.	Within the city of Livermore, there are approximately 20 facilities that must report emissions of toxic air contaminants, i.e., emissions exceeding de minimis levels. The individual excess cancer risk due to average ambient concentrations of toxic air contaminants measured in the Bay Area during 2000 is approximately 170 in a million (See Section 4.10.2.2). Toxic air contaminants are regulated under various state and local programs.	See general discussions under ozone and particulate matter and other pollutant subgroups (lead, hydrogen sulfide, etc.) for control of gaseous and particulate air pollutants.

 TABLE 4.10.1–1.—Sources, Potential Health Effects, and Strategies for the Prevention and Control of Air Pollutants^a (continued)

Examples of Sources	Health and Related Effects ^b	Local Concerns	Prevention and Control Strategies
	Stratospheric Ozon	e-Depleting Substances	
Non-POCs include methylene chloride, 1,1,1-trichloroethane, halons and the family of chemicals referred to as freons or chlorofluorocarbons, and chlorine and bromine compounds. Refrigerants, air conditioners, fire suppressants, certain aerosols, and solvents.	Increased incidence of harmful health consequences of ultraviolet radiation, particularly squamous cell carcinomas of the skin.	No additional local concerns stratospheric on ozone depletion.	Substitute formulations with lower ozone-depleting potential. Good maintenance.

TABLE 4.10.1–1.—Sources, Potential Health Effects, and Strategies for the Prevention and Control of Air Pollutants^a (continued)

Source: See table notes.

^a Extracted from information provided in multiple sources including: EPA Ozone Depletion and Climate Protection Partnerships Division Websites (EPA 2002b); EPA Revised Particulate Matters Fact Sheet (EPA 1997); CARB Website Fact Sheets on Air Pollution and Air Pollution and Health (CARB 2002a, CARB 2002b); and BAAQMD Website, Attainment Website Status, General Pollutant Information and Toxic Air Contaminant Control Program Annual Report, and CEQA Guidelines for Assessing the Air Quality Impacts of Projects and Plans (BAAQMD 2003, 2002, 2001, 1999); and SJVUAPCD Website Attainment Status (SJVUAPCD 2002).

^b Although air pollutants can cause health problems for everyone, certain people are especially vulnerable. These "sensitive populations" include children, the elderly, exercising adults, and those suffering from asthma or bronchitis. Of greatest concern are recent studies that link PM_{10} exposure to the premature death of people who already have heart and lung disease, especially the elderly. ^c One micron (also referred to as a micrometer or um) = 1×10^{-6} meters.

BAAQMD = Bay Area Air Quality Management District; CARB = California Air Resources Board; CEQA = California Environmental Quality Act of 1970; EPA = U.S. Environmental Protection Agency; POC = precursor organic compounds; SAAQS = State Ambient Air Quality Standard

Predominant Radionuclides	les percent contribution to site-wide maximally exp individual dose from that facility)				
Released	1998	1999	2000	2001	2002
	Livermore				
H-3					2.3
	(35)	(15)	(40)	(48)	(4.8)
H-3	110	276	39.8	19.7	36
	(53)	(72)	(25)	(25)	(35)
H-3, C-14,				$5.5 imes 10^{-6}$	
Sr-90 and				(8)	
others					
Pu-239				DS	
				(5)	
H-3, C-14,				$2.0 imes 10^{-6}$	$1.5 imes 10^{-5}$
Sr-90 and				(4)	(5)
others					
H-3, P-32,			$7.2 imes 10^{-7}$	$1.0 imes 10^{-7}$	$9.6\times10^{\text{-}6}$
U-238 and others			(16)	(3)	(5)
H-3	6	7.3	5.2		1.0
	(7)	(5)	(12)		(4)
	Site 300				
					1.5×10^{-2}
					$2.0 imes 10^{-4}$ $1.4 imes 10^{-3}$
					1.4×10
11-5					(85)
		× /			
					DS
					DS
U234	DS (22)	DS (3)	DS (21)	DS (7)	DS (15)
11238	7.2×10^{-2}	4.8×10^{-2}			
		4.0×10^{-4}			
U234	6.8×10^{-3}	4.4×10^{-3}			
	(70)	(36)			
	Radionuclides Released H-3 H-3 H-3 H-3, C-14, Sr-90 and others Pu-239 H-3, C-14, Sr-90 and others Pu-239 H-3, C-14, Sr-90 and others U-238 and others H-3, P-32, U-238 and others U-238 U238 U238 U238 U238 U234 H-3	Predominant Radionuclides Released percent 1998 Image: Livermore 3 H-3 1.0 (35) H-3 4.6 (35) H-3 1.0 (53) H-3, C-14, Sr-90 and others Image: Livermore 3 (53) H-3, C-14, Sr-90 and others Image: Livermore 3 (53) H-3, C-14, Sr-90 and others Image: Livermore 3 (53) H-3, C-14, Sr-90 and others Image: Livermore 3 (7) U238 and others Image: Livermore 3 (7) U238 U235 U234 Image: Livermore 3 (7) U238 U235 Image: Livermore 3 (22) U238 U235 Image: Livermore 3 (22)	Predominant Radionuclides Released percent contribution individual 1998 1999 Individual 1998 1999 H-3 4.6 4.4 (35) (15) H-3 110 276 (53) (72) H-3, C-14, Sr-90 and others 72 10 Pu-239 10 276 H-3, C-14, Sr-90 and others 10 276 H-3, C-14, Sr-90 and others 10 276 H-3, P-32, U-238 and others 10 10 H-3 6 7.3 (7) 10 U238 2.4 × 10 ² 3.1 × 10 ⁴ U235 3.1 × 10 ⁴ 2.3 × 10 ³ H-3 19 (61) U238 DS DS U238 DS DS U234 DS DS U234 DS DS U238 DS DS U238 DS DS U234 2.3 × 10 ⁻² 4.8 × 10 ⁻² U238 7.2 × 10 ⁻² <td>Percent contribution to site-wide individual dose from th 1998 Released 1998 1999 2000 Livermore Site H-3 4.6 4.4 3.6 (35) (15) (40) H-3 110 276 39.8 (53) (72) (25) H-3, C-14, Sr-90 and others (53) (72) (25) H-3, C-14, Sr-90 and others 7.2 × 10⁷ (16) H-3, P-32, U-238 and others 7.2 × 10⁷ (16) H-3 6 7.3 5.2 H-3 6 7.3 5.2 (16) (16) (16) U238 2.4 × 10² 1.5 × 10² U234 2.3 × 10³ 2.3 × 10³ H-3 19 0 (61) (79) (61) (79) U238 DS DS DS U234 DS DS DS U235 DS DS DS U238 7.2</td> <td>Percent contribution to site-wide maximally e individual dose from that facility) Released 1998 1999 2000 2001 Livermore Site 1 2000 2001 H-3 4.6 4.4 3.6 2.0 H-3 4.6 4.4 3.6 2.0 H-3 4.6 4.4 3.6 2.0 H-3 110 276 39.8 19.7 (53) (72) (25) (25) H-3, C-14, Sr-90 and others 5.5 × 10⁻⁶ 8 Pu-239 DS DS 5.5 H-3, P-32, U-238 and others 7.2 × 10⁻⁷ 1.0 × 10⁻⁷ H-3 6 7.3 5.2 H-3 6 7.3 5.2 H-3 6 7.3 5.2 H-3 10 0 0 H-3 6 7.3 5.2 H-3 10 0 0 H-3 10 0 0 1</td>	Percent contribution to site-wide individual dose from th 1998 Released 1998 1999 2000 Livermore Site H-3 4.6 4.4 3.6 (35) (15) (40) H-3 110 276 39.8 (53) (72) (25) H-3, C-14, Sr-90 and others (53) (72) (25) H-3, C-14, Sr-90 and others 7.2 × 10 ⁷ (16) H-3, P-32, U-238 and others 7.2 × 10 ⁷ (16) H-3 6 7.3 5.2 H-3 6 7.3 5.2 (16) (16) (16) U238 2.4 × 10 ² 1.5 × 10 ² U234 2.3 × 10 ³ 2.3 × 10 ³ H-3 19 0 (61) (79) (61) (79) U238 DS DS DS U234 DS DS DS U235 DS DS DS U238 7.2	Percent contribution to site-wide maximally e individual dose from that facility) Released 1998 1999 2000 2001 Livermore Site 1 2000 2001 H-3 4.6 4.4 3.6 2.0 H-3 4.6 4.4 3.6 2.0 H-3 4.6 4.4 3.6 2.0 H-3 110 276 39.8 19.7 (53) (72) (25) (25) H-3, C-14, Sr-90 and others 5.5 × 10 ⁻⁶ 8 Pu-239 DS DS 5.5 H-3, P-32, U-238 and others 7.2 × 10 ⁻⁷ 1.0 × 10 ⁻⁷ H-3 6 7.3 5.2 H-3 6 7.3 5.2 H-3 6 7.3 5.2 H-3 10 0 0 H-3 6 7.3 5.2 H-3 10 0 0 H-3 10 0 0 1

TABLE 4.10.5–1. Radionuclide Releases From LLNL, 1998-2002

Source: LLNL 1999a, LLNL 2000h, LLNL 2001v, LLNL 2002cc, LLNL 2003l.

Note: Entry of blank curies per year indicates a source that did not contribute to the 90th percentile releases.

DS: Doses from diffuse source are calculated from measured ambient concentrations rather than release rates.

Segment Location	Segment Distance (miles)	No. of Accidents	ADT	3-year Volumes	Vehicle Miles of Travel	Accidents per MVM	Average Statewide Accidents per MVM
S. Vasco Rd (South of I-580 to Las Positas) ^a	0.5	39	30,000	31,455,901	15,727,951	2.48	2.18 ^a
S. Vasco Rd (South of Las Positas to Patterson Pass) ^a	0.6	40	26,200	27,471,487	16,482,892	2.43	2.18 ^a
S. Vasco Rd (South of Patterson Pass to East Ave) ^a	1.0	7	16,600	17,405,599	17,405,599	0.40	2.18 ^a
Greenville Rd (South of I-580 to Las Positas) ^a	0.3	3	15,600	16,357,069	4,907,121	0.61	2.18 ^a
Greenville Rd (South of Las Positas to Patterson Pass) ^a	1.2	11	12,000	12,582,361	15,098,833	0.73	1.93 ^a
Greenville Rd (South of Patterson Pass to East Ave) ^a	1.1	2	6,500	6,815,445	7,496,990	0.27	1.93 ^a
Patterson Pass Rd (East of S. Vasco to West of Greenville) ^a	1.2	6	6,200	6,500,886	7,801,064	0.77	1.93 ^a
East Ave (East of S. Vasco to West of Greenville) ^a	1.2	1	7,000	7,339,710	8,807,652	0.11	1.93 ^a
Greenville Rd (South of East Ave to Tesla Rd) ^a	1.0	0	3,000	3,145,590	3,145,590	0.00	1.21 ^a
Tesla Rd (Greenville to Site 300 Entrance) ^a	13.1	55	4,500	4,718,385	661,810,846	0.89	1.21 ^a

 TABLE 4.13.3–1.
 Three-Year Accident Rates for Roads Adjacent to the Livermore Site and Site 300 (1999 through 2001)

Source: CA DOT 1999, CHP 1999, CHP 2000, CHP 2001.

^a Urban 4-lane divided roadway.

^b Two- and three-lane urban roadways.

^cTwo-lane rural roadway.

ADT = average daily traffic; MVM = million vehicle miles.

TABLE 4.15.1.1–1.—Summary of Major Laws, Regulations, and Orders Associated with
Materials Management

Laws, Regulations, and Orders	Description
<i>Emergency Planning and</i> <i>Community Right-to-Know Act</i> (EPCRA) of 1986 (42 U.S.C. §11001)	This Act includes emergency planning, notification requirements for unplanned releases of extremely hazardous substances, annual chemical inventory/material safety data sheet reporting, and annual toxic release inventory (TRI) reporting requirements. LLNL does not currently meet the standard industrial code (SIC) criteria that require reporting; however, it has assisted DOE in preparing TRI reports consistent with the directive of Executive Order (EO) 12856, superceded by EO 13148.
Greening the Government through Leadership in Environmental Management (EO 13148)	This EO directs all Federal agencies to develop and implement environmental management systems to support environmental compliance, right-to-know and pollution prevention; reducing toxic chemical releases, reducing use of toxic chemicals, hazardous substances, and other pollutants; reducing ozone depleting substances; and promoting environmentally and economically beneficial landscaping.
Atomic Energy Act (42 U.S.C. §2011)	The <i>Atomic Energy Act</i> (AEA) of 1954 makes the Federal government responsible for regulatory control of the production, possession, and use of three types of radioactive material: source, special nuclear, and byproduct (including waste).
29 CFR §§1910.1200, Hazard Communication	This regulation requires employers to keep a list of the hazardous chemicals maintained in the workplace.
40 CFR Part 302, Designation, Reportable Quantities, and Notification; and 40 CFR Part 370, Hazardous Chemical Reporting: Community Right to Know	This regulation requires the reporting of hazardous chemicals in quantities exceeding federally prescribed thresholds to safety and health officials in the state and local community.
California Health and Safety Code Division 20, Section 6.7 and 6.75, Subpart 25280-25299.7	This regulation establishes standards for concentration, maintenance, inspection, and testing of underground storage tanks.
California AB 2185, Hazardous Materials Release Response Plans and Inventory Law	The law covers the management of hazardous and acutely hazardous materials.
DOE O 5480.4, Environmental Protection, Safety, and Health Protection Standards	This order requires DOE facilities to comply with 29 CFR Part 1910, Subpart Z, Toxic and Hazardous Substances.
DOE O 460.2, Departmental Materials Transportation And Packaging Management	This order establishes DOE policies and requirements to supplement applicable laws, rules, regulations, and other DOE orders for materials transportation and packaging operations.
DOE O 460.1A, Packaging and Transportation Safety	This order establishes safety requirements for the proper packaging and transportation of DOE offsite shipments and onsite transfers of hazardous materials and for modal transport. (Offsite is any area within or outside a DOE site to which the public has free and uncontrolled access; onsite is any area within the boundaries of a DOE site or facility to which access is controlled.)

Source: LLNL 2002cc. CFR = *Code of Federal Regulations*; DOE = U.S. Department of Energy; U.S.C. = *United States Code*.

Building		Approximate ^c Quantity or			
Number	Radionuclide	Limit (kg, lb, or Ci)	Status ^d		
Building 131 High Bay	Natural thorium Depleted uranium	0.5 kg 7,700 kg	Radiological facility		
		Inventory maintained below Category 3 thresholds			
Building 132N	Natural uranium Depleted uranium Sealed sources	Inventory maintained below Category 3 thresholds	Radiological facility		
Building 132S	Natural uranium Depleted uranium Sealed sources	Inventory maintained below Category 3 thresholds	Radiological facility		
Building 151	15 radionuclides	Inventory maintained below Category 3 thresholds. Ratio approximately 0.633 ^b	Radiological facility		
Building 152	Sealed sources	Inventory maintained below Category 3 thresholds	Radiological facility		
Building 154	Sealed sources	Inventory maintained below Category 3 thresholds	Radiological facility		
Building 190	Tritium Cobalt-60 Americium-241 Plutonium-238 Plutonium-239	20.0 Ci 1.43×10^{-4} Ci 1.11×10^{-5} Ci 0.027 Ci 1.50 Ci	Radiological facility		
Building 191	Depleted uranium	0.008 Ci	Radiological facility		
Building 194	Uranium-235 Plutonium-239	0.192 kg 0.003 kg	Radiological facility		
	Sealed sources	Inventory maintained below Category 3 thresholds			
Building 231	Natural thorium Natural uranium Depleted uranium Rhenium	0.5 kg 9.5 kg 3,000 kg 60 kg	Radiological facility		
Building 231 vault	Natural thorium Uranium-235 Uranium-238	11 kg 3.4 kg 1,700 kg	Radiological facility		
Building 232 Fenced Area and 233 Vault	Thorium Low enriched uranium Natural or depleted uranium	150 kg 0.3 kg 4,000 kg	Radiological facility		
Building 239	Plutonium, fuel grade equivalent ^e Highly enriched uranium ^e Depleted uranium Tritium	6 kg 25kg/50 kg ^f 500 kg 0.02 kg	Varies; resident inventory maintained below Category 3 thresholds		

TABLE 4.15.1.2–1.—Facilities Managing Radionuclides^a at LLNL

Building		· · · · ·	
Number	Radionuclide	Limit (kg, lb, or Ci)	Status ^d
Building 241	Depleted uranium	2,650 kg	Radiological facility
	5 radionuclides	Inventory maintained below Category 3 thresholds	
Building 251	42-Category 2 radionuclides	Inventory maintained below Category 2 thresholds	Category 2 facility
Building 255E	Sealed sources	Inventory maintained below Category 3 thresholds	Radiological facility
Building 261/262	16 Radionuclides	Inventory maintained below Category 3 thresholds	Radiological facility
	Thorium	100 lbs (Metal)	
	Natural uranium	100 lb	
	Depleted uranium	300 lb	
Building 322	Depleted uranium	30 kg	Radiological facility
Building 327	Depleted uranium	95 kg	Radiological facility
Building 331 ^g	Tritium ^e	0.030kg/0.035 kg ^f	Inventory is distributed between
	Plutonium-239	900 g	two segments; small quantities
	Plutonium, fuel-grade	260 g	of other radionuclides may be
	equivalent		present but the facility will remain a Category 3 facility
	Uranium-235	700 g	Tentain a Category 5 facility
	HEU	5 kg	
Building 332	Plutonium ^e	700kg/1,400 kg ^f	Category 2 facility
	Enriched uranium ^e	500 kg	
	Depleted or natural uranium ^e	3,000 kg	
Building 334 ^g	Plutonium, fuel grade equivalent ^e	18 kg	Category 3 facility
	Enriched uranium	100 kg	
	Depleted uranium Tritium	500 kg	
Duilding 261		0.0001 kg	Dediclesical facility
Building 361	Phosphorus-32 Sulphur-35	0.027 Ci 0.008 Ci	Radiological facility
	Carbon-14	0.131 Ci	
	Tritium	0.29 Ci	
Building 362	Carbon-14	0.036 Ci	Radiological facility
	Tritium	0.006 Ci	
Building 363	Carbon-14 Tritium	0.002Ci 0.001 Ci	Radiological facility
Building 364	Cesium-137 (sealed Source)	3.5×10^3 Ci	Radiological facility
Building 366	Phosphorus-32	0.007 Ci	Radiological facility
Building 378	20 radionuclides (Sealed sources)	Inventory maintained below Category 3 thresholds	Radiological facility
Building 379	20 radionuclides (Sealed sources)	Inventory maintained below Category 3 thresholds	Radiological facility
Building 381	Tritium Sealed sources	8.5 Ci (storage limit – 20 Ci) Inventory maintained below Category 3 thresholds	Radiological facility

TABLE 4.15.1.2–1.—Facilities Managing Radionuclides at LLNL (continued)

Building		Approximate ^c Quantity or	
Number	Radionuclide	Limit (kg, lb, or Ci)	Status ^d
RHWM Facilities (Area 514)	Miscellaneous radionuclides	Inventory maintained below Cat 3 thresholds	Radiological facility
RHWM Facilities (Area 612)	Cat 2 radionuclides	See Appendix B for inventory limits	Category 2 facility
DWTF Buildings 695/696S	Cat 3 radionuclides	See Appendix B for inventory limits	Category 3 facility
DWTF Building 693/ 696RWSA	Cat 2 radionuclides	See Appendix B for inventory limits	Category 2 facility
Cargo Container Testing facility	Depleted or natural uranium Uranium-235	50 kg	Radiological facility
(planned)	Plutonium-239	1.0 kg (metal), 0.2 kg (oxide)	
	Sealed sources	0.40 kg Inventory maintained below	
		Category 3 thresholds	

 TABLE 4.15.1.2–1.—Facilities Managing Radionuclides at LLNL (continued)

Source: LLNL 1999b, g; LLNL 2000d, k, l, o, p; LLNL 2001b,e, f, aw; LLNL 2002ar, cq, co.

^aSummary information, additional radionuclides may be present in these facilities.

^bRatio of activity to Category 3 threshold must be below 0.8 in order for a radiological accident analysis to not be required in a hazard analysis report.

^cInventories are snapshots in time. The information is provided to give the reader a degree of scale and is not (unless otherwise stated) a limit. ^dCategory 2 – Hazard analysis shows the potential for significant onsite consequences. Category 3 – Hazard analysis shows the potential for only significant localized consequences. Radiological–Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material. Category 2 and Category 3 thresholds are defined in DOE Standard DOE-STD-1027-92 (DOE 1997d). ^eAdministrative limit.

^fValues are included for No Action Alternative and the Proposed Action, respectively.

^g Materials in Buildings 331 and 334 are within the Superblock Administrative Limits for plutonium and uranium.

Ci = curies; DWTF = Decontamination and Waste Treatment Facility; kg = kilograms; RHWM = radioactive and hazardous waste management; RWSA = radioactive waste storage area.

Facility	Unit Type	<u>Uste Management Facilitie</u> Waste Type	Capacity			
Area 612 Facility						
Building 625 CSU	S	H, M, R, TSCA, CT	42,416 gal			
Area 612 Tank Trailer Storage Unit	S	CT, H, M, R	5,000 gal			
Area 612 Portable Tank Storage Unit	S	CT, H, M, R	10,000 gal			
Area 612-1 CSU	S	CT, H, M, R	$38,400 \text{ ft}^3$			
Area 612-2 CSU	S	CT, H, M, R	10,560 gal			
Area 612-4 Receiving, Segregation, and CSU	S	H, M, R, TSCA, CT	NA			
Area 612-5 CSU	S	CT, H, M, R	26,900 ft ³			
Building 612 Size Reduction Unit	Т	CT, H, M, R	250 short tons/yr			
Building Lab Packing/Packaging	Т	CT, H, M, R	NA			
Building Drum/Container Crushing Unit	Т	CT, H, M, R	600 short tons/yr			
Building 612 CSU	Т	CT, H, M, R	7,150 gal			
Building 614 West Cells CSU	S	CT, H, M, R	168 gals/cell (4 cells)			
Building 614 East Cells CSU	S	CT, H, M, R	880 gals/cell (4 cells)			
ž	DWI	FF Complex	· · · · · · · · · · · · · · · · · · ·			
Building 693 CSU	S	CT, H, M, R	141,240 gal			
Building 693 Annex	S	CT, H, M, R	$3,060 \text{ ft}^3$			
Building 693 Yard—Freezer Storage Unit	S	CT, H, M, R	30 gal			
Building 693 Yard—Roll-Off Bin Storage Unit	S	CT, H	$2,160 \text{ ft}^3$			
Building 695 Airlock	S	H, M	12,000 gal			
Building 695 LWPA Waste Blending Station, Tank	Т	CT, H, M, R	Part of 695 Tank Farm capacity			
Blending Unit						
Building 695 LWPA Waste Blending Station,	Т	CT, H, M, R	Part of 695 Tank Farm capacity			
Portable Blending Unit						
Building 695 LWPA Cold Vapor Evaporation Unit	Т	CT, H, M, R	Part of 695 Tank Farm capacity			
Building 695 LWPA Centrifuge Unit	Т	CT, H, M, R	55,000 gal/yr			
Building 695 LWPA Solidification Unit	Т	CT, H, M, R	115 short tons/yr			
Building 695 LWPA Shredding Unit	Т	CT, H, M, R	180 short tons/yr			
Building 695 LWPA Filtration Unit	Т	CT, H, M, R	2,750 gal/yr			
Building 695 LWPA Drum Rinsing Unit, Bulking	Т	CT, H, M, R	182 short tons/yr			
Station						
Building 695 LWPA Debris Washer Unit	Т	CT, H, M, R	45 short tons/yr			
Building 695 LWPA Gas Adsorption Unit	Т	CT, H, M, R	0.09 short tons/day			
Building 695 LWPA Radwaste Evaporator	T (non RCRA)	R				
Building 695 LWPA Air Lock	(non RCRA)	R				
Building 695 RWPA/SSTL Water Reactor			0.09 short tons/day			
Building 695 RWPA/SSTL Pressure Reactor			0.09 short tons/day			
Building 695 RWPA/SSTL Amalgamation Reactor			0.09 short tons/day			
Building 695 RWPA/SSTL Uranium Bleaching Unit			0.09 short tons/day			

 TABLE 4.15.2–1.—Livermore Site Waste Management Facilities and Capacities^a

		TABLE 4.15.2–1.—Livermore Site Waste Management Facilities and Capacities" (continued)					
Facility	Unit Type	Waste Type	Capacity				
Small Scale Treatment Laboratory	Т	H, M, R	0.04 short tons/day				
Reactive Waste Storage Room	S	CT, H, M, R	12,400 gal				
DWTF Tank Farm	S, T	CT, H, M, R	45,000 gal (storage), 325,000 gals/yr (treatment)				
DWTF Portable Tank Storage Pad	S	CT, H, M, R	22,000 gal				
	Building 280 (Permittee	l, never operational) ^b					
Building 280 CSU	S	CT, H, M, R	$18,140 \text{ ft}^3$				
	Area 5	514 ^b					
Area 514-1 CSU/Treatment Unit Group:	S, T	R, M, TSCA	NA ^c				
Area 514-2 CSU	S	R, M, TSCA	NA ^c				
Area 514-3 CSU	S	H, R, M, TSCA	NA ^c				
Area 514 Wastewater Treatment Tank Farm Unit	Т		NA ^c				
Building 514 Silver Recovery Unit	Recycle	Н					
Building 513 CSU	S	H, M, R	NA ^c				
Building 513 Shredding Unit	Т	H, M, R	NA ^c				
Building 513 Solidification Unit	Т	H, M, R					
	EWTF-S	ite 300					
Open Burn Unit -Pan	Т	Н	150 lb/event				
Open Burn Unit -Cage	Т	Н	260 lb/event				
Open Detonation Unit	Т	Н	350 lb/event				
SĨ	S	Н	275 gal				
S2	S	Н	110 gal				
	EWSF-S	ite 300					
Magazine 1	S	Н	1,622 lb (net explosive weight)				
Magazine 2	S	Н	3,209 lb (net explosive weight)				
Magazine 3	S	Н	5,592 lb (net explosive weight)				
Magazine 4	S	Н	4,291 lb (net explosive weight)				
Magazine 5	S	Н	2,744 lb (net explosive weight)				
Magazine 816	S	Н	9,240 gal (no liquids)				
	Building 88.	3-Site 300					
Building 883 CSU	S	Н	3,300 gal				
	Building 804	4-Site 300	•				
Building 804	Staging and Storage Area	R - only	N/A				

 TABLE 4.15.2–1.—Livermore Site Waste Management Facilities and Capacities^a (continued)

^a Typically an operational limit including a combination of hazardous, radioactive, and mixed waste unless otherwise restricted by permit or LLNL management practice.

^b Under all alternatives, this facility would undergo RCRA closure and operational capabilities would be transferred to the DWTF.

^c Values are included with those for B-695 Part B Permit.

CSU = container storage unit; CT = California Toxic (A non-RCRA hazardous waste defined by State of California, pursuant to Title 22, California Code of Regulations); R = radioactive (may include LLW and TRU); S = storage; T = treatment; TSCA =*Toxic Substance Control Act*; H = hazardous; M = nixed; NA = not available; EWTF = Explosive Waste Treatment Facility; ft³ = cubic feet; gal = gallons; lbs = pounds; N/A = not applicable; SWSF = Solid Waste Storage Facility; RWPA/SSTL = Reactive Waste Packing Area / Small Scale Treatment Laboratory; DWTF = Decontamination and Waste Treatment Facility;LWPA = Liquid Waste Processing Area; RCRA =*Resource Conservation and Recovery Act*.

Medium	Description	Agency	Date	Finding			
Livermore Site							
Sanitary sewer	Annual compliance sampling	LWRP	October 7, 8	No violations			
	Categorical sampling		October 21	No violations			
Waste	Hazardous waste facilities	DTSC	May 22-24, 30 June 4	Received an inspection report and summary of violations. The alleged violations were storage of one container of waste more than 90 days in a 90-day generator area and storage of two waste containers for more than one year in a permitted storage area. The container in the 90-day area was subsequently moved to a permitted storage area and the two stored containers were shipped offsite.			
	Medical waste	ACDEH	September 25	No violations			
Storage tanks	Compliance with underground storage tank upgrade requirements and operating permits.	ACDEH	October 15, 16	No violations			
		Site 3	00				
Waste	Permitted Hazardous Waste facilities (EWTF, EWSF, B883 CSA), Waste Accumulation Area B883 North, and Generator Areas.	DTSC	November 20, 21	No violations			
Storage tanks	Compliance with underground storage tank upgrade requirements and operating permits	SJCEHD	October 17 November 25- 27 December 13	Received notification of three minor violations concerning tank alarm and line leak testing documentation and an improperly functioning line leak detector. LLNL addressed these observations by instituting documentation requirements replacing the line leak detectors and conducting line leak testing.			

TABLE 4.15.2.1–1.—Inspections and Findings of the Livermore Site and Site 300 by External Agencies in 2002 Relevant to Waste Management

Source: LLNL 20031.

ACDEH = Alameda County Department of Environmental Health; CSA: Container Storage Area; DTSC: Department of Toxic Substances Control; EWSF: Explosives Waste Storage Facility; EWTF: Explosives Waste Treatment Facility; HW: hazardous waste; LLNL = Lawrence Livermore National Laboratory; LWRP = Livermore Water Reclamation Plant; SJCEHD = San Joaquin County Department of Environmental Health; SOV: Summary of violations.

Type of Permit	Livermore Site	Site 300
Hazardous Waste	EPA ID No. CA2890012584.	EPA ID No. CA2890090002.
	Authorization to mix resin in Unit CE231-1 under conditional exemption tiered permitting. Final closure plan submitted to DTSC for the Building 419 interim status unit (February 2001).	Part B Permit—Container Storage Area (Building 883) and Explosives Waste Storage Facility (issued May 23, 1996).
	Authorizations to construct the permitted units of Building 280, Building 695, and additions to Building 693.	Part B Permit—Explosives Waste Treatment Facility (issued October 9, 1997).
	Authorization under hazardous waste permit to operate 18 waste storage units and 14 waste treatment units.	Docket HWCA 92/93-031. Closure and Post-Closure Plans for Landfill Pit 6 and the Building 829 Open Burn Facility.
	Continued authorization to operate seven waste storage units and eight waste treatment units under interim status. Final closure plans submitted to DTSC for the Building 233 and Building 514 interim status units (May 2000).	Post-Closure Permit Application submitted for Building 829 Open Burn Facility (September 2000). Prepared a Notice of Deficiency (NOD) response document to be submitted to DTSC in February 2002.
	Notified DTSC on 3/31/01 that LLNL will not construct and operate Building 280 as a permitted unit as described in our Hazardous Waste Facility permit.	
Medical Waste	One permit for large quantity medical waste generation and treatment covering the Biology and Biotechnology Research Program, Health Services Department, Forensic Science Center, Medical Photonics Lab, and Tissue Culture Lab, and Chemistry and Materials Science Department.	Limited Quantity Hauling Exemption for small quantity medical waste generator.
Sanitary Sewer	Discharge Permit No. 1250 for discharges of wastewater to the sanitary sewer.	
	Permit 1510-G for discharges of sewerable groundwater from CERCLA restoration activities.	
Storage Tanks	Eight operating permits covering 11 underground petroleum product and hazardous waste storage tanks: 111-D1U2 Permit No. 6480; 113-D1U2 Permit No. 6482; 152-D1U2 Permit No. 6496; 271-D2U1 Permit No. 6501; 321-D1U2 Permit No. 6491; 322-R2U2 Permit No. 6504 (exempted); 365-D1U2 Permit No. 6492; and 611-D1U1, 611-G1U1, 611-G2U1, and 611-O1U1 Permit No. 6505.	One operating permit covering five underground petroleum product tanks assigned individual permit numbers: 871- D1U2 Permit No. 008013; 875-D1U2 Permit No. 006549; 879-D1U1 Permit No. 006785; 879-G3U1 Permit No. 007967; and 882-D1U1 Permit No. 006530.

TABLE 4.15.2.1–2. Summary of Permits Active in 2001 and 2002 Relevant to Waste
Management

Source: LLNL 20031.

HWCA = *California Hazardous Waste Control Act*; DTSC = Department of Toxic Substances Control; EPA = U.S. Environmental Protection Agency; LLNL = Lawrence Livermore National Laboratory.

Laws, Regulations, and Orders	Description
Solid Waste Disposal Act of 1976 (42 U.S.C. §6902)	This Act regulates the management of solid waste. Solid waste is broadly defined to include any garbage, refuse, sludge, or other discarded material including solid, liquid, semisolid, or contained gaseous materials resulting from requirements and controls for transport, test procedures, and administrative requirements. Schedules include industrial, commercial, mining, or agricultural activities. Source-special nuclear or by-product material, as defined by the <i>Atomic Energy Act</i> (AEA), is specifically excluded as solid waste.
Resource Conservation and Recovery Act of 1976 (42 U.S.C. §6901)	This Act amends the <i>Solid Waste Disposal Act</i> and establishes requirements and procedures for the management of hazardous wastes. As amended by the <i>Hazardous and Solid Waste Amendments</i> of 1984 (HSWA), RCRA defines hazardous wastes that are subject to regulation and sets standards for generation, treatment, storage, and disposal facilities. The HSWA emphasize reducing the volume and toxicity of hazardous waste. They also establish permitting and corrective action requirements for RCRA-regulated facilities. RCRA was also amended by the <i>Federal Facilities Compliance Act</i> (FFCA) in 1992. It requires EPA, or a state with delegated authority, to issue an order for compliance. A Federal facilities compliance order was issued by the Cal-EPA, requiring DOE and LLNL to comply with the FFCA. Compliance with the order is achieved through Site Treatment Plans prepared by DOE.
Underground Storage Tanks (42 U.S.C. §6901, Subtitle I)	Underground storage tanks (USTs) are regulated as a separate program under RCRA, which establishes regulatory requirements for USTs containing hazardous or petroleum materials. Cal-EPA has been delegated authority for regulating LLNL.
Federal Facility Compliance Act of 1992 (42 U.S.C. §6961)	This 1992 Act waives sovereign immunity from fines and penalties for RCRA violations at Federal facilities. However, it postponed the waiver for three years for storage prohibition violations with regard to land disposal restrictions for DOE's mixed wastes. It required DOE to prepare plans for developing the required treatment capacity for each site at which it stores or generates mixed waste. The state or U.S. EPA must approve each plan (referred to as a Site Treatment Plan) after consultation with other affected states, consideration of public comments, and issuance of an order by the regulatory agency requiring compliance with the plan. The Act further provides that DOE will not be subject to fines and penalties for storage prohibition violations for mixed waste as long as it complies with an existing agreement, order, or permit.
	The FFCA requires that Site Treatment Plans contain schedules for developing treatment capacity for mixed waste for which identified technologies exist. DOE must provide schedules for identifying and developing technologies for mixed waste without an identified existing treatment technology. A Federal Facility Compliance Order was signed in 1997 to address treatment prior to disposal of mixed waste, as well as characterization and disposal of mixed TRU waste.
Comprehensive Environmental Response,	This Act, commonly referred to as the CERCLA, or Superfund, establishes liability standards and governmental response authorization to address the release of a hazardous substance or contaminant into the environment. EPA is the regulating authority for the Act.
<i>Compensation, and</i> <i>Liability Act</i> of 1980, as Amended (42 U.S.C. §9601, et seq.)	CERCLA was amended by the <i>Superfund Amendments and Restoration Act</i> (SARA) in 1986. SARA Title III establishes additional requirements for emergency planning and reporting of hazardous substance releases. These requirements are also known as the <i>Emergency Planning</i> <i>and Community Right-to-Know Act</i> (EPCRA), which, due to its unique requirements is discussed separately below. SARA also created liability for damages to or loss of natural resources resulting from releases into the environment and required the designation of Federal and state officials to act as public trustees for natural resources. LLNL is subject to, and required to report releases to the environment under the notification requirements in 40 CFR Part 302 (Designation, Reportable Quantities, and Notification) and EPCRA, as applicable. Pursuant to CERCLA, Section 120, DOE signed a Federal Facility Agreement for LLNL in 1989.

 TABLE 4.15.2.1–3.—Summary of Major Laws, Regulations, and Orders Relevant to Waste

 Management

Laws, Regulations, and Orders	Description
Pollution Prevention Act of 1990 (42 U.S.C. §13101)	This Act sets the national policy for waste management and pollution control that focuses first on source reduction, followed sequentially by environmentally safe recycling, treatment, and disposal. In response, DOE committed to voluntary participation in EPA's 33/50 Pollution Prevention Program, as set forth in Section 313 of SARA.
Toxic Substances Control Act of 1977 (15 U.S.C. §2601)	TSCA, unlike other statutes that regulate chemicals and their risk after they have been introduced into the environment, was intended to require testing and risk assessment before a chemical is introduced into commerce. It also establishes record-keeping and reporting requirements for new information regarding adverse health and environmental effects of chemicals. The Act governs the manufacture, use, storage, handling, and disposal of PCBs; sets standards for cleaning up PCB spills; and establishes standards and requirements for asbestos identification and abatement in schools. It is administered by EPA. Because LLNL's R&D activities are not related to the manufacture of new chemicals, PCBs are LLNL's main concern under the Act. Activities at LLNL that involve PCBs include, but are not limited to, management and use of authorized PCB-containing equipment, such as transformers and capacitors; management and disposal of substances containing PCBs (dielectric fluids, contaminated solvents, oils, waste oils, heat transfer fluids, hydraulic fluids, paints, slurries, dredge spoils, and soils); and management and disposal of materials or equipment contaminated wastes are transported offsite for treatment and disposal unless they also have a radioactive component. Nonradioactive wastes containing PCBs are disposed of at an offsite facility that has been approved by EPA for such disposal (provided that strict requirements are met with respect to notification, reporting, record-keeping, operating conditions, environmental monitoring, packaging, and types of wastes disposed). Radioactive PCB waste, typically known as mixed TRU waste or mixed waste, is currently stored at one of LLNL's hazardous waste storage facilities until the Waste Isolation Pilot Project, or other approved facility, accepts this waste for final disposal. LLNL conducts asbestos abatement projects in accordance with OSHA requirements (29 CFR Part 1926), applicable requirements of the <i>Clean Air Act</i> and the California Solid Waste Management Regulations
EO 13148, "Greening the Government through Leadership in Environmental Management"	This EO directs all Federal agencies to develop and implement environmental management systems to support environmental compliance; right-to-know and pollution prevention; reducing toxic chemical releases; reducing use of toxic chemicals, hazardous substances, and other pollutants; reducing ozone-depleting substances; and promoting environmentally and economically beneficial landscaping.
Atomic Energy Act	The AEA of 1954 makes the Federal government responsible for regulatory control of the production, possession, and use of three types of radioactive material: source, special nuclear, and byproduct (includes waste). Regulations promulgated by the U.S. Nuclear Regulatory Commission (NRC) under the AEA establish standards for the management of these radioactive materials (including waste).
Hazardous Waste Control Act (California Health and Safety Code § 25100 et seq.)	This act is the state authorization to implement the state hazardous waste programs pursuant to RCRA.
Hazardous Waste Reduction Act (California Health and Safety Code § 25244.12-24)	This act expands the State of California's hazardous waste source reduction activities to accelerate reduction in hazardous waste generation.

TABLE 4.15.2.1–3.—Summary of Major Laws, Regulations, and Orders Relevant to Waste Management (continued)

Laws, Regulations, and Orders	Description
Medical Waste Management Act (California Health and Safety Code § 117600-11860)	The <i>Medical Waste Management Act</i> establishes a comprehensive program for regulating the management, transport, and treatment of medical wastes that contain substances that may potentially infect humans.
40 CFR Part 260 Series	The implementing regulations established by EPA governing hazardous waste.
California Code of Regulations, Title 22	The implementing regulations established by Cal-EPA for management of hazardous waste.
DOE O 435.1, "Radioactive Waste Management"	DOE O 435.1 establishes the policies, guidelines, and minimum requirements by which DOE and its contractors manage radioactive waste, mixed waste, and contaminated facilities. This order establishes DOE policy that radioactive and mixed wastes be managed in a manner that ensures protection of the health and safety of the public, DOE, contractor employees, and the environment. In addition, the generation, treatment, storage, transportation, and disposal of radioactive wastes, and the other pollutants or hazardous substances they contain, must be accomplished in a manner that minimizes the generation of such wastes across program office functions and complies with all applicable Federal, state, and local environmental, safety, and health laws and regulations and DOE requirements.
DOE O 450.1, "Environmental Protection Program"	This order directs facilities to implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by DOE operations and by which DOE cost-effectively meets or exceeds compliance with applicable environmental, public health, and resource protection laws, regulations, and DOE requirements.
Source: LLNL 2002cc.	F

TABLE 4.15.2.1–3.—Summary of Major Laws, Regulations, and Orders Relevant to Waste
Management (continued)

Source: LLNL 2002cc.

Radioactive Waste 4.15.2.2

Radioactive waste generated at LLNL includes LLW, MLLW, TRU waste, and mixed TRU waste. LLNL does not manage or generate high-level waste (a highly radioactive material that results from the reprocessing of spent nuclear fuel). LLW, MLLW, and TRU waste are produced primarily in laboratory experiments and component tests. Mixed wastes are discussed in Section 4.15.2.4. See Appendix B for a detailed description of radioactive waste, storage quantities, and treatment quantities.

DOE O 435.1 permits onsite storage of LLW and TRU wastes until appropriate disposal becomes available. Currently, there are no regulatory restrictions on the length of time this waste may be stored onsite, provided that disposal or offsite storage options are being pursued and the waste is stored in accordance with all applicable regulations. LLNL maintains the capability to treat solid radioactive wastes onsite. LLNL has treated liquid radioactive wastes at the Area 514 Tank Farm. The DWTF is replacing Area 514 (LLNL 2002ca). LLNL disposes of solid LLW offsite at the Nevada Test Site. Available storage space for LLW and TRU waste is limited by exposure considerations (i.e., radiation exposure to personnel) at a given storage location. However, radioactive wastes, unlike RCRA-regulated wastes, can be stored at various locations onsite provided that the wastes are properly packaged, labeled, and monitored. Radioactive waste management facilities are listed in Table 4.15.2–1.

As part of the effort to minimize the total quantity of radioactive waste that is generated at LLNL, facilities that generate this type of waste are designated as a Radioactive Materials

Action Alternative under Maximum Conditions							
	Vehicular	Natural	Diesel Fuel	Total	Significant	A Dub	Significant
Pollutant	Activity Emis	Gas Usage sions in tons p	Use er vear	Annual Emissions	Emission Level ^a in tons per year	Average Daily ^b Emissions in p	Emission Level ^a ounds per day
Precursor organic compounds	0.32	0.025	2.3×10 ⁻³	0.35	15	2.7	80
Oxides of nitrogen	1.1	0.32	0.034	1.4	15	11	80
Carbon monoxide	6.0	0.054	7.3×10 ⁻³	6.1	-	47	-
Sulfur oxides	0.041	1.8×10 ⁻³	3.1×10 ⁻³	0.046	-	0.35	-
Particulate matter (PM ₁₀)	0.60	0.032	2.4×10 ⁻³	0.64	15	4.9	80
Formaldehyde		3.0×10 ⁻⁴	3.0×10 ⁻⁴	6.0×10 ⁻⁴		4.6×10 ⁻³	
Benzene		2.8×10 ⁻⁵	4.8×10 ⁻⁵	7.6×10 ⁻⁵		5.9×10 ⁻⁴	
Polycyclic organic matter			2.3×10 ⁻⁷	2.3×10 ⁻⁷		1.7×10 ⁻⁶	
Arsenic			4.2×10 ⁻⁸	4.2×10 ⁻⁸		3.2×10 ⁻⁷	
Beryllium			2.4×10 ⁻⁸	2.4×10 ⁻⁸		1.9×10 ⁻⁷	
Cadmium			1.0×10 ⁻⁷	1.0×10 ⁻⁷		8.0×10 ⁻⁷	
Hexavalent chromium			2.2×10 ⁻⁹	2.2×10-9		1.7×10 ⁻⁸	
Lead			8.9×10 ⁻⁸	8.9×10 ⁻⁸		6.8×10 ⁻⁷	
Manganese			1.4×10 ⁻⁷	1.4×10 ⁻⁷		1.1×10 ⁻⁶	
Mercury			3.0×10 ⁻⁸	3.0×10 ⁻⁸		2.3×10 ⁻⁷	
Nickel			1.7×10 ⁻⁶	1.7×10 ⁻⁶		1.3×10 ⁻⁵	

TABLE 5.2.8.1–3.—Summary of Air Pollutant Emission Rates Associated with Project Operation Under the No
Action Alternative under Maximum Conditions

BAAQMD has established significant emission levels in response to local pollutant problems. Projects with emissions in excess of these levels must include stringent mitigation. Emissions related to construction and demolition activities are not specifically quantified in keeping with the BAAQMD's guidance for the analysis of construction impacts (discussed in Section 5.1.8.1) which emphasizes implementation of effective and comprehensive control measures rather than detailed quantification of construction emissions. If all of the control measures, as appropriate, depending on the size of the project area, will be implemented, then air pollutant emissions from construction activities would be considered a less than significant impact. Similarly, any demolition, renovation or removal of asbestos-containing building materials would be considered a less than significant impact if the activity complies with the requirements and limitations of district Regulation 11, Rule 2: Hazardous Materials; Asbestos Demolition, Renovation and Manufacturing (BAAQMD 1999).

Average daily emission rate is based on an operating schedule of 5 days per week, 52 weeks per year.

BAAQMD = Bay Area Air Quality Management District.

b

Parameter	Units	Site	Existing Environment	No Action Alternative
Daily vehicle traffic	1,000 vehicles	Livermore	22.0	22.6
	1,000 venicies	Site 300	0.5	No change.
Explosives testing ^a		Livermore	Shot frequency is not limited. Hundreds of experiments are conducted each year (e.g., 501 shots within the HEAF during FY2002).	Shot frequency would not be limited, but would not change appreciably.
	Shot frequency (number per year)	Site 300	Shot frequency is not limited. Typical activities include about 200 open air tests per year including gun firings and could include about 12 to 25 tests per year in the Contained Firing Facility.	Shot frequency would not be limited, but would not change appreciably. The activity on open air firing tables would continue to far exceed that in the Contained Firing Facility for the foreseeable future.
		Livermore	Shots range from gram level up to kilogram level. The highest weight shot ever fired in the HEAF was 10 kilograms of C4 (13.4-kilograms TNT equivalent) in the 10-kilogram spherical tank.	No change.
	Maximum weight in kilograms	Site 300	Shots range from gram level up to kilogram level. Based on the type of explosive used and constraints imposed by LLNL management to limit the maximum allowable sound pressure level, not to exceed 126 decibels in nearby populated areas.	No change.

TABLE 5.2.10.1–1.—Summary of	of Input Parameters	for Analysis of Community	y Noise Issues Under the No Action Alternative

^a LLNL 2003ar.

FY = fiscal year; HEAF = High Explosives Application Facility; LLNL = Lawrence Livermore National Laboratory; TNT = trinitrotoluene.

	no Aci		
Chemical	Chemical Abstract Number	Existing Conditions Maximum/Average Quantity	No Action Average Maximum/Average Quantity
	Pa	ints/Solvents	
Paint (variety)	NA	700,000/320,296 lb	700,000/330,000 lb
Thinner, lacquer	NA	3,000/500 gal	3,000/515 gal
Methylene chloride	75-09-2	2,000/55 gal	2,000/58 gal
Methyl alcohol	67-56-1	1,800/500 gal	1,800/515 gal
Acetone	67-64-1	1,200/740 gal	1,200/760 gal
		Metals	
Lead bricks or ingots	NA	1,000,000 lb	1,000,000 lb
Tantalum	7440-25-7	75,000/20,000 lb	75,000/20,600 lb
Cobalt	7440-48-4	16,500/14,000 lb	16,500 lb
Aluminum	7429-90-5	5,000/800 lb	5,000/824 lb
Chrome or chromium	7440-47-3	4,700/1,500 lb	4,700/1,545 lb
		/Bases/Oxidizers	. ,
Oxygen, compressed	7782-44-7	870,000/75,000 ft ³	870,000 ft ³
Hydrogen peroxide<52%	7722-84-1	42,000/18,000 gal	42,000 gal
Ammonium hydroxide	1336-21-6	30,000/1,600 lb	30,000/1,650 lb
Sodium hydroxide	1310-73-2	25,500/14,000 lb	25,500 lb
Potassium hydroxide	1310-58-3	15,000/400 lb	15,000/410 lb
Sulfuric acid	7664-93-9	11,000/4,500 lb	11,000 lb
Nitric acid	7697-37-2	7,810/5,000 lb	7,810/5,150 lb
Phosphoric acid	7664-38-2	3,600/1,000 lb	3,600/1,030 lb
Cyanuric acid	108-80-5	2,500/500 lb	2,500/515 lb
Hydrofluoric acid	7664-39-3	1,500/850 lb	1,500 lb
	Ind	lustrial Gases	
Argon, compressed	7440-37-1	25,000,000/160,000 ft ³	25,000,000/164,800 ft ³
Helium	7440-59-7	5,000,000/300,000 ft ³	5,000,000/310,000 ft ³
Hydrogen, compressed	1333-74-0	1,500,000/50,000 ft ³	1,500,000/52,000 ft ³
rryurogen, compressed	1555-74-0	1,500,000/50,000 1	1,500,000/52,000 It
Nitrogen, compressed (Liquified, gaseous)	7727-37-9	500,000/130,000 ft ³	500,000/133,000 ft ³
Carbon dioxide	124-38-9	176,000/124,000 ft ³	176,000/128,000 ft ³
		Refrigerants	
Freon 113 (1,1,2-Trichloro-1,2,2- trifluoroethane)	76-13-1	170,000/16,000 lb	170,000/16,500 lb
Refrigerant, 123 SUVA, (2,2- Dichloro-1,1,1-trifluoroethane)	306-83-2	35,000/1,500 lb	35,000/1,550 lb
Freon 22 (Chlorodifluoromethane)	75-45-6	9,000/5,000 lb	9,000/5,150 lb
Freon 11 (Trichlorofluoromethane)	75-69-4	10,000/5,000 lb	10,000/5,150 lb
Freon 12 (Dichlorodifluoromethane)	75-71-8	6,300/4,000 lb	6,300/4,120 lb
Freon 14 (Tetrafluoromethane)	75-73-0	2,000/500 ft ³	2,000/515 ft ³
Sources: NNSA 2002c, TtNUS 2003.	15 15-0	2,000/300 It	2,000/31311

TABLE 5.2.13.1–1.—Types of Hazardous Chemicals in Use at the Livermore Site Under the
No Action Alternative

Sources: NNSA 2002c, TtNUS 2003. Note: Additional chemicals are listed in Appendix B. Numbers are rounded. $ft^3 =$ cubic feet; lb = pounds; gal = gallons; NA = not available.

Project Title	Project Description ^a	Expected Waste Streams and Quantities
BioSafety Laboratories (multiple projects)	Modifications to Buildings 132, 151, 153, 154, 190, 235, 241, 281, 432, 435, 446, T1527, T8545, and T4352.	No changes to routine waste generation. Construction debris accounted for in 93-200 tons of debris per year estimate. New operation would be expected to generate (total all waste categories 500-1,000 lb/yr, assumed minimum of 1 metric ton, 0.5-1 m ³ /metric ton)
		Hazardous: 0-1 metric tons/yr (including biohazardous) Municipal solid waste: 0-1 metric tons/yr
Terascale Simulation Facility	Computers required to meet Strategic Computing Initiative.	New operation, not expected to generate hazardous, radioactive, or mixed waste.
D&D U325 Cooling Tower	An old LLW cooling tower to be removed.	No changes to routine waste generation. Several tons of debris would be disposed. Building is part of 255,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste.
D&D Building 222	22,000 ft^2 will be removed.	No changes to routine waste generation. 145 tons of debris would be disposed. Building is part of 255,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste.
D&D	Building 177 AVLIS legacy facility; 13,000 ft ² will be removed.	No changes to routine waste generation. Up to 6,000 tons of debris. More than 5,000 tons would be recycled. D&D work would include a total of 85 tons of debris for disposal. Hazardous: 0-1 metric tons LLW: 10-20 m ³ /yr MLLW: 0-1 m ³ /yr TRU: 0 Municipal Solid Waste: 13-60 metric tons/yr. Building is part of 255,000-ft ² of excess properties to be removed. Potential for nonroutine TSCA waste.
Remove and Replace Offices	Modular offices for 100 to 130 personnel removed per year.	No changes to routine waste generation. Assuming 25,000 to $30,000$ ft ² removed, 200 tons of debris would be disposed. Buildings are part of 255,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste. Construction of 25,000 to $30,000$ ft ² building would result in an estimated 50-60 tons of construction debris.
Site 300 Wetlands Enhancement	Mitigation ponds to replace ATA cooling tower.	None. Excess soil will be used in vicinity.
Tritium Facility Modernization	Renovation and modernization of Building 331.	No net change in routine waste generation as increases in programmatic activities are expected to be balanced by consolidation and other improvements. Construction wastes would be expected, approximately 2 tons/1,000 ft^2 .
Site 300 Revitalization Project	Convert S300 to Hetch Hetchy.	Only construction debris.
Building 292 Cleanup	Clean up T2 contaminated target and machine rooms.	No changes to routine waste generation. Wastes would be considered nonroutine.

TABLE 5.2.13.2–2.—P	lanned Projects Under	r the No Action Alterna	tive and Associated	Waste Projections
				rusic I rejections

Project Title	Project Description ^a	Expected Waste Streams and Quantities
Reclassify Building 446 as BSL-2	Facility Reclassify entire building to	New operation would be expected to generate:
Facility	BSL-2 standard.	Hazardous: 0-1 metric tons/yr (including biohazardous)
		LLW: $0-1 \text{ m}^3/\text{yr}$
		MLLW: $0-1 \text{ m}^3/\text{yr}$
		TRU: 0
		Municipal Solid Waste: 0-1 metric tons/yr
Engineering Technology Complex	Modifications to Building 321 to meet	Due to modernization and consolidation, routine waste generation would be expected
Upgrade	seismic standards, improve space	to decrease. Construction wastes would be expected, approximately 2 tons/1,000 ft ² .
	utilization, and add new high precision	Upgrade work would be expected to generate:
	machine and inspection equipment.	Hazardous 0-2 metric tons/yr (for 3 years)
		LLW: 12-24 m_3^3 /yr (for 3 years, assumes 0.5 to 1 ton/m ₂)
		MLLW: 1-2 m^3/yr (for 3 years, assumes 0.5 to 1 ton/m ³)
		TRU: 0
	2	Municipal Solid Waste: 100 metric tons/yr (for 3 years)
Building 298 Roof Replacement	Replace leaking 47,000 ft ² roof.	No changes to routine waste generation. Assuming 0.5-foot thick roof, 600 tons of
		debris would be disposed. Potential for nonroutine TSCA waste. Construction of new
		roof would result in an estimated several tons of construction debris.
Protection of Real Property (roofs)	Reroof Buildings 111, 113, 121, 141, 194, 231, 241, 251, 281, 321, and 332	No changes to routine waste generation. Assuming $840,000 \text{ ft}^2$ of roof, 0.5 foot thick roof, 10,000 tons of debris would be disposed. Potential for nonroutine TSCA waste. Construction of new roofs would result in estimated tens of tons of construction debris.
Central Cafeteria Replacement	Replace existing temporary central cafeteria.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Construction wastes would be expected, approximately $2 \text{ tons}/1,000 \text{ ft}^2$.
BioSafety Level-3 Facility	1,500 ft ² building to support biological	New operation would be expected to generate:
	detection/counter-terrorism.	Hazardous: 0-1 metric tons/yr (including biohazardous)
		Municipal Solid Waste: 0-1 metric tons/yr
International Security Research Facility	64,000 ft ² building to consolidate national security programs.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Construction wastes would be expected, approximately 120 tons.
Container Security Testing Facility	Two small buildings, location.	No changes to routine waste generation. Construction wastes would be expected,
		approximately 2 tons/1,000 ft ² .
Site 300 Response Training Facility	Modifying an existing building for assembling and disassembling explosive training devices.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Upgrade construction debris accounted for an estimated 93 to 200 tons of debris per year.

 TABLE 5.2.13.2–2.—Planned Projects Under the No Action Alternative and Associated Waste Projections (continued)

Project Title	Project Description ^a	Expected Waste Streams and Quantities
National Ignition Facility	Laser system and facility for stockpile	Start up of existing capability would be expected to generate the following waste.
	stewardship and understanding weapons	Hazardous: 15 metric tons per year
	physics.	LLW: 72 m^3/yr
		MLLW: $6.9 \text{ m}^3/\text{yr}$
		Municipal solid waste: several metric tons/yr
WIPP Mobile Vendor	Ship waste to CCF or WIPP	No changes to routine waste generation.
East Avenue Security Upgrade	Limit access along East Avenue to	No changes to routine waste generation.
	enhance security of LLNL and SNL/CA.	
Superblock Security Upgrade	Add physical barriers.	No changes to routine waste generation. Upgrade construction debris accounted for in
		93 to 200 tons of debris per year estimate.
D&D Building 514	Existing EPD waste treatment facility to	No changes to routine waste generation. Potential for nonroutine TSCA waste, mixed,
	be replaced by DWTF. D&D after startup	hazardous, and radioactive waste. Moving permitted capacity to DWTF is considered
	of DWTF.	an administrative action and would not result in changes of routine waste generation.
Extend Fifth Street	Improve traffic circulation with east-west	No changes to routine waste generation. Upgrade construction debris accounted for in
	connection.	93 to 200 tons of debris per year estimate.
Westgate Drive improvements	Widen Westgate Drive and improve	No changes to routine waste generation. Upgrade construction debris accounted for in
	circulation.	93 to 200 tons of debris per year estimate.
Deactivation and D&D projects	D&D approximately 255,000 ft ² .	See Table A.2.3–2 waste generation amounts for D&D activities.
Superblock Stockpile Stewardship	Several Stockpile Stewardship Programs.	LLW – 460 drums/yr and 10 transportainers/yr
Program Operations		TRU – 120 drums/yr and 10 drum overpacks (2/yr)
		CY 2004 – 20 waste boxes and then 5 waste boxes/yr
Site Utilities Upgrade	Various upgrades to mechanical utilities,	Only construction debris and noncontaminated solid waste.
	compressed air plant, potable water	
	system, transmission lines.	
Plutonium Facility Ductwork	Replaces 40-year old glovebox exhaust	See glovebox exhaust replacement CX.
Replacement	system.	-
SNM Tests with Optical Science	Use of the Optical Science Laser	Use only encapsulated SNM. No appreciable radioactive waste generations.
Laser	laboratory for an ongoing material study.	

TABLE 5.2.13.2-2	_Planned Projects	Inder the No	o Action Alternative	and Associated	Waste Projections	(continued)
I ADLE 3.4.13.4-4	-1 шиней 1 гојесиз		υ πιιυπ πιιει παιινε		music I rejections	<i>commutation</i>

Source: TtNUS 2003.

^a Detailed project descriptions are provided in Appendix A.

Note: SNM tests with Optical Science Laser and Site 300 tritium use were considered to be modifications of existing processes and not relevant changes impacting waste generation. ATA = Advanced Test Accelerator; AVLIS = Advanced Vapor Laser Isotope separation; CCF = Central Characterization Facility; CX = categorical exclusion; D&D = Decontamination and Decommissioning; DWTF = Decontamination and Waste Treatment Facility; EPD = Environmental Protection Department; ft^2 = square feet; GBE = lb/yr = pounds per year; LLW = low-level waste; m³/yr = cubic meters per year; MLLW = mixed low-level waste; SNM = special nuclear material TRU = transuranic waste; TSCA = *Toxic Substances Control Act*; WIPP = Waste Isolation Pilot Plant.

Parameter	Units	Site	No Action Alternative	Proposed Action
Daily vehicle traffic	1,000 vehicles	Livermore	22.6	23.6
Daily venicle traffic	1,000 venicles	Site 300	0.5	No change
Air Emission Sources and Facility Status ^d	-	Livermore	The Livermore Site would continue to rank as a mid-sized facility, subject to offset requirements for nonattainment pollutants and employ good controls on POC and NO_x sources; remain a minor source for HAPs under NESHAP; and not a significant source of toxic air pollutants.	No change
		Site 300	Site 300 is a small source per definition of the SJVUAPCD, and remains a minor source for HAPs under NESHAP.	No change

TABLE 5 3 8 1–1 — Summary of Input Parameters	for Air Quality Analysis Under the Proposed Action
INDLE SISIOI I. Summary of Impul I and there is	jor mill Quality mailysis Chack the Proposed Metion

HAP = hazardous air pollutant; NESHAP = National Emission Standards for Hazardous Air Pollutants; NO_x = oxides of nitrogen; POC = precursor organic compounds; SJVUAPCD = San Joaquin Valley Air Pollution Control District.

Parameter	Units	Site	No Action Alternative	Proposed Action
Daily vehicle traffic	1,000 vehicles	Livermore	22.6	23.7
Daily vehicle traffic	1,000 venicles	Site 300	0.5	No change
		Livermore	Hundreds of experiments are conducted each year (e.g., 501 shots within the HEAF during FY2002).	Shot frequency would not change appreciably.
Explosives testing ^a	Shot frequency (number per year)	Site 300	Shot frequency would not be limited, but would not change appreciably from current levels. Typical activities include about 200 open-air tests per year (including gun firings) and could include about 12 to 25 tests per year in the Contained Firing Facility. It is anticipated that the activity on open air firing tables will continue to far exceed that in the Contained Firing Facility for the foreseeable future.	Shot frequency would not change appreciably.
		Livermore	Shot weight would continue to range from gram level up to kilogram level.	No change
	Maximum weight in kilograms	Site 300	Shot weight would continue to range from gram level up to kilogram level. Based on the type of explosive used and constraints imposed by LLNL management to limit the maximum allowable sound pressure level, not to exceed 126 decibels in nearby populated areas.	No change

TABLE 5.3.10.1–1.—Summary of Input Parameters for Analysis of Community Noise Issues Under the
--

^a LLNL 2003ar. FY = fiscal year; HEAF = High Explosive Application Facility; LLNL = Lawrence Livermore National Laboratory.

		Troposeu Action				
Chemical	Chemical Abstract Number	No Action Average Maximum/Average Quantity	Proposed Action Maximum/Average Quantity			
Paints/Solvents						
Paint (variety)	NA	700,000/330,000 lb	700,000/352,000 lb			
Thinner, lacquer	NA	3,000/515 gal	3,000/550 gal			
Methylene chloride	75-09-2	2,000/58 gal	2,000/60 gal			
Methyl alcohol	67-56-1	1,800/515 gal	1,800/550 gal			
Acetone	67-64-1	1,200/760 gal	1,200/810 gal			
Metals (No changes are expected)						
Lead bricks or ingotsNA1,000,000 lb1,000,000 lb						
Tantalum	7440-25-7	75,000/20,600 lb	75,000/20,000 lb			
Cobalt	7440-48-4	16,500/14,300 lb	16,500/14,000 lb			
Aluminum	7429-90-5	5,000/824 lb	5,000/800 lb			
Chrome or chromium	7440-47-3	4,700/1,545 lb	4,700/1,500 lb			
			4,700/1,300 10			
0		cids/Bases/Oxidizers	870.000/02.000.03			
Oxygen, compressed	7782-44-7	870,000/78,000 ft ³	870,000/83,000 ft ³			
Hydrogen peroxide<52%	7722-84-1	42,000/18,600 gal	42,000/20,000 gal			
Ammonium hydroxide	1336-21-6	30,000/1,650 lb	30,000/1,800 lb			
Sodium hydroxide	1310-73-2	25,500/14,400 lb	25,500/15,000 lb			
Potassium hydroxide	1310-58-3	15,000/410 lb	15,000/440 lb			
Sulfuric acid	7664-93-9	11,000/4,640 lb	11,000/5,000 lb			
Nitric acid	7697-37-2	7,810/5,150 lb	7,810/5,500 lb			
Phosphoric acid	7664-38-2	3,600/1,030 lb	3,600/1,100 lb			
Cyanuric acid	108-80-5	2,500/515 lb	2,500/550 lb			
Hydrofluoric acid	7664-39-3	1,500/890 lb	1,500/930 lb			
Industrial Gases						
Argon, compressed	7440-37-1	25,000,000/165,000 ft ³	25,000,000/180,000 ft ³			
Helium	7440-59-7	5,000,000/310,000 ft ³	5,000,000/330,000 ft ³			
Hydrogen, compressed	1333-74-0	1,500,000/52,000 ft ³	1,500,000/55,000 ft ³			
Nitrogen, compressed						
(Liquified, gaseous)	7727-37-9	500,000/133,000 ft ³	500,000/150,000 ft ³			
Carbon dioxide	124-38-9	176,000/128,000 ft ³	176,000/136,000 ft ³			
	124 50 7	Refrigerants	170,000/130,000 It			
Freon 113 (1,1,2-Trichloro-		Kenigerants				
1,2,2-trifluoroethane)	76-13-1	170,000/16,500 lb	170,000/18,000 lb			
Refrigerant, 123 SUVA,	206.92.2	25 000/1 550 11	25 000/1 700 11			
(2,2-Dichloro-1,1,1-	306-83-2	35,000/1,550 lb	35,000/1,700 lb			
trifluoroethane)						
Freon 22	75-45-6	9,000/5,150 lb	9,000/5,500 lb			
(Chlorodifluoromethane)		- ,	- ,			
Freon 11	75-69-4	10,000/5,150 lb	10,000/5,500 lb			
(Trichlorofluoromethane)	70 07 T	10,000/0,100 10	10,000,0,000 10			
Freon 12	75-71-8	6,300/4,120 lb	6,300/4,400 lb			
(Dichlorodifluoromethane)	/ 5-/ 1-0	0,500/4,120 10	0,000/+,+00 10			
Freon 14	75-73-0	2,000/515 ft ³	2,000/550 ft ³			
(Tetrafluoromethane)	15-15-0	2,000/31311	2,000/330 It			

TABLE 5.3.13.1–1.—Types of Hazardous Chemicals for Use at the Livermore Site Under the
Proposed Action

Source: LLNL 2002m. Note: numbers are rounded. Additional chemicals are listed in Appendix B. ft^3 = cubic feet; gal = gallons; lbs = pounds; NA = not available.

	Annual Quantities				
	No Action ^a		Proposed Action ^b		
Waste Type	Routine	Nonroutine	Routine	Nonroutine	
LLW	200 m ³ /yr	630 m ³ /yr	330 m ³ /yr	710 m ³ /yr	
MLLW	61 m ³ /yr	72 m ³ /yr	88 m ³ /yr	81 m ³ /yr	
Total Hazardous ^c	390 metric tons	1,500 metric tons	510 metric tons	1,700 metric tons	
TRU	50 m ³ /yr	55 m ³ /yr	50 m ³ /yr	60 m ³ /yr	
Mixed TRU	1.7 m ³ /yr	0	2.8 m ³ /yr	0	
Sanitary solid	4,800 metric tons	Included in Routine	5,100 metric tons	Included in Routine	
Wastewater	310,000 gal/day	Included in Routine	330,000 gal/day	Included in Routine	

TABLE 5.3.13.2–1.—Routine and Nonroutine Operations Waste Generation Quantities Under the Proposed Action and No Action Alternative

Source: TtNUS 2003.

^a For nonroutine wastes based on average quantities since 1992 and one standard deviation, expected increase in activity levels, and new operations contributions. No margin was added for nonroutine.

^b Based on average quantities since 1992 and one standard deviation, expected increase in activity levels (approximately 5 percent), and new operations contributions.

^c Total Hazardous includes RCRA hazardous, State-Regulated, and TSCA.

gal/day = gallons per day; m^3/yr = cubic meters per year; LLW = low-level waste; MLLW = mixed low-level waste; RCRA = *Resource Conservation and Recovery Act*; TRU = transuranic; TSCA = *Toxic Substance Control Act*.

Project Title	Project Description ^a	Expected Waste Streams and Quantities	
D&D Building 194 line of flight tube	D&D project	No changes to routine waste generation. Several tons of debris would be disposed. Building is part of 820,000 ft^2 of excess properties to be removed. Potential for nonroutine TSCA waste.	
D&D Building 808	D&D project	No changes to routine waste generation. Assuming $1,500 \text{ ft}^2$ removed, 9 tons of debris would be generated. Building is part of 820,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).	
D&D Building 412	D&D project	No changes to routine waste generation. Assuming 29,000 ft ² removed, 190 tons of debris would be generated. Building is part of 820,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).	
D&D Building 175 North Section	D&D project	No changes to routine waste generation. Assuming $16,000 \text{ ft}^2$ removed, $100 \text{ tons of debris would be generated. Building is part of 820,000 ft}^2 of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft}^2 would be LLW, mixed waste, or hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).$	
D&D Building 212 ITC Accelerator Building	D&D project	No changes to routine waste generation. Assuming $60,000 \text{ ft}^2$ removed, 360 tons of debris would be generated. Building is part of $820,000 \text{ ft}^2$ of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be LLW, mixed waste, or hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).	

 TABLE 5.3.13.2–2.—Planned Projects Under the Proposed Action and Associated Waste Projections

Project Title	Project Description ^a	Expected Waste Streams and Quantities
D&D Building 251	EPD heavy element handling facility.	No changes to routine waste generation. Assuming $32,000 \text{ ft}^2$ removed, 190 tons of debris would be generated. Building is part of $820,000 \text{ ft}^2$ of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be LLW, mixed waste, or hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).
D&D Building 419	EPD materials handling and processing facility.	No changes to routine waste generation. Assuming $8,000 \text{ ft}^2$ removed, 48 tons of debris would be generated. Building is part of $820,000 \text{ ft}^2$ of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be LLW, mixed waste, or hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).
D&D Building 171	Storage building.	No changes to routine waste generation. Assuming 9,000 ft ² removed, 54 tons of debris would be generated. Building is part of 820,000 ft ² of excess properties to be removed. Potential for nonroutine TSCA waste. It is estimated that only 0.350 metric tons per 1,000 ft ² would be LLW, mixed waste, or hazardous. Much of the total debris would be diverted, recycled, or reclaimed (67% would be diverted).
Increased administrative limit for plutonium in Superblock	Increase to 1,400 kg fuel-grade Pu, 500 kg enriched uranium, and 3,000 kg depleted and natural uranium.	No changes to routine waste generation.
Energetic Materials Processing Center	Consolidates some existing high explosives operations into modern facility.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Construction wastes would be expected, approximately 2 tons per $1,000 \text{ ft}^2$.
Increased Tritium Facility material limits	Increase MAR to 30 grams tritium and tritium limits to 35 grams.	New operation would be expected to generate: Hazardous: No change LLW: 4 m ³ /yr TRU: 0 Municipal Solid Waste: No change D&D work: approximately 2 tons per 1,000 ft ² , 20-40 m ³ LLW

TABLE 5.3.13.2–2. Planned Projects	Under the Dropord Action and Aca	sigted Waste Projections (continued)
I ABLE 5.5.15.2–2.—Funneu Froiecis	Unaer the Frodosea Action and Asso	icialea waste Froiections (continuea)

Project Title	Project Description ^a	Expected Waste Streams and Quantities
Increased MAR limit for Plutonium Facility	Increase from 20 kg to 40 kg fuel- grade equivalent plutonium in each of two rooms.	No change to routine waste generation.
Materials Science Modernization Project	Research complex to conduct NNSA program precision fabrication and materials experiments.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Construction wastes would be expected, approximately 2 tons per 1,000 ft ² .
High Explosives Development Center	Replace and modernize chemistry and materials science facilities.	Due to modernization and consolidation, routine waste generation would be expected to decrease. Construction wastes would be expected, approximately 2 tons per 1,000 ft^2 .
Berkeley Waste Drums	Transport LBNL mixed TRU waste drums to LLNL for shipment to WIPP.	No changes to routine waste generation.
Projected Increase in Worker Population	Approximately 10 percent increase in workforce across LLNL.	10 percent increase across all categories.
Building Utilities Upgrade	Upgrades to building utilities systems for technological or maintenance reasons.	Construction wastes would be expected, approximately 2 tons per 1,000 ft ² .
Building Seismic Upgrades	Upgrades for buildings seismic deficiencies.	Construction wastes would be expected, approximately 2 tons per 1,000 ft ² .
CBNP Expansion	New technologies for Chemical and Biological Nonproliferation Program.	Very low volumes of chloroform, formaldehyde and biological waste.
Petawatt Laser Prototype	Develop petawatt capability in Building 381.	New operation would be expected to generate. Hazardous: several metric tons per year LLW: 0 TRU: 0 Municipal Solid Waste: several metric tons per year Construction: approximately 2 tons per 1,000 ft ²

 TABLE 5.3.13.2–2.—Planned Projects Under the Proposed Action and Associated Waste Projections (continued)

Project Title	Project Description ^a	Expected Waste Streams and Quantities
NIF Materials	NNSA proposed experiments with	New operation would be expected to generate:
	materials.	Hazardous: 15 metric tons per year
		LLW: 191.6 m ³ /yr
		MLLW: 6.9 m ³ per year
		TRU: none
		Municipal Solid Waste: several metric tons per year
		Construction: approximately 2 tons per $1,000$ ft ²
NIF Neutron Spectrometer	Add neutron spectrometer to the NIF.	New operation would be expected to generate:
		Hazardous: none
		Municipal Solid Waste: (included in site-wide quantities)
		Construction: approximately 2 tons/1,000 ft ²
Consolidated Security Facility	50K gross square feet facility to house	No changes to routine waste generation. Consolidation of existing operations.
	Security Department support staff; currently collocated.	Construction wastes would be expected, approximately 2 tons per 1,000 ft^2 .
Building 696R Mixed Waste Permit	Permit modification to authorize managing hazardous and mixed waste in Building 696 (currently manages TRU wastes only). Replaces capability of Building 280.	No changes to routine waste generation. Consolidation of existing operations.

 TABLE 5.3.13.2–2.—Planned Projects Under the Proposed Action and Associated Waste Projections (continued)

Source: TtNUS 2003.

^a Detailed project descriptions are provided in Appendix A.

CBNP = Chemical and Biological National Security; D&D = decontamination and decommissioning; EPD = Envrionmental Protection Department; ft^2 = square foot/feet; K = thousand; kg = kilograms; LBNL = Lawrence Berkley National Laboratory; LLW = low-level waste; LLNL = Lawrence Livermore National Laboratory; m^3/yr = cubic meters per year; MAR = material-at-risk; MLLW = mixed low-level waste; NIF = National Ignition Facility; PSA = project specific analysis; TRU = transuranic; TSCA = *Toxic Control Substance Act*; WIPP = Waste Isolation Pilot Plant.

Live	Livermore National Laboratory Sanitary Sewer Effluent (milligrams per liter), 2002									
Month	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn	
Jan	< 0.010	0.0029	< 0.0050	0.015	0.14	0.00045	0.0057	0.016	0.39	
Feb	0.017	0.0042	< 0.0050	0.019	0.13	0.00041	0.0063	0.014	0.29	
Mar	0.011	0.0022	< 0.0050	0.011	0.12	0.00025	0.0051	0.012	0.27	
Apr	0.011	0.0027	< 0.0050	0.012	0.15	0.00033	< 0.0050	0.013	0.30	
May	0.012	0.0030	< 0.0050	0.016	0.15	0.00027	0.0051	0.024	0.28	
Jun	< 0.010	0.021	< 0.0050	0.020	0.22	< 0.00028	0.0058	0.026	0.39	
Jul	< 0.010	0.0076	< 0.0050	0.040	0.24	0.00026	0.0084	0.026	0.41	
Aug	0.014	0.0082	< 0.0050	0.11	0.24	0.00034	0.0085	0.045	0.045	
Sep	0.013	0.0058	< 0.0050	0.021	0.20	0.00042	0.0083	0.020	0.38	
Oct	0.022	0.0040	< 0.0050	0.021	0.19	0.00060	0.0095	0.033	0.38	
Nov	0.019	0.0034	< 0.0050	0.017	0.18	0.00036	0.0079	0.062	0.42	
Dec	0.011	0.0035	< 0.0050	0.015	0.11	0.00034	0.0077	0.015	0.34	
Median	0.012	0.0038	< 0.0050	0.018	0.17	0.00034	0.0070	0.022	0.38	
IQR	0.0039	0.0033	(a)	0.0058	0.063	0.00013	0.0027	0.0027	0.013	
EPL	0.20	0.06	0.14	0.62	1.0	0.01	0.61	0.20	3.00	
Median fraction EPL	<0.06	0.06	<0.04	0.03	0.15	0.03	0.01	0.10	0.12	

 TABLE C.4.1–3.—Monthly Average Concentrations for Regulated Metals in Lawrence

 Livermore National Laboratory Sanitary Sewer Effluent (milligrams per liter), 2002

Note: Monthly values are presented with less-than signs (<) when all weekly composite sample results for the month are below the detectable concentration.

^a Because of the large number of nondetects, the interquartile range cannot be calculated for these metals.

Ag = silver; As = arsenic; Cd = cadmium; Cr = chromium; Cu = copper; EPL = effluent pollutant limit (LLNL Wastewater Discharge Permit 2000-2001 and 2001-2002); Hg = mercury; IQR = Interquartile range; Ni = nickel; Pb = lead; Zn = zinc.

	Detection				
	Frequency ^b	Minimum	Maximum	Median	IQR
24-Hour Composite Sample Parameter	(mg/L)				
Alkalinity (mg/L)					
Bicarbonate alkalinity (as CaCO ₃)	12 of 12	175	300	250	24.0
Carbonate alkalinity (as CaCO ₃)	2 of 12	<5	55.0	<5	с
Total alkalinity (as CaCO ₃)	12 of 12	230	300	250	22.5
Anions (mg/L)					
Bromide	10 of 12	< 0.1	1.1	0.25	с
Chloride	12 of 12	41	114	61	28
Fluoride	10 of 12	< 0.05	2.3	0.11	с
Nitrate (as N)	1 of 12	< 0.1	<1	< 0.44	с
Nitrate (as NO ₃)	1 of 12	< 0.04	<4.4	<4.4	с
Nitrate plus Nitrite (as N)	2 of 12	< 0.1	<1	<1	с
Nitrite (as N)	8 of 12	< 0.02	0.33	0.19	с
Nitrite (as NO ₂)	8 of 12	< 0.065	1.1	0.63	4.3
Orthophosphate	12 of 12	15	23	20	2.3
Sulfate	12 of 12	12	19	15	
Nutrients (mg/L)					
Ammonia nitrogen (as N)	12 of 12	43	56	47	5.0
Total Kjeldahl nitrogen	12 of 12	49	95	60	11
Total phosphorus (as P)	12 of 12	6.8	14	9.8	2.6
Oxygen demand (mg/L)					
Biochemical oxygen demand	12 of 12	100	810	333	107
Chemical oxygen demand	12 of 12	145	1,780	602	121
Solids (mg/L)			*		
Settleable solids	12 of 12	4	90	40	11.3
Total dissolved solids	12 of 12	165	413	256	78.5
Total suspended solids	12 of 12	88	650	385	138
Volatile solids	12 of 12	140	913	480	142
Total metals (mg/L)	-	-			
Aluminum	12 of 12	0.30	0.80	0.49	0.16
Calcium	12 of 12	15	27	18	2.3
Iron	12 of 12	1.0	2.5	1.6	0.30
Magnesium	12 of 12	2.5	3.0	2.8	0.15
Potassium	12 of 12	19	26	22	2.0
Selenium	2 of 12	< 0.002	< 0.02	< 0.002	c
Sodium	12 of 12	35	87	47	15
Total organic carbon	12 of 12 12 of 12	39	56	53	6.3
Tributyltin ^d	12 of 12 1 of 2	<6	10	e	c 0.5
111/4/11/1	1012	~~	10		

TABLE C.4.1–4.—Monthly Results for Physical and Chemical Characteristics of the
Lawrence Livermore National Laboratory Sanitary Sewer Effluent, 2002 ^a

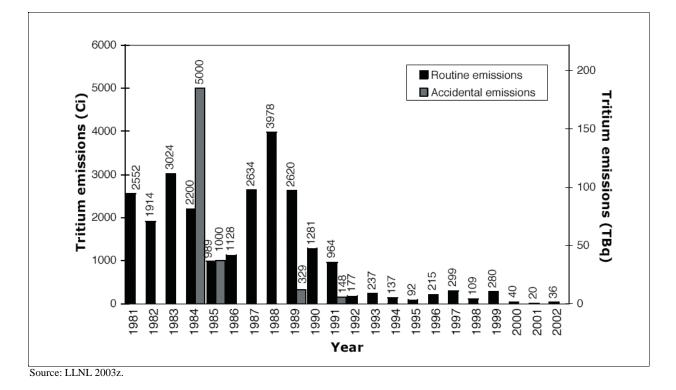


FIGURE C.4.2.2–1.—Recent Tritium Emissions From the Tritium Facility, 1981 – 2002

TABLE C.4.2.2–1.—Curies of Important Radionuclides Released From Lawrence Livermon						
National Laboratory						
Curies Released Annually						

	Curies Released Annually				
Site and Type of Radioactive Airborne Effluent Released	No Action Alternative	Proposed Action	Reduced Operation Alternative		
Livermore Site					
Tritium					
Building 612 yard	2	2	2		
Building 331 stacks	210	210	210		
Outside Building 331 (contaminated equipment awaiting storage)	1	1	1		
Site 300					
Tritium	194	194	145		
Uranium-234	0.0058	0.0058	0.0058		
Uranium-235	0.00080	0.00080	0.0008		
Uranium-238	0.062	0.062	0.062		

Vegetative Community and Trapping Period											
Nonwetland									Seep/Sprii	Seep/Spring Wetland	
	Annual G	Frassland	Native G	Frassland	Oak Savannah	Riparian	Coastal Scrub	Grid 1 & Trapline 1	Seep Channel Trapline	Seep Channel Trapline	
Species	6/20-6/22	4/17-4/19	Post-burn 6/20-6/22	Post-burn 7/30-8/1	6/20-6/22	5/14-5/16	5/14-5/16	5/17-5/19	Post-burn 6/20-6/22	Post-burn 7/30-8/1	
Valley pocket gopher		1				1					
California pocket mouse							1				
San Joaquin pocket mouse	2				3						
Heerman's kangaroo rat	4						22				
Western harvest mouse	13					7			4	6	
Deer mouse	8	1	4	4	1	7	10	3	3	7	
Brush mouse		2				32	10	11			
California vole	1			2		4					
Dusky-footed woodrat						13	20	3		1	
House mouse						1					
No. species captured	5	3	1	2	2	7	5	3	2	3	
Total captures	28	4	4	6	4	65	63	17	7	14	
No. trap-nights	300	300	4	300	300	300	300	300	39	150	
Captures/100 trap- nights	9.33	1.33	1.33	2.00	1.33	21.67	21.00	5.67	4.67	9.33	

Source: Jones and Stokes 2002b.

		Si	te		Status
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Plants			
Big tarplant	Blepharizonia plumosa	-	Х	-	CNPS List 1 B
Hogwallow starfish	Hesperevax caulescens	-	Х	-	CNPS List 4
Large-flowered fiddleneck	Amsinckia grandiflora	-	Х	FE (CH)	CNPS List 1 B
Round-leaved filaree	Erodium macrophyllum	-	Х	-	CNPS List 2
Stinkbells	Fritillaria agrestis	-	Х	-	CNPS List 4
Diamond-petaled poppy	Eschscholzia rhombipetala	-	Х	FSC	CNPS List 1 B
Gypsum rock jasmine	Androsace elongata ssp. acuta	-	Х	-	CNPS List 4
Gypsum loving larkspur	Delphinium gypsophilum ssp. gypsophilum	-	Х	-	CNPS List 4
		Invertebrates			
Valley elderberry longhorn beetle	Desmocerus californicus dimorphus	-	Х	FT	-
California linderiella fairy shrimp	Linderiella occidentalis	-	Х	FSC	-

TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002

		Site		Status	
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Amphibians			
California tiger salamander	Ambystoma californiense	_	Х	FT (CH not proposed at LLNL)	CASSC
California red-legged frog	Rana aurora draytonii	Х	Х	FT (CH proposed)	CASSC
Western spadefoot toad	Spea hammondii	-	Х	FSC	CASSC
		Reptiles			
Alameda whipsnake	Masticophis lateralis euryxanthus	-	Х	FT (CH rescinded)	FT
California horned lizard	Phrynosoma cornatum frontale	-	Х	FSC	CASSC
San Joaquin coachwhip (whipsnake)	Masticophis flagellum ruddocki	-	Х	FSC	CASSC
Silvery legless lizard	Anniella pulchra pulchra	-	Х	FSC	CASSC
		Birds			
Cooper's hawk	Accipiter cooperii	Х	Х	MBTA	CASSC
Sharp-shinned hawk	Accipiter striatus	-	Х	MBTA	CASSC
Golden eagle	Aquila chrysaetos	Х	Х	MBTA	CASSC
Red-tailed hawk	Buteo jamaicensis	Х	Х	MBTA	-
Rough-legged hawk	Buteo lagopus	-	Х	MBTA	-
Red-shouldered hawk	Buteo lineatus	Х	Х	MBTA	-
Ferruginous hawk	Buteo regalis	-	Х	FSC, MBTA	CASSC
Swainson's hawk	Buteo swainsoni	-	Х	MBTA	ST, MBTA
Northern harrier	Circus cyaneus	-	Х	MBTA	CASSC
White-tailed kite	Elanus leucurus	Х	Х	MBTA	CASSC
Osprey	Pandion haliaetus	-	Х	MBTA	CASSC

TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and
Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)

		Site		Status	
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds			
Bushtit	Psaltriparus minimus	-	Х	MBTA	-
Horned lark	Eremophila alpestris	-	Х	MBTA	CASSC
Northern shoveler	Anas clypeata	-	Х	MBTA	-
Cinnamon teal	Anas cuamptera	-	Х	MBTA	-
Mallard	Anas platyryynchos	Х	Х	MBTA	-
Bufflehead	Blucephala albeola	Х	Х	MBTA	-
Common goldeneye	Bucephala clangula	-	Х	MBTA	-
White-throated swift	Aeronautes saxatalis	-	Х	MBTA	-
Great egret	Ardea alba	Х	Х	MBTA	-
Cedar waxwing	Bombycilla garrulus	Х	Х	MBTA	-
Common poorwill	Phalaenoptilus nuttallii	-	Х	MBTA	-
Blue-grosbeak	Guiraca caerulea	-	Х	MBTA	-
Lazuli bunting	Passerina amoena	-	Х	MBTA	-
Turkey vulture	Cathartes aura	Х	Х	MBTA	-
Killdeer	Charadrius vociferus	Х	Х	MBTA	-
Mourning dove	Zenaida macroura	Х	Х	MBTA	-
Western scrub jay	Aphelocoma californica	Х	Х	MBTA	-
American crow	Corvus brachyrhynchos	Х	Х	MBTA	-
Common raven	Corvus corax	Х	Х	MBTA	-
Greater roadrunner	Geococcyx californianus	-	Х	MBTA	-
Bell's sage sparrow	Amphispiza belli	-	Х	FSC, MBTA	-
Black-throated sparrow	Amphispiza bilineata	-	Х	MBTA	-
Rufous crowned sparrow	Aimophila ruficeps	-	Х	MBTA	-

TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and
Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)

		Site		Status	
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds			
Grasshopper sparrow	Ammodramus savannarum	-	Х	FSC, MBTA	-
Lark sparrow	Chondestes grammacus	-	Х	MBTA	-
California towhee	Carpodacus mexicanus	-	Х	MBTA	-
Oregon junco	Junco hyemalis	Х	Х	MBTA	-
Lincoln's sparrow	Melospiza lincolnii	-	Х	MBTA	-
Song sparrow	Melospiza melodia	Х	Х	MBTA	-
Fox sparrow	Passerella iliaca	-	Х	MBTA	-
Savannah sparrow	Passerculus sandwichensis	-	Х	MBTA	-
Golden-crowned sparrow	Zonotrichia atricapilla	Х	Х	MBTA	-
White-crowned sparrow	Zonotrichia leucophrys	Х	Х	MBTA	-
American kestrel	Falco columbarius	Х	Х	MBTA	-
Prairie falcon	Falca mexicanus	-	Х	MBTA	CASSC
House finch	Carpodacus mexicanus	Х	Х	MBTA	-
Lesser goldfinch	Carduelis psaltria	Х	Х	MBTA	-
Cliff swallow	Petrochelidon pyrrhonota	Х	Х	MBTA	-
Northern rough winged swallow	Stelgidopteryx serripennis	Х	Х	MBTA	-
Tree swallow	Tachycineta bicolor	-	Х	MBTA	-
Red-winged blackbird	Agelaius phoeniceus	Х	Х	MBTA	-
Tricolored blackbird	Agelaius tricolor	-	Х	FSC, MBTA	CASSC
Brewer's blackbird	Euphagus cyanocephalus	Х	Х	MBTA	-
Bullock's oriole	Icterus bullockii	-	Х	MBTA	-
Brown-headed cowbird	Molothrus ater	Х	Х	MBTA	-

TABLE E.2–1	Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and	
Animal Spec	with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)	

		S	ite		Status
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds			
Western meadowlark	Sturnella magna	Х	Х	MBTA	-
Loggerhead shrike	Lanius ludovicianus	Х	Х	FSC, MBTA	CASSC
Northern mockingbird	Mimus polyglottos	Х	Х	MBTA	-
California thrasher	Toxostoma redivivum	-	Х	FSC, MBTA	-
California quail	Callipepla californica	-	Х	MBTA	-
Oak titmouse	Baeolphus inornatuss	-	Х	FSC, MBTA	-
Yellow-rumped warbler	Dendroica coronata	Х	Х	MBTA	-
Black-throated gray warbler	Dendroica nigrescens	-	Х	MBTA	-
Yellow warbler	Dendroica petechia	-	Х	MBTA	CASSC
Common yellowthroat	Geothlypis trichas	-	Х	MBTA	CASSC
MacGillivary's warbler	Oporornis tolmiei	-	Х	MBTA	-
Orange-crowned warbler	Vermivora bachmanii	-	Х	MBTA	-
Wilson's warbler	Wilsonia pusila	-	Х	MBTA	-
Double-crested cormorant	Phalacrocorax auritus	-	Х	MBTA	CASSC
Northern flicker	Colaptes auratus	-	Х	MBTA	-
Nuttall's woodpecker	Picoides nuttallii	Х	Х	FSC, MBTA	-
Pied-billed grebe	Podilymbus podiceps	Х	Х	MBTA	-
Phainopepla	Phainopepla nitens	-	Х	MBTA	-
Ruby-crowned kinglet	Regulus calendula	Х	Х	MBTA	-
Common snipe	Gallinago gallinago	Х	Х	MBTA	-
Greater yellowlegs	Tringa melanoleuca	Х	Х	MBTA	-
Burrowing owl	Athene cunicularia	X^{a}	Х	FSC, MBTA	CASSC
Short-eared owl	Asio flammeus	-	Х	FSC, MBTA	CASSC

TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Pla	int and
Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (cont	inued)

		S	ite		Status
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Birds			
Great horned owl	Bubo virginianus	-	Х	MBTA	-
Western screech owl	Otus kennicottii	-	Х	MBTA	-
Barn owl	Tyto alba	-	Х	MBTA	-
Western tanager	Piranga ludoviciana	-	Х	MBTA	-
Anna's hummingbird	Calypte anna	Х	Х	MBTA	-
Costa's hummingbird	Calypte costae	-	Х	FSC, MBTA	-
Rufous hummingbird	Selasphorus rufus	Х	Х	FSC, MBTA	-
Rock wren	Salpinctes obsoletus	-	Х	MBTA	-
Bewick's wren	Thyothorus ludovicianus	Х	Х	MBTA	-
House wren	Troglodytes aedon	-	Х	MBTA	-
Hermit thrush	Catharus guttatus	-	Х	MBTA	-
Swainson's thrush	Catharus ustulatus	-	Х	MBTA	-
Varied thrush	Ixoreus naevius	-	Х	MBTA	-
Mountain bluebird	Sialia currucoides	-	Х	MBTA	-
Western bluebird	Sialia mexicana	-	Х	MBTA	-
American robin	Turdus migratorius	Х	Х	MBTA	-
Pacific-slope flycatcher	Empidonax difficillis	-	Х	MBTA	-
Willow flycatcher	Empidonax traillii	-	Х	MBTA	SE
Ash-throated flycatcher	Myiarchus cinerascens	-	Х	MBTA	-
Black phoebe	Sayornis nigricans	-	Х	MBTA	-
Say's phoebe	Sayornis saya	Х	Х	MBTA	-
Western kingbird	Tyrannus verticalis	-	Х	MBTA	-
Cassin's kingbird	Tyrannus vociferans	-	Х	MBTA	-

 TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and

 Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)

2

		Site		Status	
Common Name	Scientific Name	Livermore Site	Site 300	Federal Status Code	State Status Code
		Mammals			
Pallid bat	Antrozous pallidus	-	Х		CASSC
Long-legged myotis	Myotis volans	-	Х	FSC	-
Yuma myotis	Myotis yumaensis	-	Х	FSC	-
San Joaquin pocket mouse	Perognathus inornatus inornatus	-	Х	FSC	-
San Joaquin kit fox ^b	Vulpes macrotis mutica	-	Х	FE	ST

TABLE E.2–1.—Federally and State-Listed Threatened, Endangered, and Other Special Status Plant and	
Animal Species with Potential to Occur at the Livermore Site and Site 300 in 2001 and 2002 (continued)	

~

Sources: Jones and Stokes 2001, CDFG 2002a, CDFG 2002b, LLNL 2003ab, LLNL 2003by, LLNL 2003ac.

^a The burrowing owl was observed at the Livermore Site prior to 1998.

^bAlthough the San Joaquin kit fox has not been observed in surveys from 1986 to the present, monitoring efforts continue to watch for the presence of this species onsite, due to confirmed sighting near Site 300.

X = Indicates the presence of a species at the Livermore Site or Site 300.

- = Indicates the absence of a species at the Livermore Site or Site 300.

FE = Federal-listed endangered (any species which is in danger of extinction throughout all or a significant portion of its range).

FT = Federal-listed threatened (any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range).

FPT = Federal-listed proposed threatened (a proposal to list a species as likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range pending release of a final rule).

CH = Critical habitat (the USFWS may establish critical habitat for threatened or endangered species consisting of a geographic area determined essential for the conservation of the species). FSC = Federal species of concern for Alameda and San Joaquin Counties. May be endangered or threatened. Not enough biological information has been gathered to support listing at this

time (U.S. Fish and Wildlife Service 1-1-03-SP-0162). CASSC = California species of special concern.

SE = State-listed endangered.

SE = State-listed endangeredST = State-listed threatened.

MBTA = Migratory Bird Treaty Act.

CNPS List 1A = Plants presumed extinct in California.

CNPS List 1B = Plants rare, threatened, or endangered in California and elsewhere.

CNPS List 2 = Plants rare, threatened, or endangered in California, but more common elsewhere.

CNPS List 3 = Plants about which we need more information – a review list.

CNPS List 4 = Plants of limited distribution – a watch list.

	Кейисей Орега	uion Allernalive	
SSM PEIS ^a	No Action Alternative	Reduced Operation Alternative	
	Land Use and	Applicable Plans	
Determined land use for the NIF site.	Land use consistent with LLNL uses	No change to land use around NIF or LLNL	No change to land use around NIF or LLNL
	Socioeconomics and	Environmental Justice	
Socioeconomics			
330 long-term employees	400 total long-term employees 180 direct employees 220 support personnel	426 total long-term employees 186 direct employees 240 support personnel	367 total long-term employees172 direct employees195 support personnel
All new hires	Almost all already employed ~20 new hires	Almost all already employed ~46 new hires	All already employed reduction of 13 employees
	No construction employment	20 temporary construction jobs	No construction employment
No strain on local housing	No impact to local housing	No change to local housing	No change to local housing
One additional teacher One additional doctor	No impact to school or medical services	No change to school or medical services	No change to school or medical services
Environmental Justice No disproportionate impacts	No disproportionately high and adverse impacts	Same as No Action Alternative	Same as No Action Alternative
	Commun	ity Services	
No change in fire or police services. Increased demand for general services	No impact in fire, emergency, police, or security services	No change in fire, emergency, police, or security services	No change in fire, emergency, police, or security services
Projected increase of 6,000 m ³ /yr of nonhazardous waste. Represents a 100% increase in LLNL waste generation. (Overly conservative estimate: current site rate is 4,600 m ³ /yr; NIF current rate is 380 m ³ /yr.)	Most nonhazardous waste already being generated. Total of 400 m ³ /yr. The increase of 20 m ³ /yr would be ~0.4% of current site waste generation.	Most nonhazardous waste already being generated. Total of 426 m ³ /yr. The increase of 46 m ³ /yr would be ~1% of site waste generation.	Most nonhazardous waste already being generated. Total of 367 m ³ /yr. The decrease of 13 m ³ /yr would be ~0.3% of site waste generation.

TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and
Reduced Operation Alternative

SSM	PEIS ^a	1	No Action Alteri	native	Proposed Action	Reduced Operation Alternative
			Prehistor	ic and Histor	ic Cultural Resources	
No impacts projected	ed	No imp	acts projected		No impacts projected	No impacts projected
			Aes	thetics and S	cenic Resources	
Impacts related to c	construction activities	No imp	acts projected		No impacts projected	No impacts projected
only			1 0			
				Geol		
25 acres disturbed of	luring construction	No new	disturbance		Construction of neutron spectrometer	No new disturbance
of NIF					will disturb 176,000 ft ³ of previously	
					disturbed land	
				Ecol		
NT 1 1		37 1				
resources from con	to biological struction of operation	No adve	erse impact		No adverse impact	No adverse impact
		No adve	erse impact	Air Qu	-	No adverse impact
	struction of operation	No adve	erse impact	Air Qu % of LLNL	-	No adverse impact
resources from consol of NIF	struction of operation	No adve	0.0042 t/yr		-	Same as No Action Alternative
resources from consoft NIF	struction of operation	PM ₁₀ VOC	-	% of LLNL	ıality	-
resources from cont of NIF Criteria Air Pollut PM ₁₀	struction of operation tants 0.16 t/yr	PM ₁₀	0.0042 t/yr	% of LLNL 0.19 15 1.7	ıality	-
resources from cont of NIF Criteria Air Pollut PM ₁₀ VOC	tants 0.16 t/yr 0.56 t/yr	PM ₁₀ VOC	0.0042 t/yr 1.18 t/yr	% of LLNL 0.19 15	ıality	-
resources from cont of NIF Criteria Air Pollut PM ₁₀ VOC CO	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr	PM ₁₀ VOC CO	0.0042 t/yr 1.18 t/yr 0.094 t/yr	% of LLNL 0.19 15 1.7	ıality	-
resources from consoleration of NIF Criteria Air Pollut PM ₁₀ VOC CO NOx	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr 1.79 t/yr	PM ₁₀ VOC CO NO _x	0.0042 t/yr 1.18 t/yr 0.094 t/yr 0.076 t/yr	% of LLNL 0.19 15 1.7 0.35 0.68	ıality	-
resources from cont of NIF Criteria Air Pollut PM ₁₀ VOC CO NO _x SO ₂ Pb	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr 1.79 t/yr 0.03 t/yr Negligible	PM ₁₀ VOC CO NO _x SO ₂	0.0042 t/yr 1.18 t/yr 0.094 t/yr 0.076 t/yr 0.0017 t/yr	% of LLNL 0.19 15 1.7 0.35 0.68	ıality	-
resources from cont of NIF Criteria Air Pollut PM ₁₀ VOC CO NO _x SO ₂ Pb Hazardous/Toxic	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr 1.79 t/yr 0.03 t/yr Negligible Air Pollutants	PM ₁₀ VOC CO NO _x SO ₂ Pb	0.0042 t/yr 1.18 t/yr 0.094 t/yr 0.076 t/yr 0.0017 t/yr	% of LLNL 0.19 15 1.7 0.35 0.68 gible	ıality	-
resources from consoleration of NIF Criteria Air Pollut PM ₁₀ VOC CO NO _x SO ₂	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr 1.79 t/yr 0.03 t/yr Negligible Air Pollutants azardous chemicals	PM ₁₀ VOC CO NO _x SO ₂ Pb Berylliu	0.0042 t/yr 1.18 t/yr 0.094 t/yr 0.076 t/yr 0.0017 t/yr Neglig	% of LLNL 0.19 15 1.7 0.35 0.68 gible	nality Same as No Action Alternative	Same as No Action Alternative
resources from cont of NIF Criteria Air Pollut PM ₁₀ VOC CO NO _x SO ₂ Pb Hazardous/Toxic A No impacts from ha	tants 0.16 t/yr 0.56 t/yr 0.43 t/yr 1.79 t/yr 0.03 t/yr Negligible Air Pollutants azardous chemicals se only minute	PM ₁₀ VOC CO NO _x SO ₂ Pb Berylliu Contam	0.0042 t/yr 1.18 t/yr 0.094 t/yr 0.076 t/yr 0.0017 t/yr Neglig Im emissions belo	% of LLNL 0.19 15 1.7 0.35 0.68 gible ow Toxic Air No impacts	nality Same as No Action Alternative Greater beryllium emissions. Still	Same as No Action Alternative Beryllium emissions below Toxic Air

TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and Reduced Operation Alternative (continued)

			and Redu	ced Operation A	Alternative (contin	ued)		
SSM PEIS ^a			No Action A	lternative	Reduced Operati	on Alternative		
				Air Quality	(continued)			
<u>Radiologica</u>	<u>l Air Pollutan</u>							
	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
Receptor	Dose	LCF Risk	Dose	LCF Risk	Dose	LCF Risk	Dose	LCF Risk
MEI	0.1 mrem	$6.0 imes 10^{-8}$	0.04 mrem	2.4×10^{-8}	0.07 mrem	4.2×10^{-8}	0.03 mrem	$1.8 imes 10^{-8}$
Population	0.2 person- rem	1.2×10^{-4}	0.26 person-rem	1.6×10^{-4}	0.29 person-rem	$1.7 imes 10^{-4}$	0.24 person-rem	1.4×10^{-4}
				Wa	iter			
Impacts wou	ıld be minimal.		Impacts would be m	inimal.	Impacts would be m		Impacts would be mi	nimal.
					Construction of neut	ron spectrometer		
					would not contamination	ate groundwater.		
				No	ise			
Noise from o to offsite rec	construction up	to 69 dBA	Noise equivalent to light industrial facility, ~85 dB		Noise equivalent to light industrial facility, ~85 dB		Noise equivalent to light industrial facility, ~85 dB	
					ring construction eter			
				Traffic and T	ransportation			
Traffic					-			
construction	s daily on local and operations		Most of employment than 0.3 % increase		Most of employmen than 0.4 % increase		Slight reduction in cu employment. Less th decrease in local traf	nan 0.3 %
Transporta			NT 11 1				NT 11 - 1	
No impacts expected from routine transportation of tritium targets. No detectable levels of radiation outside of		No radiation dose to from routine transpo	1	No radiation dose to drivers or public from routine transportation		No radiation dose to drivers or public from routine transportation		
transport packages.				Use of disposable inner containment vessel increases LLW shipments to NTS				
targets were	portation risks to assumed to be risks from offs on.	negligible	No impact from ons	ite transportation	NTS No impacts from onsite transportation, including movement of inner containment vessel		No impact from onsite transportation	

TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and Reduced Operation Alternative (continued)

SSM PEIS ^a No Action Alternative Proposed Action Reduced Operation Alternative Utilities and Energy 152 million L/yr 27.6 million L/yr Slightly less than 27.6 million L/yr 22,640 MWh/yr 131.400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 122,640 MWh/yr 131.400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 8 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr 8 million L/yr 1.3.2 million L/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 11.00 million L/yr Nould involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Nould involve use of radioactive, chemicals. Mould involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemica						1	Alternative (
Water Use 152 million L/yr 27.6 million L/yr 27.6 million L/yr Slightly less than 27.6 million L/yr Energy 122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 8ewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Materials Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Moditional materials would include plutonium, HEU, lithum hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron s		SSM PEIS ^a		No A	ction Alterr	ative	Pr	oposed Actio	on	Reduced	Operation A	lternative
152 million L/yr 27.6 million L/yr 27.6 million L/yr Slightly less than 27.6 million L/yr Energy 122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 8ewer 18 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 8 materials Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polywinyl toluee and lead would be used in the neutron spectrometer. Vaste Management (quantifies in m ³)						Utilities ar	nd Energy					
3.5% increase in LLNL usage Energy 122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr Sewer 18 million L/yr 13.2 million L/yr 18 million L/yr 13.2 million L/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.6% increase in LLNL usage Would involve use of radioactive, hazardous, toxic materials including particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Veste Management (quantities in m ³)	Water Use											
Energy 122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr Sewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Materials Management Materials and Waste Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium, Polyvinyl toluene and lead would be used in the neutron spectrometer. Would in the neutron spectrometer.	1	52 million L/y	r	27	.6 million L	/yr	27.6 million L/yr		yr	Slightly les	s than 27.6 n	nillion L/yr
122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr Sewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr 18 million L/yr 13.2 million L/yr 13.2 million L/yr Sewer 13.2 million L/yr 13.2 million L/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Sewer 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Sewer Naterials and Waste Management Slightly less than 2.03 × 10 ⁵ therms/yr Materials Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Vaste Management (quantities in m ³)				3.5% inc	rease in LLN	VL usage						-
122,640 MWh/yr 131,400 MWh/yr 131,400 MWh/yr 131,400 MWh/yr Sewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr 18 million L/yr 13.2 million L/yr 13.2 million L/yr Sewer 13.2 million L/yr 13.2 million L/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Sewer 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Sewer Naterials and Waste Management Slightly less than 2.03 × 10 ⁵ therms/yr Materials Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Vaste Management (quantities in m ³)	Energy					U						
Sewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Naterials Management Materials and Waste Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Modditional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Materials Management (guantities in m ³)		22,640 MWh/y	r	13	1,400 MWh	/yr	13	1,400 MWh/	yr	13	1,400 MWh/	yr
Sewer 18 million L/yr 13.2 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Naterials Management Materials and Waste Management Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Modditional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Materials Management (guantities in m ³)				42% inc	rease in LLN	JL usage		•				•
18 million L/yr 13.2 million L/yr 13.2 million L/yr Slightly less than 13.2 million L/yr Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Materials Management Mould involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Additional materials would be used in the neutron spectrometer.	Sewer					U						
Substrate 5.2% increase in LLNL usage Substrate 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Stightly less than 2.03 × 10 ⁵ therms/yr Stightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Stightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Stightly less than 2.03 × 10 ⁵ therms/yr Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include		18 million L/vr		13	.2 million L	/vr	13	.2 million L/	vr	Slightly les	s than 13.2 n	nillion L/vr
Natural Gas 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Materials and Waste Management Materials Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Would involve use of radioactive, hazardous, to would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Would involve use of radioactive, hazardous, to would be used in the neutron spectrometer.						•	-		<i>,</i>			
2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr 2.03 × 10 ⁵ therms/yr Slightly less than 2.03 × 10 ⁵ therms/yr Materials and Waste Management Materials Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Materials Management (quantities in m ³) Mould involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Materials Management (quantities in m ³) Mould involve use of particulates in mage the particulates in the neutron spectrometer. Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Moditional materials would include plutonium, HEU, lithium hydride, and greater amounts of berylli	Natural Gas	2		0.270 110	10000 111 221	(2) asage						
2.6% increase in LLNL usage Materials and Waste Management Materials Management Materials and Waste Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous to chemicals. Mould involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous to chemicals. Would involve use of radioactive, hazardous to chemicals. Would involve use of radioactive, hazardous to chemicals. Materials Materials Mould involve use of radioactive, hazardous to chemicals.			/vr	2.03	8×10^5 therm	ıs/vr	2.03	$\times 10^5$ therms	s/vr	Slightly less	than 2.03×1	0^5 therms/vr
Materials and Waste Management Materials Management Materials and Waste Management Materials Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Moditional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)			5-						, j -	Singhity less than 2.05 × 10° therms, y		· · · · · · · · · · · · · · · · · · ·
Materials Management Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer.				2.070 me		U	aste Managem	ent				
Would involve use of radioactive, hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritium, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materialsWould involve use of radioactive, hazardous, toxic materials including tritum, depleted uranium, activated particulates, beryllium, mercury, cleaning fluids, and caustic chemicals.Would involve use of radioactive, hazardous, toxic materialsWaste Management (quantities in m ³)	Materials M	anagement			1/10/		ste munugem					
hazardous, toxic materials including deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. Waste Management (quantities in m ³)			ctive	Would invol	ve use of rad	lioactive	Would invol-	ve use of radi	oactive	Would involv	ve use of radi	oactive
deuterium, tritium, mercury, cleaning fluids, and caustic chemicals. fluids, and caustic chemicals. Waste Management (quantities in m ³)			/			,			,			/
fluids, and caustic chemicals. fluids, and caustic chemicals. fluids, and caustic chemicals. fluids, and caustic chemicals. particulates, beryllium, mercury, cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)			0						0			
cleaning fluids, and caustic cleaning fluids, and caustic cleaning fluids, and caustic chemicals. Additional materials would include cleaning fluids, and caustic chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³) Waste Management (quantities in m ³) Kenter of the second												
chemicals. Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)	nuius, and ca	tustic chefinean										
Additional materials would include plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer.				-	us, and caus		-	us, and causi	C.	cleaning nuit	is, and causi	e chemicais.
plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)				chemicals.			chemicais.					
plutonium, HEU, lithium hydride, and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)							Additionalm		dinaluda			
and greater amounts of beryllium. Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)												
Polyvinyl toluene and lead would be used in the neutron spectrometer. Waste Management (quantities in m ³)												
used in the neutron spectrometer. Waste Management (quantities in m ³)												
Waste Management (quantities in m ³)												
							used in the n	eutron spectr	ometer.			
			1.									
LLW Mixed Hazardous LLW Mixed Hazardous LLW Mixed Hazardous LLW Mixed Hazardous												
solid												
(liquid)												
6.65 0.9 8.0 70 1.8 8.5 190 1.8 8.5 49 1.6 8.5												

(5.1)

(1.6)

(6.3)

(1.6)

(5.1)

(6.3)

(0.95)

TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and Reduced Operation Alternative (continued)

(1.6)

(5.0)

(4.6)

(6.3)

(3.5)

					Alternative (con	,		
	SSM PEIS ^a		No Action A			d Action	Reduced Operat	ion Alternative
				Acci	dents			
For the boundi	ing radiologic	al accident	For the bounding radi	iological accident	For the bounding ra	adiological accident	Same as the No Act	ion Alternative.
			Median Meteorolog	<u>v</u>	Median Meteorolo	<u>ogy</u>		
 Median Meteorology Noninvolved worker population not calculated 0.6 latent cancer fatalities to the offsite population 		culated talities to	 0.00013 latent cancer fatalities to the noninvolved worker population 0.00012 latent cancer fatalities to the offsite population 		 0.00045 latent cancer fatalities to the noninvolved worker population 0.00033 latent cancer fatalities to the offsite population 			
<u>Unfavorable</u> I	Meteorology		Unfavorable Meteor	<u>ology</u>	<u>Unfavorable Mete</u>	orology		
• Not calculated.		 0.0013 latent cancer fatalities to the noninvolved worker population 0.0018 latent cancer fatalities to the offsite population 		 0.005 latent cancer fatalities to the noninvolved worker population 0.005 latent cancer fatalities to the offsite population 				
				Occupation	al Protection			
Radiological I Receptor	Annual Dose	Annual LCF Risk		Annual LCF Risk	Annual Dose	Annual LCF Risk	Annual Dose	Annual LCF Risk
Involved worker(s)	<10 person- rem	$6.0 imes 10^{-3}$	<15 person-rem	0 cancers in population (calculated risk $= 9 \times 10^{-3}$)	<19 person-rem	0 cancers in population (calculated value $= 1.1 \times 10^{-2}$)	<10 person-rem	0 cancers in population (calculated risk $= 6 \times 10^{-3}$)
Noninvolved worker(s)	0.2 person- rem	1.2×10^{-4}	1 mrem/yr	6×10^{-7}	1 mrem/yr	6×10^{-7}	1 mrem/yr	6×10^{-7}
Public MEI	0.1 mrem	$6.0 imes 10^{-8}$	0.24 mrem	1.4×10^{-7}	0.27 mrem	1.6×10^{-7}	0.16 mrem	$9.6 imes 10^{-8}$
Population Dose	0.2 person- rem	1.2×10^{-4}	0.26 person-rem	1.6×10^{-4}	0.29 person-rem	1.7×10^{-4}	0.24 person-rem	1.4×10^{-4}

TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and Reduced Operation Alternative (continued)

SSM PEIS ^a	No Action Alternative	Proposed Action	Reduced Operation Alternative
Nonradiological Exposure			
Hazards in the NIF for workers would include chemicals, electrical shock, and industrial accidents.	Hazards in the NIF for workers would include chemicals, beryllium exposure, electrical shock, and industrial accidents.	Hazards in the NIF for workers would include chemicals, beryllium exposure, electrical shock, and industrial accidents.	Hazards in the NIF for workers would include chemicals, beryllium exposure electrical shock, and industrial accidents.

 TABLE M.3.4–1.—Comparison of Potential Environmental Consequences of the No Action Alternative, Proposed Action, and Reduced Operation Alternative (continued)

Source: Original. ^a DOE 1996b

CO = carbon monoxide; dBA = decibels, A-weighted; ft³ = cubic feet; HEU = highly enriched uranium; L = liter; LCF= latent cancer fatality; LLNL = Lawrence Livermore National Laboratory; LLW = low-level waste; m³ = cubic meters; MEI = maximally exposed individuals; mrem – millirem; MWh = megawatt hours; NIF – National Ignition Facility; NO_x = nitrogen oxidizes; Pb = lead; PM₁₀ = particulate matter less than10 microns in diameter; SO₂ = sulfur dioxide; SSM PEIS = Stockpile Stewardship Management Programmatic Environmental Impact Statement; t = ton(s); VOC = volatile organic compound; yr = year.

Chemical	Source	Quantity	Exposure Criteria ^a
Acetone	Cleaners, etc.	210 L (165 kg) + OAB 13 L (10 kg)	500 mg/m ³ (ACGIH)
Alcohol, ethyl (ethanol)	Cleaners, etc.	276 L (258 kg) + OAB 10.7 L (10	1,000 mg/m ³ (ACGIH)
Alcohol, isopropyl	Cleaners, etc.	kg) 20.5 L (16.2 kg) + OAB 25.3 L (20 kg) 10 kg (wipes)	400 mg/m ³ (ACGIH)
Argon	Beam tubes	10,100 kg	_
Castor oil (ricinus oil)	Dielectric fluid in capacitors	227,000 L	_
Chloroform	Cleaners, etc.	0.5 L (0.7 kg)	10 mg/m ³ (ACGIH)
Decontamination Acid Bath Nitric acid + phosphoric acid (1 M each)	First wall decontamination	8000 L (10624 kg), 2520 kg as HNO ₃ , 3920 kg as H ₃ PO ₄	5.2 mg/m ³ HNO ₃ (ACGIH) 1 mg/m ³ H ₃ PO ₄ (ACGIH)
Ethylene glycol	PAM coolant	170 kg	127 mg/m^3 (ACGIH)
Mercury, metallic	192 PAM switches	3.5 L ^b (47 kg)	0.025 mg/m ³ (ACGIH)
Methylene chloride	Cleaners, etc.	1 L (1.32 kg)	174 mg/m ³ (ACGIH)
Nitric acid (70% solution)	Supply on hand for replenishing decontamination solution	400 L (540 kg), 420 kg as HNO ₃	5.2 mg/m ³ (ACGIH)
Nitrogen	Cleaning propellant, dry box purging, beam tubes, amplifier cooling, cryogen	96,000 kg	_
Phosphoric acid (87% solution)	Supply on hand for replenishing decontamination solution	400 L (691 kg), 639 kg as H ₃ PO ₄	1 mg/m ³ (ACGIH)
Sodium hydroxide (1 M)	Decontamination (caustic bath)	8000 L (8320 kg), 1600 kg as NaOH	2 mg/m ³ (ACGIH)
Sodium hydroxide (50% solution)	Supply on hand for replenishing decontamination solution	400 L (612 kg), 306 kg as NaOH	2 mg/m ³ (ACGIH)
Toluene	Cleaners, etc.	18 L (16 kg)	375 mg/m ³ (NIOSH)
Xylene	Cleaners, etc.	18 L (16 kg)	435 mg/m ³ (NIOSH)

TABLE M.5.2.13.2–2. National Ignition Facility Estimated Important Chemical Inventories

^a All criteria are 8-hour time weighted averages, unless otherwise stated. ^b Single ignitron inventories are approximately 14 pounds (0.125 gallons).

ACGIH = American Conference of Governmental Industrial Hygienists; H_3PO_4 = phosphoric acid; HNO_3 = nitric acid; kg = kilogram; L = liter; M = molar; NaOH = sodium hydroxide; NIOSH = National Institute of Occupational Safety and Health; OAB = optics assembly building; PAM = preamplified module.

Nuclide	Annual Amount Available for Release (Ci/1,200 MJ) ^b	Annual Air Effluents Via Charcoal Filter ^a (Ci/1,200 MJ)		
Krypton-83m	$1.1 imes 10^{-13}$	$1.1 imes 10^{-13}$		
Krypton-85	$3.5 imes10^{-4}$	$3.5 imes10^{-4}$		
Krypton-85m	$2.9 imes 10^{-7}$	$2.9 imes10^{-7}$		
Krypton-87	0	0		
Krypton-88	$2.3 imes10^{-11}$	$2.3 imes 10^{-11}$		
Krypton-89	0	0		
Iodine-131	1.9	$9.3 imes10^{-1}$		
Iodine-132	3.9	$1.9 imes10^{-1}$		
Iodine-132m	0	0		
Iodine-133	1.1	$5.6 imes 10^{-2}$		
Iodine-133m	0	0		
Iodine-134	0	0		
Iodine-134m	0	0		
Iodine-135	$6.1 imes 10^{-4}$	$2.8 imes 10^{-5}$		
Iodine-136	0	0		
Xenon-131	$6.1 imes 10^{-3}$	$6.1 imes 10^{-3}$		
Xenon-133	5.9	5.9		
Xenon-133m	$2.1 imes10^{-1}$	$2.1 imes 10^{-1}$		
Xenon-134m	0	0		
Xenon-135	$4.5 imes10^{-2}$	$4.5 imes 10^{-2}$		
Xenon-135m	$9.0 imes10^{-5}$	$9.0 imes10^{-5}$		
Xenon-137	0	0		
Total	$1.3 imes 10^1$	7.3		

TABLE M.5.3.8.4–1.—Annual Routine Radioactive Airborne Emissions under the Proposed
Action (Fission Products)

Source: LLNL 2003d. ^a The effluents from the cryopumps during regeneration and from the target chamber when bringing to air would be passed through 2-inch-thick charcoal filters to remove iodines, with 99 percent being collected by charcoal bed. Here, only 95 percent is assumed

removed for conservatism. b 1.2 gram uranium-235/target: 2×10^{16} Fissions per 20 MJ experiment, 60 experiments per year.

Ci = curies; MJ=megajoules.

TABLE M.5.3.8.4–2. Radiological Impacts to the General Public from
Airborne Effluent Emissions during Normal Operations (Proposed Action)

	Propose	d Action	No Action Alternative			
Receptor	Dose	Latent Cancer Fatality Risk	Dose	Latent Cancer Fatality Risk		
NIF Offsite MEI	0.07 mrem/yr	4.2×10^{-8} /yr of exposure	0.04 mrem/yr	2.4×10^{-8} /yr of exposure		
Population Dose	0.29 person-rem/yr	$1.7 imes 10^{-4}$	0.26 person-rem/yr	$1.6 imes 10^{-4}$		

Source: LLNL 2003d.

MEI = maximally exposed individual; mrem = millirems; yr = year; NIF = National Ignition Facility.

Nuclide	Annual Amount Available for Release (Ci/1,200 MJ) ^b	Annual Air Effluents Via Charcoal Filter ^a (Ci/1,200 MJ)
Krypton-83m	$1.1 imes 10^{-13}$	$1.1 imes 10^{-13}$
Krypton-85	$3.5 imes 10^{-4}$	$3.5 imes10^{-4}$
Krypton-85m	$2.9 imes 10^{-7}$	$2.9 imes10^{-7}$
Krypton-87	0	0
Krypton-88	$2.3 imes10^{-11}$	$2.3 imes 10^{-11}$
Krypton-89	0	0
Iodine-131	1.9	$9.3 imes10^{-1}$
Iodine-132	3.9	$1.9 imes10^{-1}$
Iodine-132m	0	0
Iodine-133	1.1	$5.6 imes 10^{-2}$
Iodine-133m	0	0
Iodine-134	0	0
Iodine-134m	0	0
Iodine-135	$6.1 imes 10^{-4}$	$2.8 imes10^{-5}$
Iodine-136	0	0
Xenon-131	$6.1 imes 10^{-3}$	$6.1 imes 10^{-3}$
Xenon-133	5.9	5.9
Xenon-133m	$2.1 imes10^{-1}$	$2.1 imes 10^{-1}$
Xenon-134m	0	0
Xenon-135	$4.5 imes10^{-2}$	$4.5 imes 10^{-2}$
Xenon-135m	$9.0 imes10^{-5}$	$9.0 imes10^{-5}$
Xenon-137	0	0
Total	$1.3 imes 10^1$	7.3

TABLE M.5.3.8.4–1.—Annual Routine Radioactive Airborne Emissions under the Proposed
Action (Fission Products)

Source: LLNL 2003d. ^a The effluents from the cryopumps during regeneration and from the target chamber when bringing to air would be passed through 2-inch-thick charcoal filters to remove iodines, with 99 percent being collected by charcoal bed. Here, only 95 percent is assumed

removed for conservatism. b 1.2 gram uranium-235/target: 2×10^{16} Fissions per 20 MJ experiment, 60 experiments per year.

Ci = curies; MJ=megajoules.

TABLE M.5.3.8.4–2. Radiological Impacts to the General Public from
Airborne Effluent Emissions during Normal Operations (Proposed Action)

	Proposed Action		No Action Alternative	
Receptor	Dose	Latent Cancer Fatality Risk	Dose	Latent Cancer Fatality Risk
NIF Offsite MEI	0.07 mrem/yr	4.2×10^{-8} /yr of exposure	0.04 mrem/yr	2.4×10^{-8} /yr of exposure
Population Dose	0.29 person-rem/yr	$1.7 imes 10^{-4}$	0.26 person-rem/yr	$1.6 imes 10^{-4}$

Source: LLNL 2003d.

MEI = maximally exposed individual; mrem = millirems; yr = year; NIF = National Ignition Facility.

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Depleted uranium ^a			
Uranium-234	$1.7 imes10^{-5}$	1×10^{-3}	$1.7 imes10^{-8}$
Uranium-235	$7.4 imes10^{-7}$	1×10^{-3}	$8.0 imes10^{-10}$
Uranium-238	$3.2 imes 10^{-5}$	1×10^{-3}	$3.2 imes 10^{-8}$
Krypton-83m	$1.5 imes 10^{-1}$	1.0	$1.5 imes10^{-1}$
Krypton-85	$1.2 imes10^{-4}$	1.0	$1.2 imes 10^{-4}$
Krypton-85m	$4.2 imes10^{-1}$	1.0	$4.2 imes 10^{-1}$
Krypton-87	2.4	1.0	2.4
Krypton-88	1.6	1.0	1.6
Niobium-98	$1.2 imes 10^3$	$1 imes 10^{-3}$	1.2
Iodine-131	$5.9 imes10^{-2}$	0.5	$3.0 imes 10^{-2}$
Iodine-132	$1.5 imes10^{-1}$	0.5	$7.5 imes10^{-2}$
Iodine-132m	$1.9 imes 10^{-3}$	0.5	$9.5 imes10^{-4}$
Iodine-133	$6.4 imes10^{-1}$	0.5	$3.2 imes 10^{-1}$
Iodine-133m	$1.0 imes10^1$	0.5	5.0
Iodine-134	7.5	0.5	3.8
Iodine-134m	3.8	0.5	1.9
Iodine-135	2.2	0.5	1.1
Iodine-136	$2.8 imes 10^2$	0.5	$1.4 imes 10^2$
Technetium-134	$2.2 imes 10^1$	1×10^{-3}	$2.2 imes 10^{-2}$
Xenon-133	$1.2 imes 10^{-1}$	1.0	$1.2 imes 10^{-1}$
Xenon-133m	$5.0 imes 10^{-3}$	1.0	$5.0 imes 10^{-3}$
Xenon-134m	$1.5 imes 10^1$	1.0	$1.5 imes10^1$
Xenon-135	$6.7 imes10^{-1}$	1.0	$6.7 imes10^{-1}$
Xenon-135m	$3.0 imes10^{-1}$	1.0	$3.0 imes 10^{-1}$
Xenon-137	$1.6 imes 10^2$	1.0	$1.6 imes 10^2$
Xenon-138	$5.3 imes10^1$	1.0	$5.3 imes10^1$

TABLE M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms
under the Proposed Action

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Highly enriched uranium ^b			
Uranium-234	$6.9 imes 10^{-3}$	1×10^{-3}	$6.9 imes10^{-6}$
Uranium-235	$2.0 imes 10^{-4}$	1×10^{-3}	$2.0 imes 10^{-7}$
Uranium-238	$1.8 imes 10^{-6}$	1×10^{-3}	$1.8 imes10^{-9}$
Krypton-87	4.1	1.0	4.1
Krypton-88	2.6	1.0	2.6
Niobium 98	$1.2 imes 10^3$	1×10^{-3}	1.2
Iodine-131	$5.1 imes 10^{-2}$	0.5	$2.6 imes 10^{-2}$
Iodine-132	$1.3 imes 10^{-1}$	0.5	$6.5 imes 10^{-2}$
Iodine-132m	3.0×10^{-2}	0.5	$1.5 imes 10^{-2}$
Iodine-133	$6.1 imes 10^{-1}$	0.5	$3.1 imes 10^{-1}$
Iodine-133m	$9.8 imes10^1$	0.5	$4.9 imes10^1$
Iodine-134	7.9	0.5	4.0
Iodine-134m	$1.7 imes10^1$	0.5	8.5
Iodine-135	2.1	0.5	1.1
Iodine-136	$1.8 imes 10^2$	0.5	$9.0 imes10^1$
Tellurium-134	$2.0 imes 10^1$	1×10^{-3}	$2.0 imes 10^{-2}$
Xenon-133	$1.2 imes 10^{-1}$	1.0	$1.2 imes 10^{-1}$
Xenon-133m	$4.9 imes 10^{-3}$	1.0	$4.9 imes 10^{-3}$
Xenon-134m	$3.2 imes 10^2$	1.0	$3.2 imes 10^2$
Xenon-135	$6.7 imes10^{-1}$	1.0	$6.7 imes10^{-1}$
Xenon-135m	1.7	1.0	1.7
Xenon-137	$1.6 imes 10^2$	1.0	$1.6 imes 10^2$
Xenon-138	$5.6 imes10^1$	1.0	$5.6 imes10^1$
Tracers: iodine is bounding and representative			
Iodine-124	6.2×10^{-2}	0.5	$3.1 imes 10^{-2}$
Iodine-125	6.4×10^{-2}	0.5	$3.2 imes 10^{-2}$
Iodine-126	$1.5 imes 10^{-1}$	0.5	$7.5 imes10^{-2}$

TABLE M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms
under the Proposed Action (continued)

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Inner containment vessel, weapons grade plutonium (non-yield ^c)	3 g		
Plutonium-238	3 g 1.0×10^{-2}	1×10^{-3}	$1.0 imes 10^{-5}$
Plutonium-239	1.0×10^{-1} 1.8×10^{-1}	1×10^{-3}	1.0×10^{-4} 1.8×10^{-4}
	1.8×10^{-2} 4.0×10^{-2}		
Plutonium-240		1×10^{-3}	$4.0 imes 10^{-5}$
Plutonium-241	9.1×10^{-1}	1×10^{-3}	9.1×10^{-4}
Plutonium-242	2.4×10^{-6}	1×10^{-3}	2.4×10^{-9}
Americium-241	1.6×10^{-3}	1×10^{-3}	$1.6 imes 10^{-6}$
Inner containment vessel, weapons grade plutonium (with yield ^d)	1 g		
Plutonium-238	3.4×10^{-3}	1×10^{-3}	$3.4 imes 10^{-6}$
Plutonium-239	5.8×10^{-2}	1×10^{-3}	$5.8 imes10^{-5}$
Plutonium-240	1.3×10^{-2}	1×10^{-3}	$1.3 imes 10^{-5}$
Plutonium-241	3.0×10^{-1}	$1 imes 10^{-3}$	$3.0 imes 10^{-4}$
Plutonium-242	$7.9 imes 10^{-7}$	1×10^{-3}	$7.9 imes10^{-10}$
Nickel-65	1.6×10^{-5}	1×10^{-3}	$1.6 imes 10^{-8}$
Niobium 96	3.9×10^{-6}	1×10^{-3}	$3.9 imes 10^{-9}$
Niobium-97	$2.8 imes 10^{-5}$	1×10^{-3}	$2.8 imes10^{-8}$
Niobium-97	5.5×10^{-4}	$1 imes 10^{-3}$	$5.5 imes10^{-7}$
Niobium-98	1.6×10^{-2}	1×10^{-3}	$1.6 imes 10^{-5}$
Molybdenum-93m	1.3×10^{-6}	1×10^{-3}	$1.3 imes 10^{-9}$
Molybdenum-99	5.5×10^{-5}	1×10^{-3}	$5.5 imes10^{-8}$
Technetium-99	2.2×10^{-5}	1×10^{-3}	$2.2 imes 10^{-8}$

TABLE M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms
under the Proposed Action (continued)

^a Depleted uranium is already slightly radioactive; the half-life of uranium-238 (dominant isotope) is 4.5×10^9 years. The assumed composition is 99.64% uranium-238, 0.36% uranium-235, and 0.0028% uranium-234. The quantities listed correspond to the maximum additional quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 2.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

^b Highly enriched uranium is already slightly radioactive; the half-life of uranium-235 (dominant isotope) is 7.0×10^8 years. The quantity listed corresponds to the maximum quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 1.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

^c Thorium-232 is already slightly radioactive, with a half-life of 1.4×10^{10} yrs. The quantity listed corresponds to the maximum quantity used under the Proposed Action of 450 g. Fission products would result from a single target (maximum of 7.9 g) subject to a 45-MJ fusion yield, 5.3×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

^d The assumed composition of weapons grade material is 0.02% plutonium-238, 93.85% plutonium-239, 5.8% plutonium-240, 0.3% plutonium-241, 0.015% americium-241, and 0.02% plutonium-242. Other isotopic mixes could be used as long as their impacts would be within the bounds described here. The fission products would result from a single target (maximum of 1 g) subject to a 45-MJ fusion yield, 3.2×10^{16} fissions. Because only a single experiment would occur within a containment vessel, only the fission products resulting from this single experiment are included. The fission product inventories would be peak post-experiment inventories. Ci = curies; g = gram; MJ = megajoules.

Accident	Frequency Source Term or Hazard (No		Source Term or Hazard	
	(per year)	Action Alternative)	(Proposed Action)	
Earthquake during No Action Alternative operations	2×10^{-8}	500 Ci tritium plus activated gases and particulates	500 Ci tritium plus activated gases and particulates	
Earthquake during depleted uranium experiment	2×10^{-9}	0.005 g depleted uranium plus 500 Ci tritium plus activated gases and particulates	0.1 g depleted uranium plus 500 Ci tritium plus fission products plus activated gases and particulates	
Earthquake during highly enriched uranium experiment	2×10^{-9}	Not applicable	0.1 g highly enriched uranium plus 500 Ci tritium plus fission products plus activated gases and particulates	
Earthquake during thorium experiment	2×10^{-9}	Not applicable	0.45 g thorium-232 plus 500 Ci tritium plus fission products plus activated gases and particulates	
Earthquake during tracer experiment	2×10^{-9}	Not applicable	0.031 Ci iodine-124 0.032 Ci iodine-125 0.075 Ci iodine-126 500 Ci tritium plus activated gases and particulates	
Earthquake during plutonium without yield experiment	2×10^{-9}	Not applicable	0.003 g weapons grade plutonium plus 500 Ci tritium plus activated gases and particulates	
Earthquake during plutonium with yield experiment urce: LLNL 2003d.	2 × 10 ⁻⁹	Not applicable	0.001 g weapons grade plutonium plus 500 Ci tritium plus fission products, plus activation gases and particulates	

g = grams; Ci = curies.

		М	EI	Offsite Po	opulation ^a		vidual ed Worker		volved Population
Accident	Frequency (per year)	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c
Earthquake during No Action Alternative operations	$2.0 imes 10^{-8}$	4.78×10^{-4}	2.87×10^{-7}	1.96×10^{-1}	1.18×10^{-4}	1.43×10^{-3}	8.60×10^{-7}	$2.08 imes 10^{-1}$	$1.25 imes 10^{-4}$
Earthquake during depleted uranium shot	$2.0 imes 10^{-9}$	9.68 × 10 ⁻⁴	$5.81 imes 10^{-7}$	2.40×10^{-1}	1.44×10^{-4}	2.55×10^{-3}	1.53×10^{-6}	$3.48 imes 10^{-1}$	$2.09\times10^{\text{-4}}$
Earthquake during highly enriched uranium shot	$2.0 imes 10^{-9}$	1.02×10^{-3}	6.09×10^{-7}	$2.47 imes 10^{-1}$	1.48×10^{-4}	2.64×10^{-3}	1.59×10^{-6}	$3.59\times10^{\text{-1}}$	$2.16\times10^{\text{-4}}$
Earthquake during thorium shot	$2.0 imes 10^{-9}$	1.04×10^{-3}	$6.24 imes 10^{-7}$	$2.43 imes 10^{-1}$	1.46×10^{-4}	$2.65 imes 10^{-3}$	$1.59 imes 10^{-6}$	$3.57\times10^{\text{-1}}$	$2.14 imes 10^{-4}$
Earthquake during tracer shot	$2.0 imes 10^{-9}$	5.44×10^{-4}	$3.26 imes 10^{-7}$	$2.09 imes 10^{-1}$	1.26×10^{-4}	1.63×10^{-3}	$9.80 imes 10^{-7}$	$2.29 imes 10^{-1}$	$1.38\times10^{\text{-}4}$
Earthquake during plutonium without yield shot	$2.0 imes 10^{-9}$	1.65×10^{-3}	9.89×10^{-7}	$5.46 imes 10^{-1}$	3.28×10^{-4}	4.99×10^{-3}	3.00×10^{-6}	$7.41 imes 10^{-1}$	$4.45\times10^{\text{-4}}$
Earthquake during plutonium with yield shot	$2.0 imes 10^{-9}$	9.01 × 10 ⁻⁴	5.41×10^{-7}	3.16×10^{-1}	$1.90 imes 10^{-4}$	2.69×10^{-3}	1.62×10^{-6}	$3.96 imes 10^{-1}$	$2.38 imes 10^{-4}$

TABLE M.5.6.1.2–3.—National Ignition Facility Accident Frequency and Consequences (Median Meteorology)	TABLE M.5.6.1.2-3.—Nation	Il Ignition Facility	Accident Frequency	y and Consequences	(Median Meteorolog
--	---------------------------	----------------------	--------------------	--------------------	--------------------

^a Based on the population of approximately 6,900,000 persons residing within 50 miles of LLNL. ^b Increased likelihood of a latent cancer fatality.

^c Increased number of latent cancer fatalities.

		Μ	EI	Offsite P	opulation ^a		idual ed Worker		nvolved Population
Accident	Frequency (per year)	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c
Earthquake during No Action Alternative operations	$2.00 imes 10^{-8}$	6.15×10^{-3}	3.69×10^{-6}	3.05	$1.83 imes 10^{-3}$	$1.33\times10^{\text{-2}}$	$8.01 imes 10^{-6}$	2.22	1.33×10^{-3}
Earthquake during depleted uranium shot	$2.00 imes 10^{-9}$	1.10×10^{-2}	6.57×10^{-6}	4.51	2.71×10^{-3}	$2.25\times10^{\text{-2}}$	$1.35 imes 10^{-5}$	3.74	2.24×10^{-3}
Earthquake during highly enriched uranium shot	2.00×10^{-9}	1.14×10^{-2}	6.84×10^{-6}	4.67	$2.80 imes 10^{-3}$	$2.33 imes 10^{-2}$	$1.40 imes 10^{-5}$	3.83	2.30×10^{-3}
Earthquake during thorium shot	$2.00 imes 10^{-9}$	1.14×10^{-2}	6.86×10^{-6}	4.76	$2.86 imes 10^{-3}$	$2.31 imes 10^{-2}$	$1.39 imes 10^{-5}$	4.10	2.46×10^{-3}
Earthquake during tracer shot	2.00×10^{-9}	7.02×10^{-3}	4.21×10^{-6}	3.26	$1.95 imes 10^{-3}$	1.52×10^{-2}	$9.14 imes 10^{-6}$	2.44	1.46×10^{-3}
Earthquake during plutonium without yield shot	2.00×10^{-9}	2.16×10^{-2}	$1.30 imes 10^{-5}$	8.33	5.00×10^{-3}	$4.69 imes 10^{-2}$	2.82×10^{-5}	8.23	4.94×10^{-3}
Earthquake during plutonium with yield shot	2.00×10^{-9}	1.16×10^{-2}	6.96×10^{-6}	4.98	$2.99\times10^{\text{-3}}$	$2.50\times10^{\text{-2}}$	$1.50 imes 10^{-5}$	4.27	2.56×10^{-3}

TABLE M.5.6.1.2–4. National Ignition Facility Accident Frequency and Consequence
(Unfavorable Meteorology)

^a Based on the population of approximately 6,900,000 persons residing within 50 miles of LLNL.

^b Increased likelihood of a latent cancer fatality.

^c Increased number of latent cancer fatalities.

		ME	EI	Offsite Po	opulation ^a		vidual ved Worker		volved Population
Accident	Frequency (per year)	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c
Earthquake during No Action Alternative operations	$2.00 imes 10^{-8}$	$9.56 imes 10^{-12}$	5.74×10^{-15}	3.92×10^{-9}	2.35×10^{-12}	22.87×10^{-11}	1.72×10^{-14}	4.17×10^{-9}	2.50×10^{-12}
Earthquake during depleted uranium shot	2.00×10^{-9}	1.94×10^{-12}	1.16×10^{-15}	$4.80 imes 10^{-10}$	2.88×10^{-12}	35.11×10^{-12}	2 3.06 × 10 ⁻¹⁵	56.97×10^{-10}	0 4.18 × 10 ⁻¹³
Earthquake during highly enriched uranium shot	2.00×10^{-9}	2.03×10^{-12}	1.22×10^{-15}	$4.94 imes 10^{-10}$	2.97×10^{-12}	35.29×10^{-12}	2 3.17 × 10 ⁻¹⁵	57.19×10^{-10}	0 4.31 × 10 ⁻¹³
Earthquake during thorium shot	2.00×10^{-9}	2.08×10^{-12}	1.25×10^{-15}	4.86×10^{-10}	2.92×10^{-12}	35.31×10^{-12}	2 3.18 × 10 ⁻¹⁵	57.15×10^{-10}	0 4.29 × 10 ⁻¹³
Earthquake during tracer shot	2.00×10^{-9}	1.09×10^{-12}	6.53×10^{-16}	4.19×10^{-10}	2.51×10^{-13}	33.27×10^{-12}	2 1.96 × 10 ⁻¹⁵	54.59×10^{-10}	$^{\circ}$ 2.75 × 10 ⁻¹³
Earthquake during plutonium without yield shot	2.00×10^{-9}	$3.30 imes 10^{-12}$	1.98×10^{-15}	1.09×10^{-9}	6.55×10^{-12}	39.99×10^{-12}	25.99×10^{-15}	5 1.48 × 10 ⁻⁹	8.90×10^{-13}
Earthquake during plutonium with yield shot	2.00×10^{-9}	1.80×10^{-12}	1.08×10^{-15}	6.32×10^{-10}	3.79×10^{-12}	35.39×10^{-12}	2 3.23 × 10 ⁻¹⁵	57.93×10^{-10}	0 4.76 × 10 ⁻¹³

 TABLE M.5.6.1.2–5.
 —National Ignition Facility Accident Frequency and Risk (Median Meteorology)

^a Based on the population of approximately 6,900,000 persons residing within 50 miles of LLNL. ^b Increased likelihood of a latent cancer fatality.

^c Increased number of latent cancer fatalities.

		Ν	1EI	Offsite P	opulation ^a		vidual ved Worker		volved Population
Accident	Frequency (per year)	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c	Dose (rem)	LCFs ^b	Dose (person- rem)	LCFs ^c
Earthquake during No Action Alternative operations	$2.00 imes 10^{-8}$	1.23×10^{-1}	$^{0}7.38 \times 10^{-14}$	6.10×10^{-8}	3.66×10^{-11}	2.67×10^{-1}	0 1.60 × 10 ⁻¹³	4.44× 10 ⁻⁸	2.66×10^{-11}
Earthquake during depleted uranium shot	$2.00 imes 10^{-9}$	2.19×10^{-1}	$^{1}1.31 \times 10^{-14}$	9.02×10^{-9}	5.41×10^{-12}	$^{2}4.51 \times 10^{-1}$	12.71×10^{-14}	7.48×10^{-9}	4.49×10^{-12}
Earthquake during highly enriched uranium shot	$2.00 imes 10^{-9}$	2.28×10^{-1}	$^{1}1.37 \times 10^{-14}$	9.34×10^{-9}	5.61×10^{-12}	$2^{2}4.66 \times 10^{-1}$	12.80×10^{-14}	7.66×10^{-9}	4.60×10^{-12}
Earthquake during thorium shot	$2.00 imes 10^{-9}$	2.29×10^{-1}	$^{1}1.37 \times 10^{-14}$	9.52×10^{-9}	5.71×10^{-12}	$^{2}4.62 \times 10^{-1}$	12.77×10^{-14}	8.20×10^{-9}	4.92×10^{-12}
Earthquake during tracer shot	$2.00 imes 10^{-9}$	1.40×10^{-1}	$^{1}8.42 \times 10^{-15}$	56.52×10^{-9}	3.91×10^{-12}	$2^{\circ}3.05 \times 10^{-1}$	$^{1}1.83 \times 10^{-14}$	4.88×10^{-9}	2.93×10^{-12}
Earthquake during plutonium without yield shot	$2.00 imes 10^{-9}$	4.33×10^{-1}	$^{1}2.60 \times 10^{-14}$	1.67×10^{-8}	1.00×10^{-11}	9.39×10^{-1}	$^{1}5.63 \times 10^{-14}$	1.65×10^{-8}	9.88×10^{-12}
Earthquake during plutonium with yield shot	2.00×10^{-9}	2.32×10^{-1}	$^{1}1.39 \times 10^{-14}$	⁴ 9.96 × 10 ⁻⁹	5.98×10^{-12}	$2^{\circ}5.01 \times 10^{-1}$	$^{1}3.01 \times 10^{-14}$	8.54×10^{-9}	5.12×10^{-12}

TABLE M.5.6.1.2–6. — National Ignition Facility Accident Frequency and Risk (Unfavorable Meteorol

^a Based on the population of approximately 6,900,000 persons residing within 50 miles of LLNL.

^b Increased likelihood of a latent cancer fatality.

^c Increased number of latent cancer fatalities.

Noninvolved WorkerSite BoundaryAverageAverageAverageERPG-2aERPG-3aPredictedPredictedConcentrationConcentrationFraction of (ppm)Concentration(ppm)(ppm)(ppm)ERPG-2Release of nitric acid solutionFraction of (ppm)ERPG-267819933.2Release of acetonerFraction of (ppm)2.93Release of acetonerFraction of (ppm)0.0330.250.50.01530.06120.250.500.0153Aircraft crash release of mercury00Aircraft crash release of mercury000.250.500.50	
ERPG-2aERPG-3 aPredictedPredictedConcentrationConcentrationFraction of (ppm)Predicted(ppm)(ppm)(ppm)ERPG-2(ppm)ERPG-2Release of nitric acid solution $racid solution$ $racid solution$ $racid solution$ $racid solution$ 67819933.217.62.93Release of acetone $racid solution$ $racid solution$ $racid solution$ $racid solution$ 67819933.217.62.93Release of acetone $racid solution$ $racid solution$ $racid solution$ $racid solution$ 8,5008,5002790.0332790.033Mercury release from ignitrons $racid solution$ $racid solution$ $racid solution$ 0.250.50.01530.06120.00980.0392Aircraft crash release of mercury $racid solution$ $racid solution$ $racid solution$	
Release of nitric acid solution 91 <th>ERPG-2 Distance</th>	ERPG-2 Distance
6 78 199 33.2 17.6 2.93 Release of acetone 8,500 8,500 279 0.033 279 0.033 Mercury release from ignitrons 0.25 0.5 0.0153 0.0612 0.0098 0.0392 Aircraft crash release of mercury	(meters)
Release of acetone 279 0.033 279 0.033 Mercury release from ignitrons 0.25 0.5 0.0153 0.0612 0.0098 0.0392 Aircraft crash release of mercury	
8,500 8,500 279 0.033 279 0.033 Mercury release from ignitrons 0.25 0.5 0.0153 0.0612 0.0098 0.0392 Aircraft crash release of mercury	604
Mercury release from ignitrons 0.250.050.01530.06120.00980.0392Aircraft crash release of mercury	
0.25 0.5 0.0153 0.0612 0.0098 0.0392 Aircraft crash release of mercury	11
Aircraft crash release of mercury	
	23
0.25 0.5 0 0 0 0	< 10
Earthquake release of lithium hydride ^b	
0.31 1.56 0 0 0 0	< 10
Earthquake release of beryllium ^b	
0.068 0.27 0 0 0 0	< 10
Earthquake release of thorium ^b	
5.27 26.37 0 0 0 0	< 10
Earthquake release of uranium ^b	
0.103 1.03 0 0 0 0	< 10

TABLE M.5.6.2.2–2. National Ignition Facility Chemical Accident Consequences (Median

Source: LLNL 2003d.

^a ERPG=Emergency Response Planning Guideline.
 ^b Smaller amounts used for No Action and Reduced Action Alternatives.

ppm = parts per million.

			ble Meteoro	01 /		
		Noninvolveo	l Worker	Site Bou	indary	
ERPG-2 ^a	ERPG-3 ^a	Average Predicted		Average Predicted		ERPG-2
Concentration	Concentration	Concentration	Fraction of	Concentration	Fraction of	Distance
(ppm)	(ppm)	(ppm)	ERPG-2	(ppm)	ERPG-2	(meters)
Release of nitric	acid solution					
6	78	394	65.7	31.8	5.3	1,100
Release of acetor	ne					
8,500	8,500	552	0.065	552	0.065	30
Mercury release	from ignitrons					
0.25	0.5	0.25	1.0	0.164	0.66	100
Aircraft crash rel	ease of mercury					
0.25	0.5	0	0	0	0	11
Earthquake release	se of lithium hydri	de ^b				
0.31	1.56	0.1076	0.35	0	0	58
Earthquake release	se of beryllium ^b					
0.068	0.27	0	0	0	0	44
Earthquake release	se of thorium ^b					
5.27	26.37	0.00128	$2.43 imes 10^{-4}$	0	0	< 10
Earthquake release	se of uranium ^b					
0.103	1.03	0.00262	0.025	0	0	16

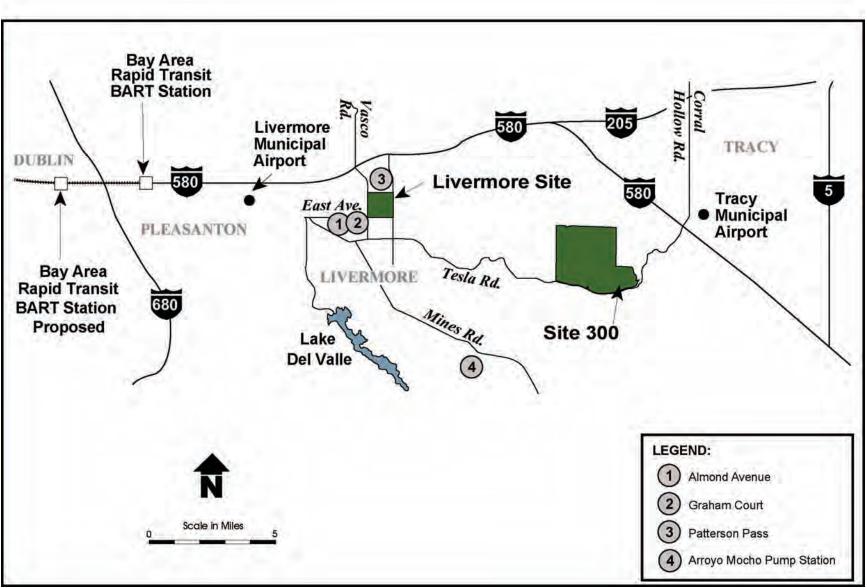
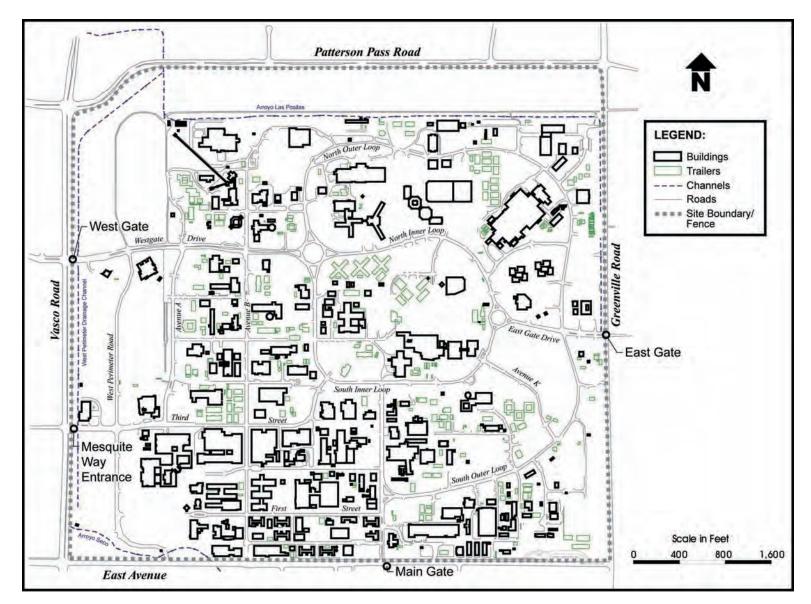
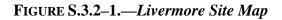
TABLE M.5.6.2.2–3. National Ignition Facility Chemical Accident Consequences
(Unfavorable Meteorology)

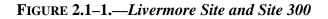
Source: LLNL 2003d.

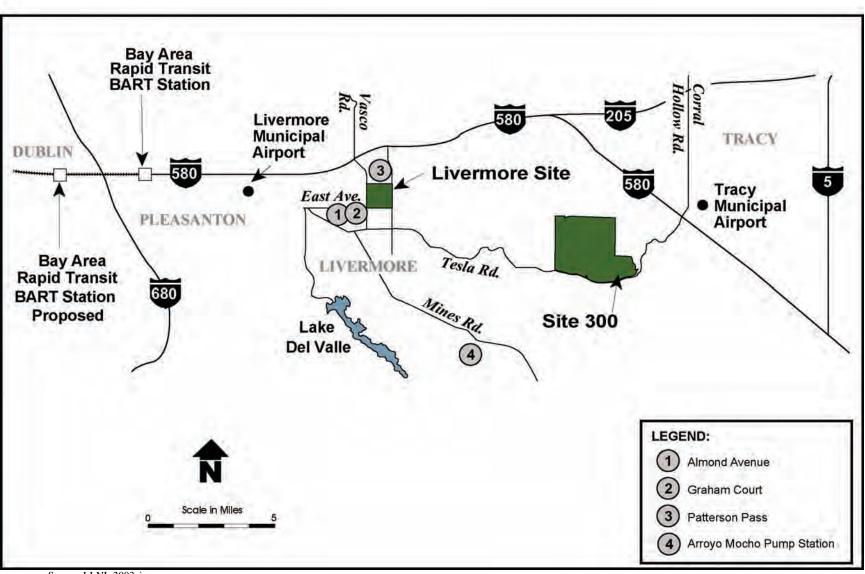
^a ERPG=Emergency Response Planning Guideline.
 ^b Smaller amounts used for No Action and Reduced Action Alternatives.

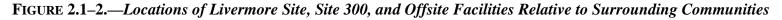
ppm = parts per million.

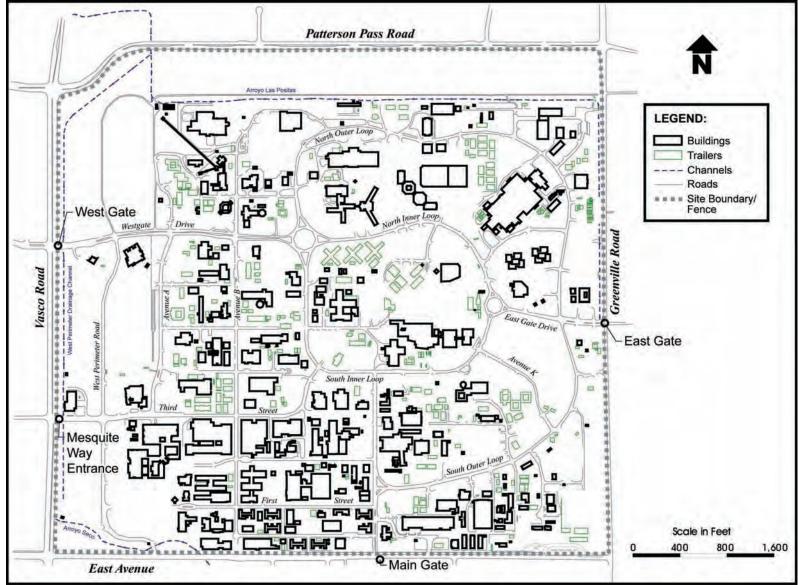
Source: LLNL 2003l.


FIGURE S.3.1–2.—Locations of Livermore Site, Site 300, and Offsite Facilities Relative to Surrounding Communities






Source: LLNL 2001v.

Source: LLNL 2003cj.

Source: LLNL 2003o.

FIGURE 2.5.1–1.—*Livermore Site Map*

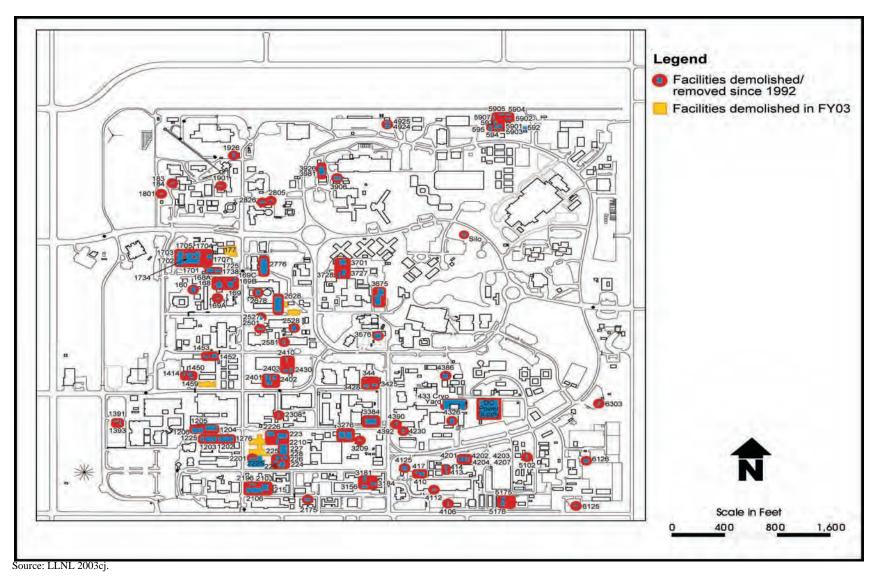
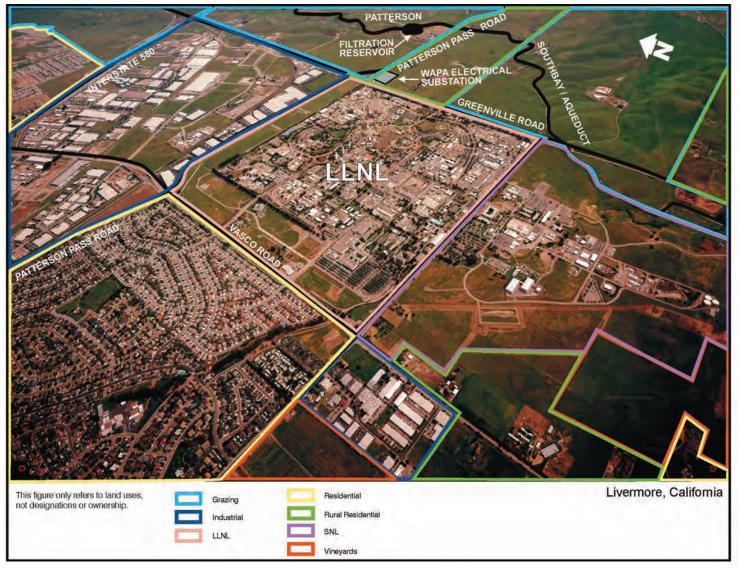



FIGURE 2.5.1–2.—Facility Changes from the 1992 Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore at the Livermore Site

Source: Original Photo.

FIGURE 4.2.1.1–1.—Livermore Site Surrounding Land Uses

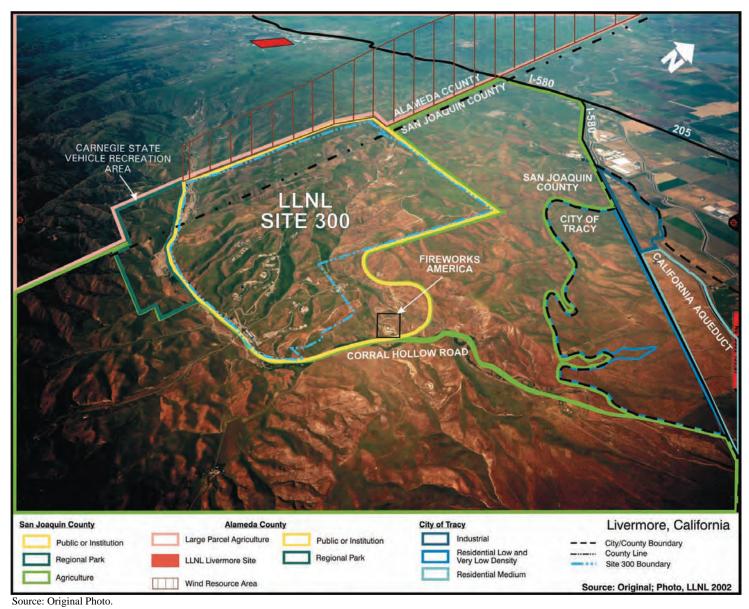


FIGURE 4.2.1.2–1.—Site 300 Surrounding Land Uses and Land Use Designations

Source: Original Photo.

FIGURE 4.2.2.1–1.—Livermore Site Surrounding Land Use Designations

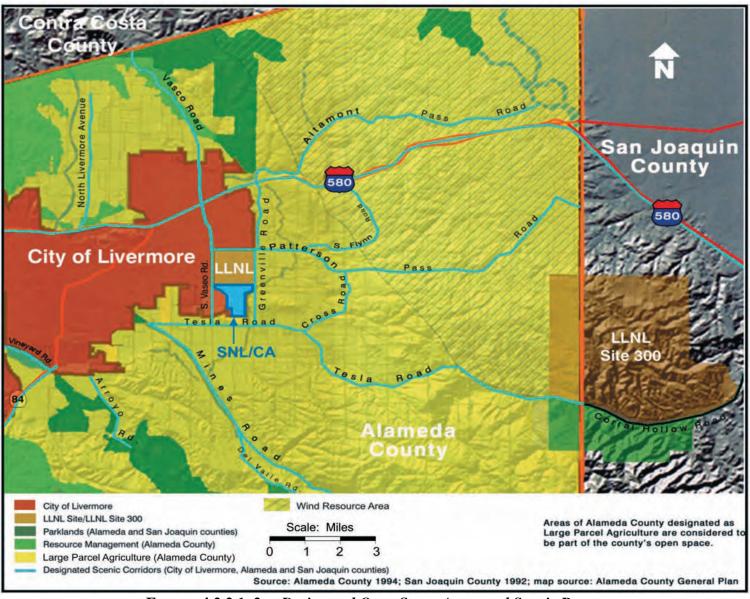


FIGURE 4.2.2.1–2.—Designated Open Space Areas and Scenic Routes

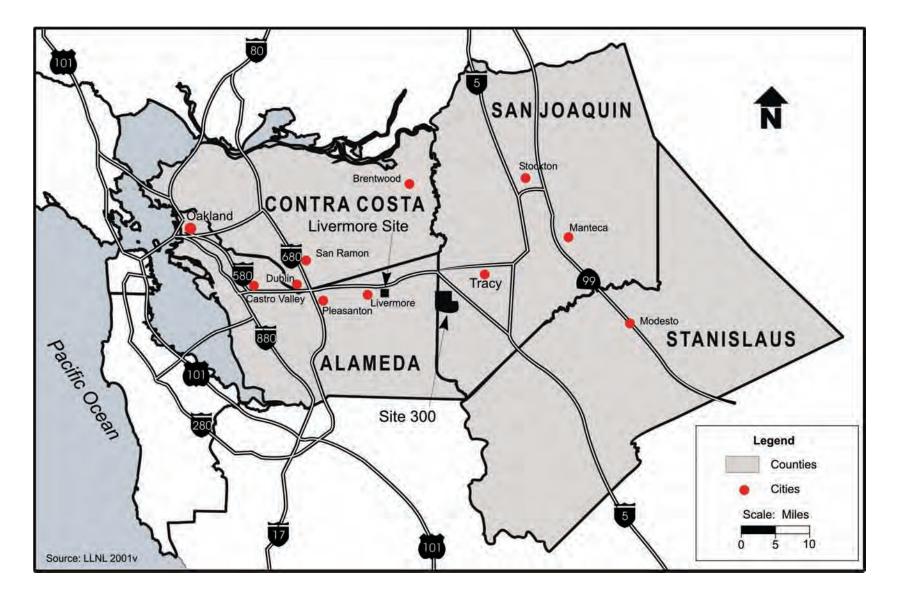


FIGURE 4.3–1.—Four-County Lawrence Livermore National Laboratory Region of Influence

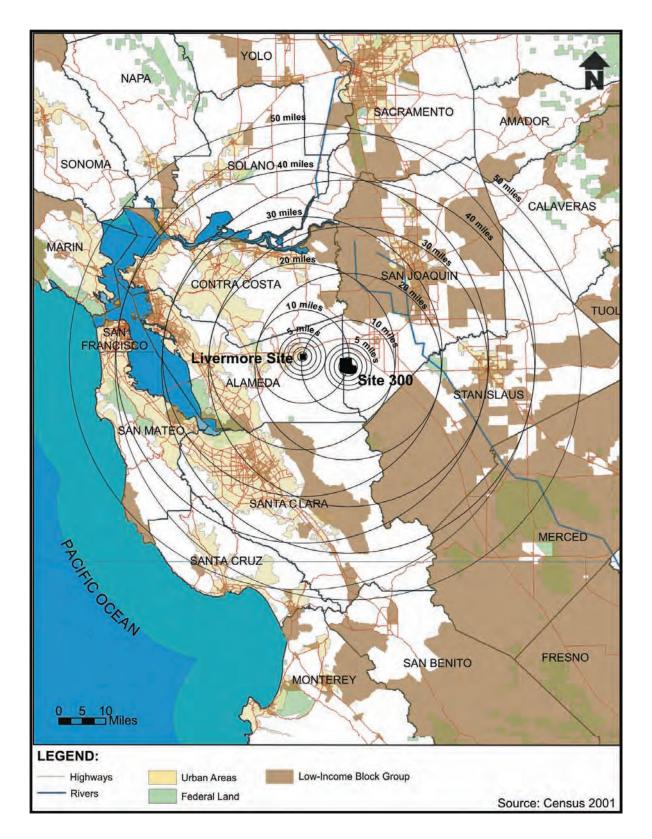


FIGURE 4.3.5–2.—Low-Income Populations within 50 Miles of the Livermore Site and Site 300

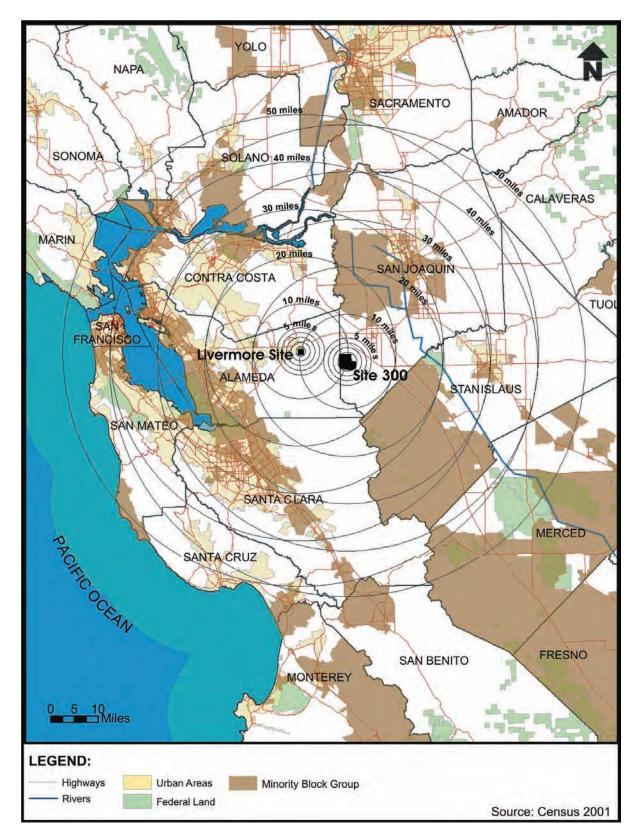
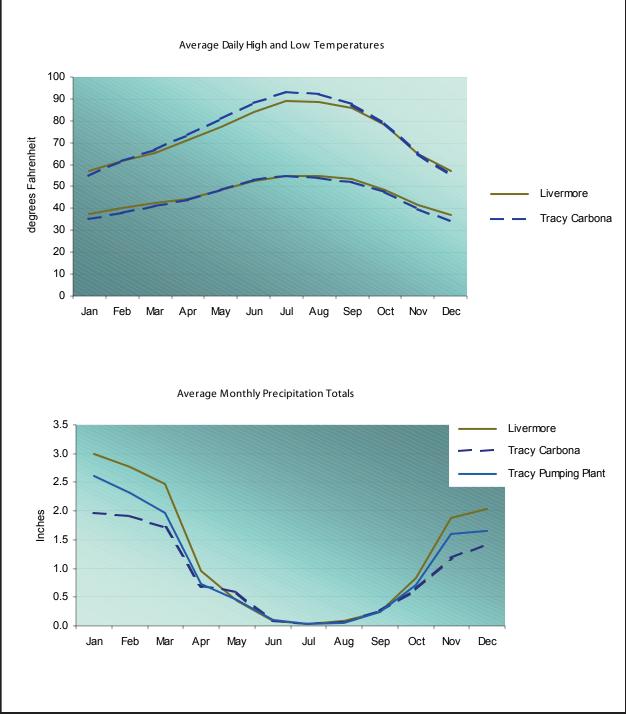
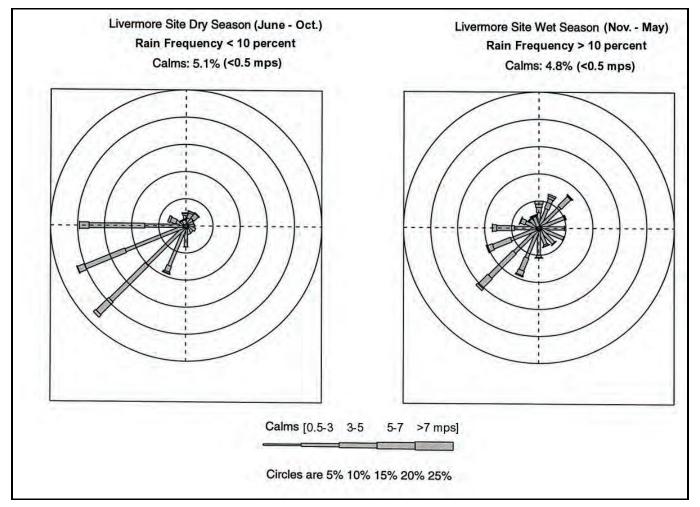
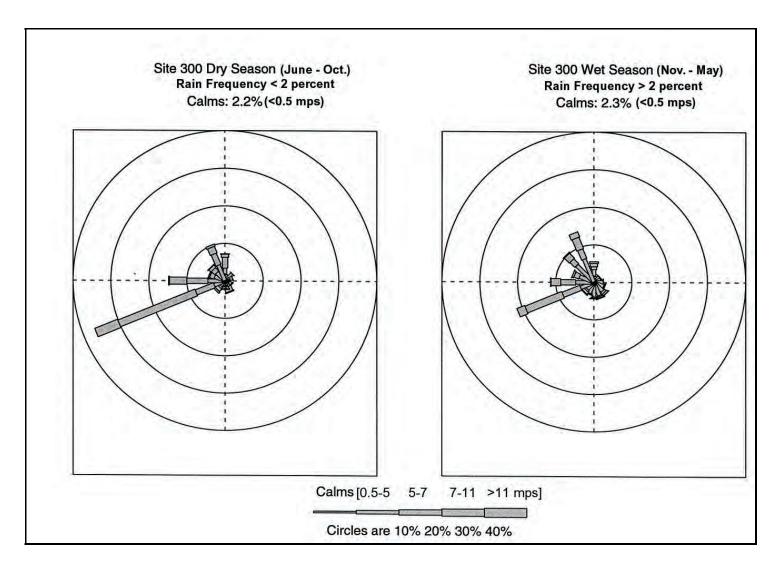




FIGURE 4.3.5–1.—*Minority Populations within 50 Miles of the Livermore Site and Site 300*

Source: NCDC 2002a.

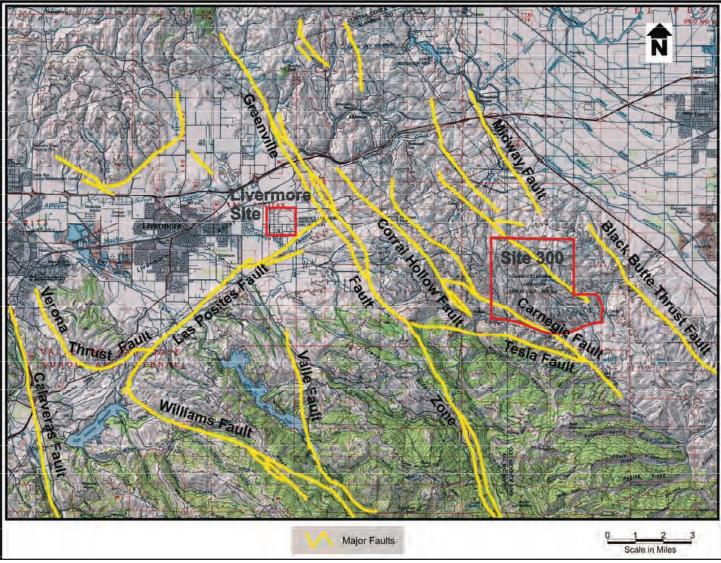

Source: LLNL 2002bx.

Notes: Data from monitoring stations located at Livermore and Site 300.

The absolute length of each directional "telescope," in relation to the percent frequency radials, indicate the frequency of occurrence of each wind direction (direction from which the wind is blowing). Each of the directional telescopes is further segmented to indicate the frequency of individual wind speed classes. Each directional telescope consists of up to four segments relating to wind speed categories, with wider segments corresponding to increasingly higher wind speeds. The relative lengths of individual "telescope segments" are used to infer the frequency of occurrence of wind speed classes for each of the 16 compass wind directions.

One meter per second (mps) equals 2.2 miles per hour.

FIGURE 4.7.3–1.—Seasonal Wind Roses for the Livermore Site (1997 – 2001)



Source: LLNL 2002ci. ^a See notes for Figure 4.7.3-1.

Pacific Ocean		Napa Vallejo Concor	
Ocean Generalized Geologic Map of the San Francisc Bay Region	San Fran	Oakland Hayward	Livermore Site
Legend Major faults Quaternary Sediments	San Gregorio Faut	Fremont	X I
Tertiary volcanics	1 1	• San Jose	
Lower Tertiary sedimentar		2	1 E
Franciscan Assemblage Melange (metasandstone, chert, basalt, graywacke, li	4		
Serpentinite (ultramafic ro	ocks)		11:0
Mesozoic mafic volcanics	N	Santa Cruz	Gilmy
Salinian Basement Rocks	o	20 kilometers	11
Granitic rocks	0	20 miles	
Ancient metamorphic rock Source: Stoffer 2002,	s (schist, gneiss,		Salinas nterey

FIGURE 4.8.1–1.—Generalized Geologic Map of the San Francisco Bay Area Showing the Location of the Livermore Site

Source: LLNL 1992a.

FIGURE 4.8.1–2.—Location of the Major Faults Adjacent to the Livermore Site and Site 300

on Valley/Tax

Upper Unit C - she

ault infer

landt e

ault, cos

Oblique fault with the or reverse component Oblique fault with the

Ou

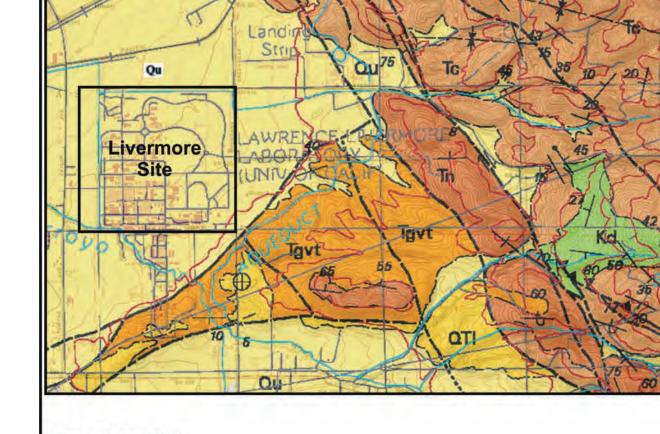
10

Oblique fault with thrus or reverse component, concealed and uncertain Oblique fault with norm

blique fault with nor omponent, approxim

Oblique fault with nor component, concealed Fold axis Fold axis, inferred

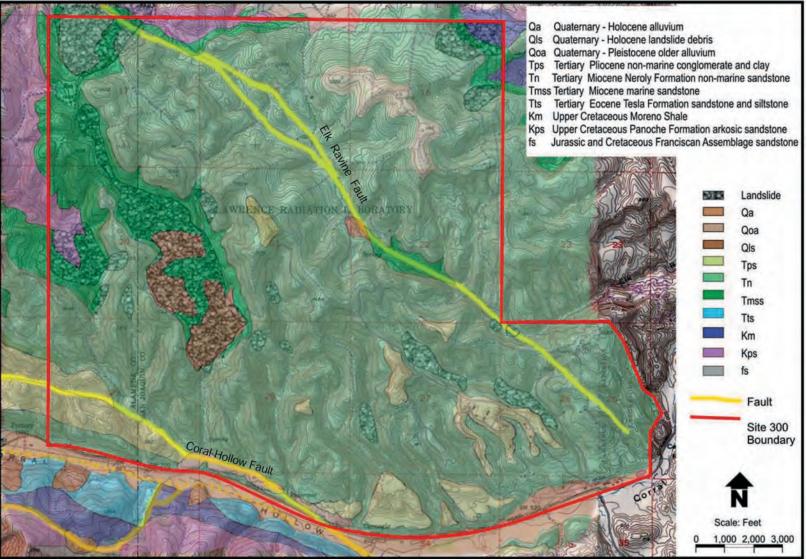
Fold axis, conceale Tuff bed


and dip of beddin

ke and dip of

ke and dip of joint

1/2 SCALE IN MILES teral offset on fault


rike of vertical dding at hedding rike and dip of be

Source: Grayner 1996

Source: Graymer et al. 1996.

FIGURE 4.8.1–3.—Geological Map of the Southeast Livermore Valley

Source: LLNL 1992a.

FIGURE 4.8.1–4.—Geological Map of Site 300

ERA	Age	Formation	Column	Thickness	Description
CENOZOIC	Quaternary	Alluvium and landslide debris	Qa & Qis		Gravels, sands, silts, clays.
		Older alluvium	Qoa VVV		
	Pliocene	Livermore and non-marine sedimentary rocks		100'+ 4000'	Continental deposits of gravels, sands, clays.
	Upper Miocene	Neroly	the second states	2000'+	Shales, blue sandstone, tufts.
		Lower	Tnss	50'-700'	Blue sandstone, andesitic conglomerates, tuffs.
		Cierbo	Tmss	100'-500'	Granuliferous white sands, buff sands, tuffs, conglomerate, coal.
	Middle Eocene	Tesla		2000'	Buff sand, white sands, clays (marine). Buff sands, chocolate shales, coal (brackish-water).
	Upper Cretaceous Panoche	Moreno Km		650'	Buff sandstone at top locally. Siliceous, argillaceous, and sandy shales, limestone concretions, sandstone beds.
MESOZOIC		2000 100 100 100 100 100 100 100 100 100	10,000+	Concretionary and massive sandstone, argillaceous and silty shales, conglomerate.	
	Cretaceous and Jurassic	Chert Franciscan Assemblage		Chert 15,000'?	Sandstone, shales, chert lenses, conglomerate. Pillow basalt. Glaucophane schist. Serpentine, diabase, diorite-gabbro.
			Truestand)		LEGEND Conformable contact Unconformity Thrust fault

FIGURE 4.8.1–5.—Stratigraphic Column for the Livermore Site and Site 300

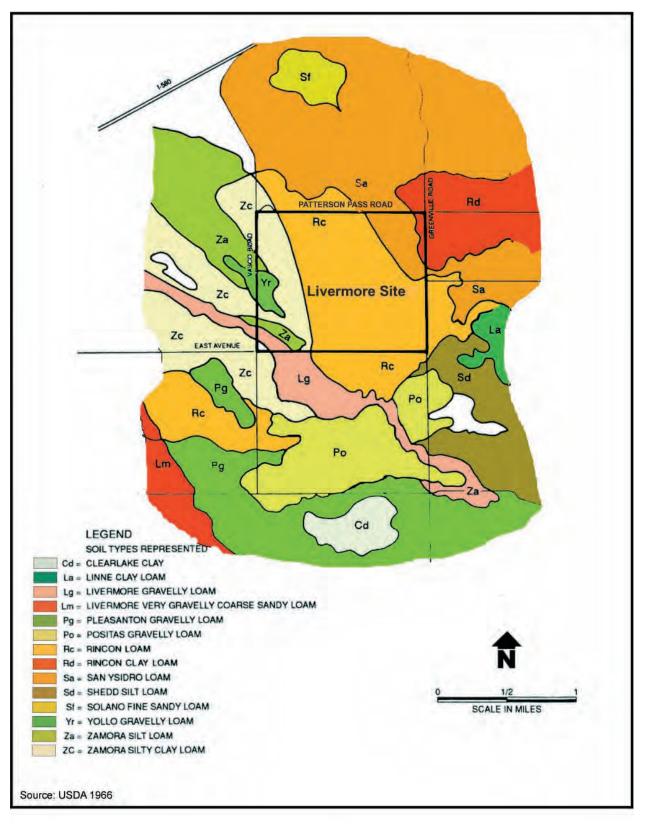


FIGURE 4.8.1–6.—Soil Map of the Southeast Livermore Valley



FIGURE 4.8.1–7.—Soil Map of Site 300

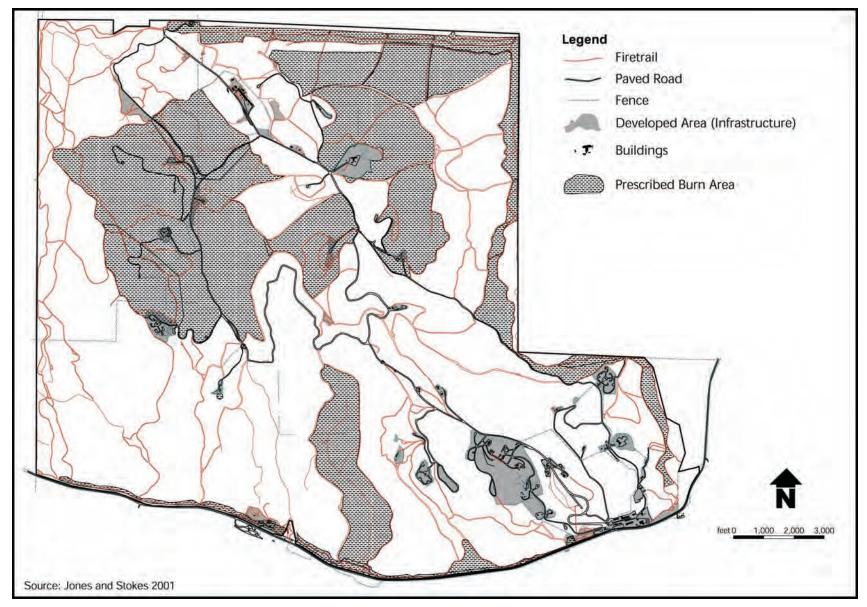


FIGURE 4.9.1–1.—Annual Prescribed Burn Areas at Site 300

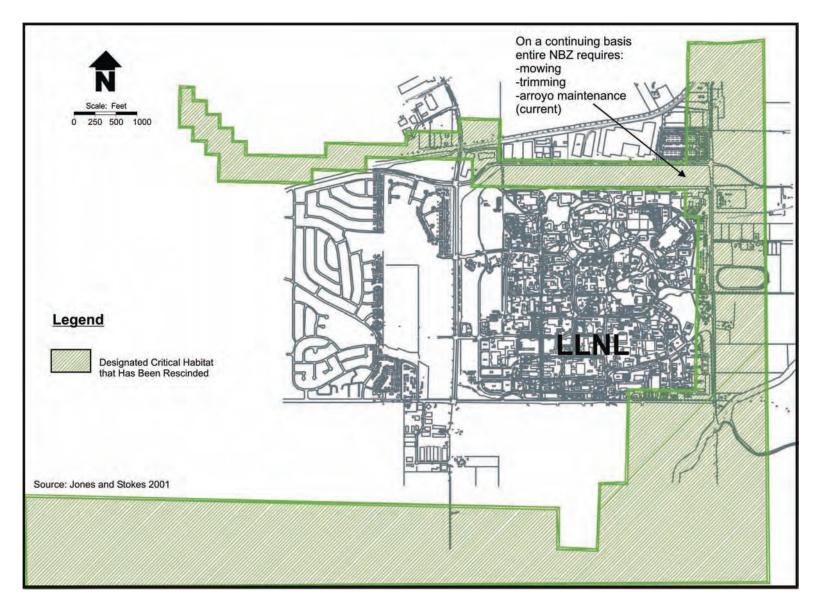


FIGURE 4.9.3–1.—Location of Rescinded California Red-Legged Frog Designated Critical Habitat at and near the Livermore Site that has been Proposed for Reinstatement

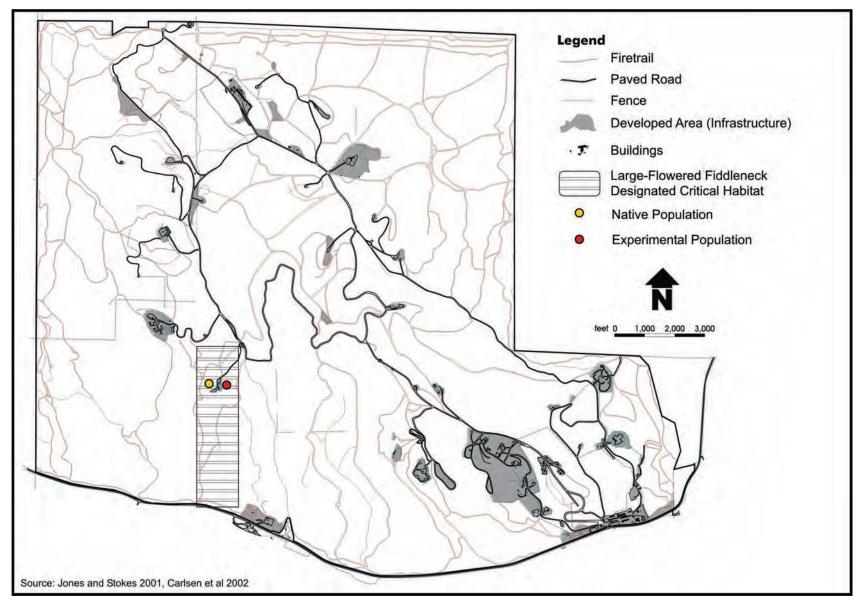


FIGURE 4.9.3–2.—Location of Large-Flowered Fiddleneck and Critical Habitat at Site 300

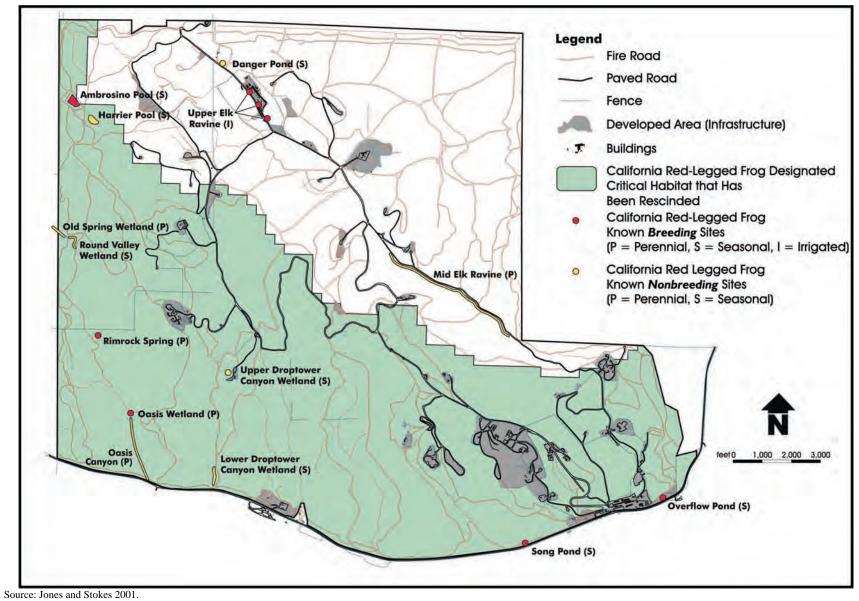


FIGURE 4.9.3–3.—Breeding and Nonbreeding Locations for the California Red-Legged Frog at Site 300

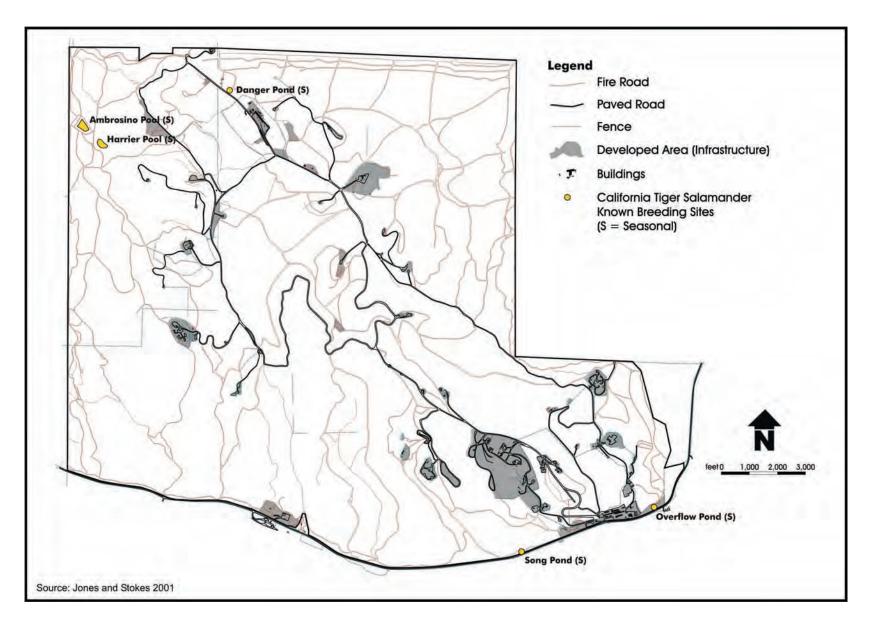


FIGURE 4.9.3–4.—Breeding Locations for the California Tiger Salamander at Site 300

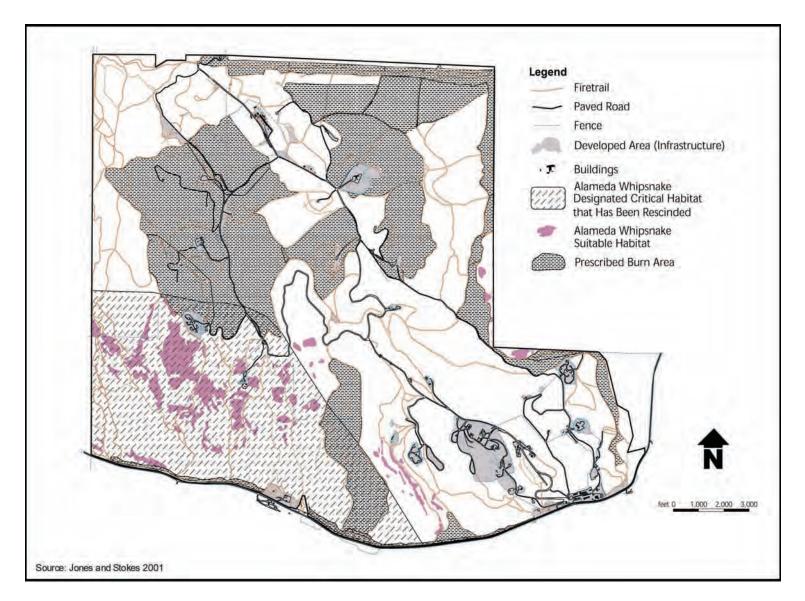
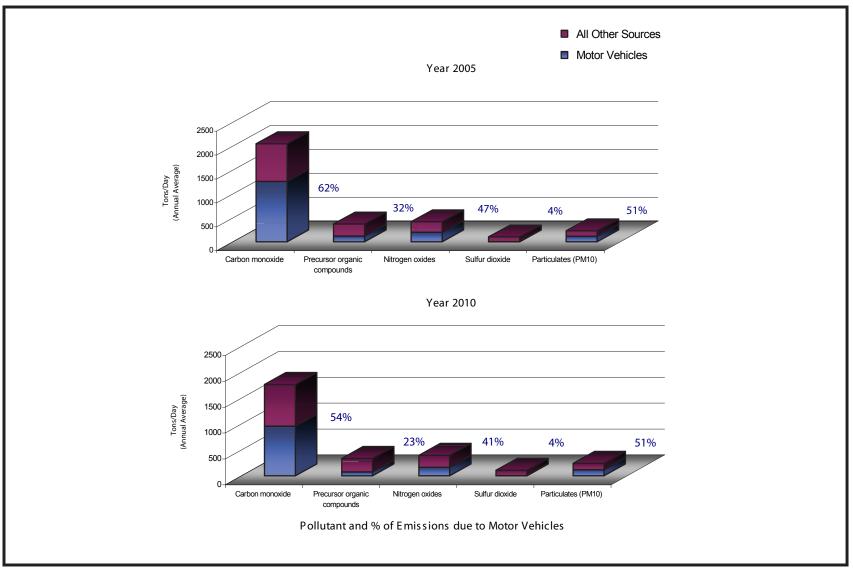



FIGURE 4.9.3–5.—Formerly Designated Critical Habitat and Potential Habitat for Alameda Whipsnake at Site 300

Source: BAAQMD 1999.

Note: Projections are based on the district base year 1996 emissions inventory. The category of precursor organic compounds excludes emissions from natural vegetation. Particulate matter emission rate includes entrained road dust.

FIGURE 4.10.2–1.—Projected Criteria Pollutant Emission Rates for the Bay Area Air Basin Showing Portion Due to Motor Vehicles

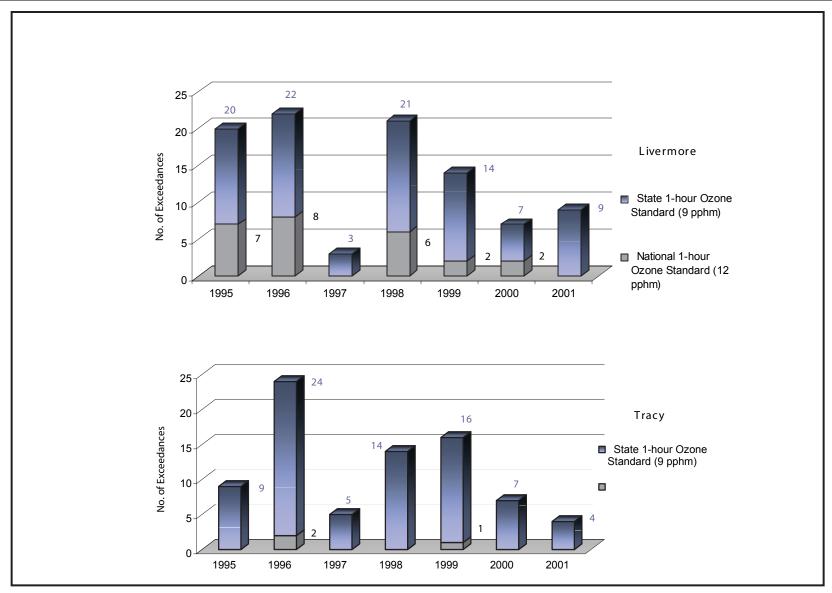
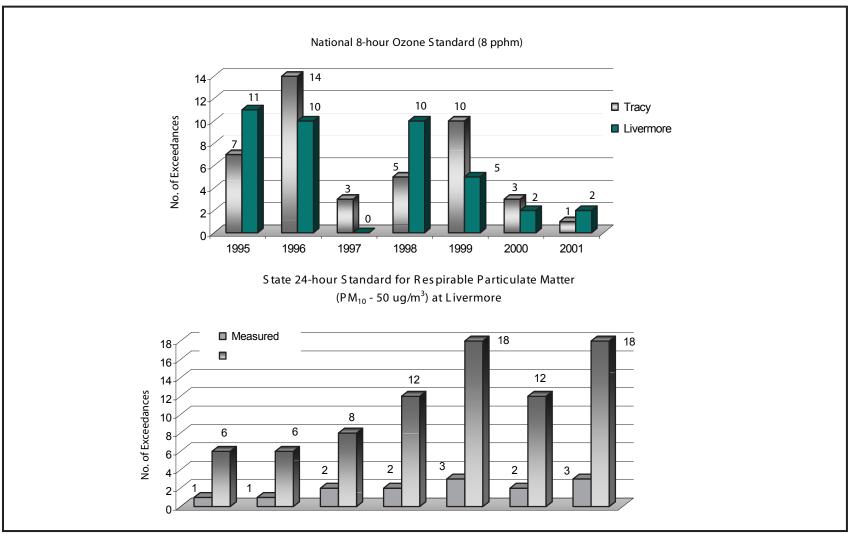
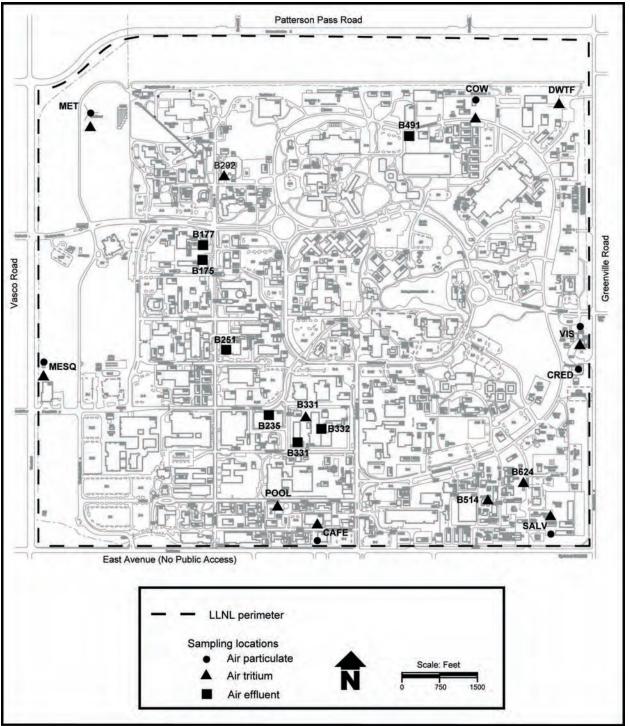



FIGURE 4.10.2–2.—Tabulation of Exceedances of Ambient Air Quality Standards



Data collected by air pollution control districts and compiled by the CARB. Extracted from Air Quality Data Statistics website (CARB 2002c). The monitoring station in Tracy is located at Tracy-24371 Patterson Pass Road. In Livermore, measurements have been taken at Livermore-Old 1st Street, and more recently at 793 Rincon Avenue. During overlapping periods (years 1999 and 2000), data from the higher of the two monitoring sites are used.

Depicts number of days at least one measurement was greater than the given standard. Particulate matter measurements are collected every 6 days. Measured days are those days that an actual measurement was greater than the given standard. Calculated days are the estimated number of days that a measurement would have been greater than the level of the standard had measurements been collected every day. Particulates are not monitored at Tracy.

pphm = parts per hundred million; PM_{10} = particulate matter less than 10 microns in diameter; $\mu g/m^3$ = micrograms per cubic meter

FIGURE 4.10.2–2.—Tabulation of Exceedances of Ambient Air Quality Standards (continued)

Source: LLNL 2001v.

FIGURE 4.10.5–2.—Livermore Site Radiation Effluent Air Sampling Locations

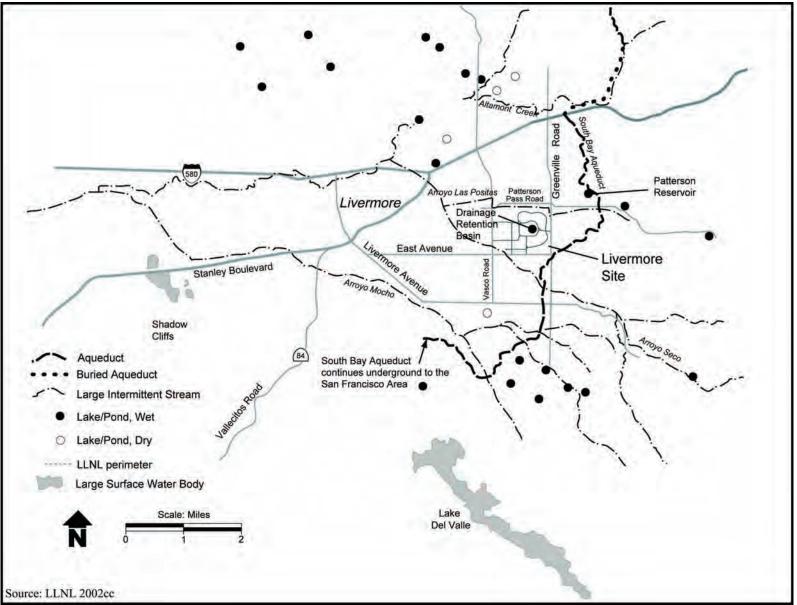


FIGURE 4.11.1–1.—Livermore Valley Surface Water Features

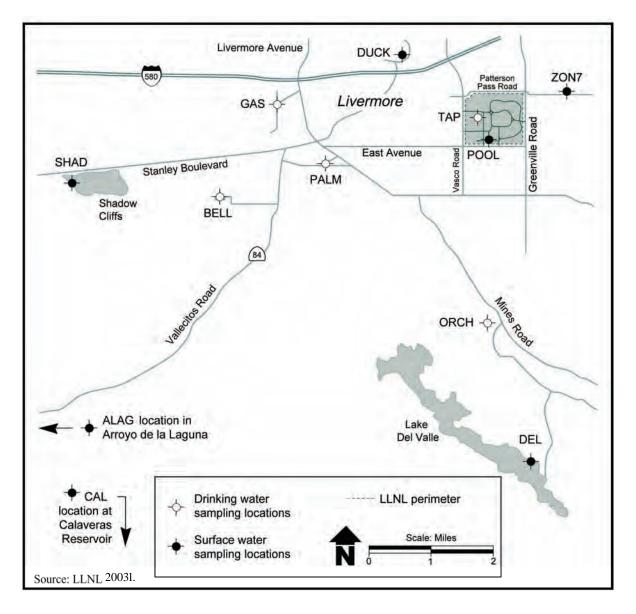


FIGURE 4.11.1–2.—Livermore Site and Surrounding Area Surface and Drinking Water Sampling Locations

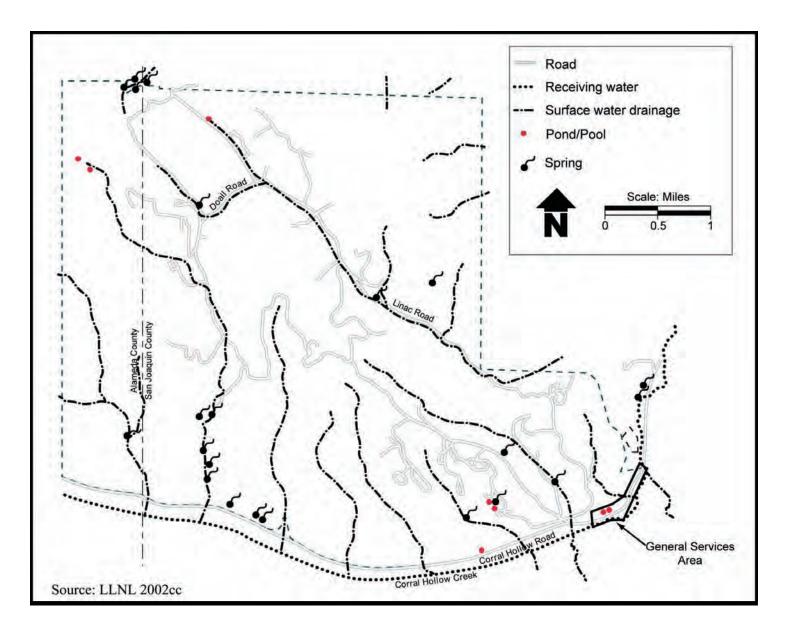


FIGURE 4.11.1–3.—Site 300 Surface Water Features

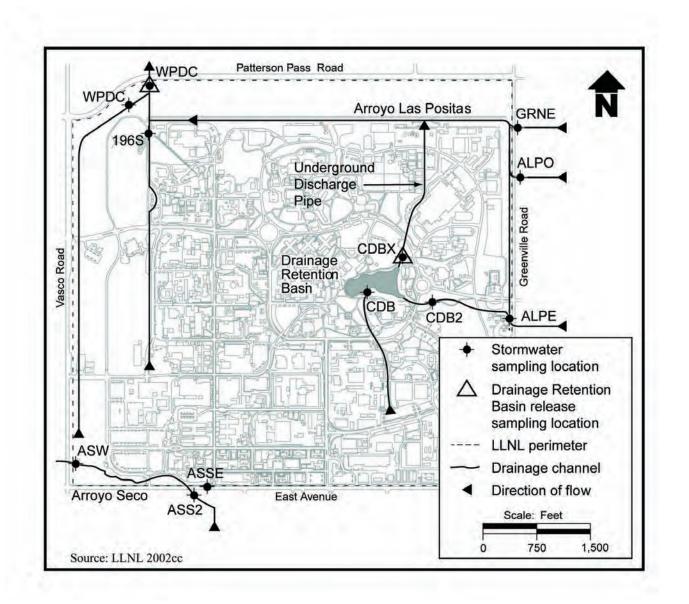


FIGURE 4.11.2–1.—Livermore Site Stormwater Runoff and Drainage Retention Basin Sampling Locations

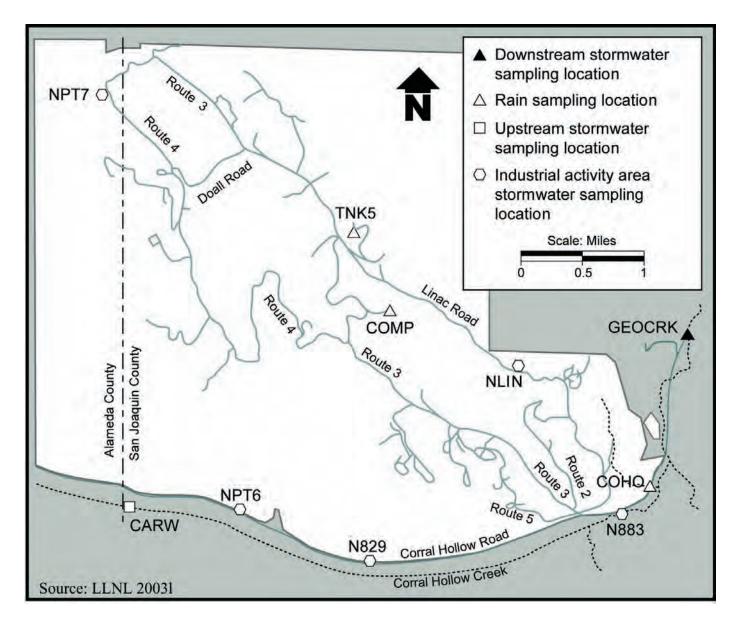


FIGURE 4.11.2–2.—Site 300 Stormwater and Rainwater Sampling Locations

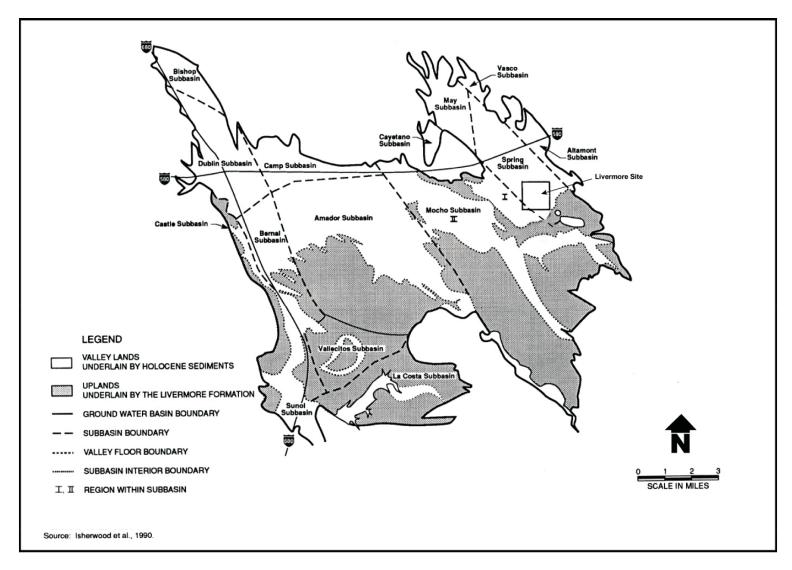


FIGURE 4.11.3.1–1.—Location of Subbasins and Physiographic Features of the Livermore Valley

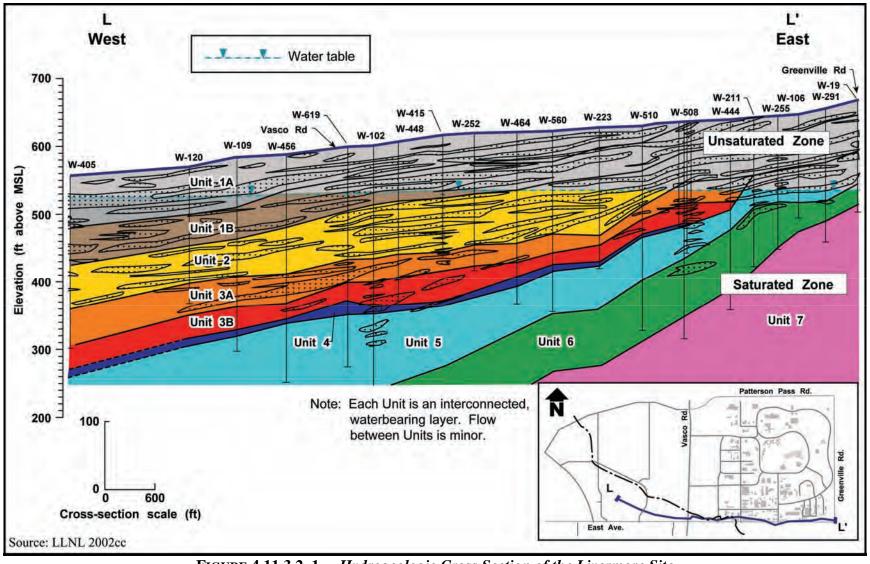


FIGURE 4.11.3.2–1.—Hydrogeologic Cross Section of the Livermore Site

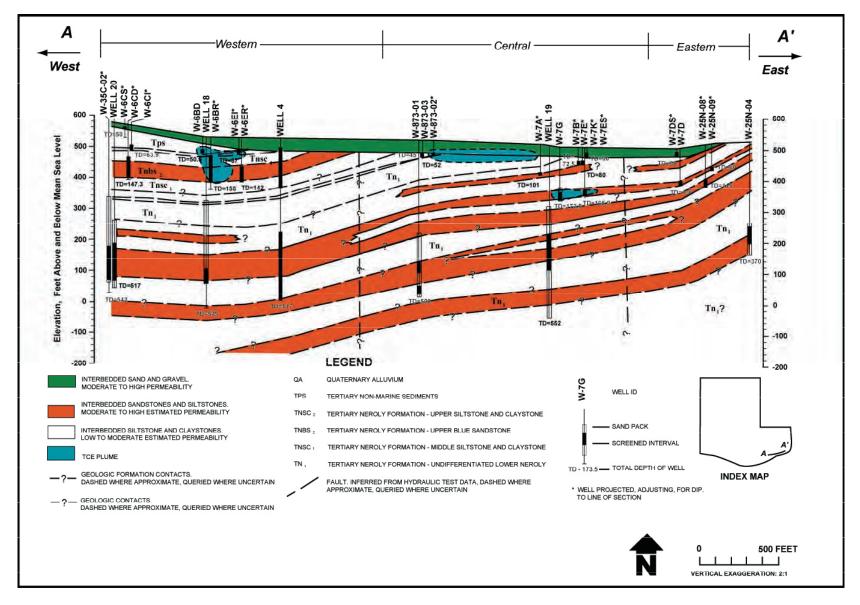


FIGURE 4.11.3.2–2.—Geologic Cross Section of Site 300 Under the General Services Area

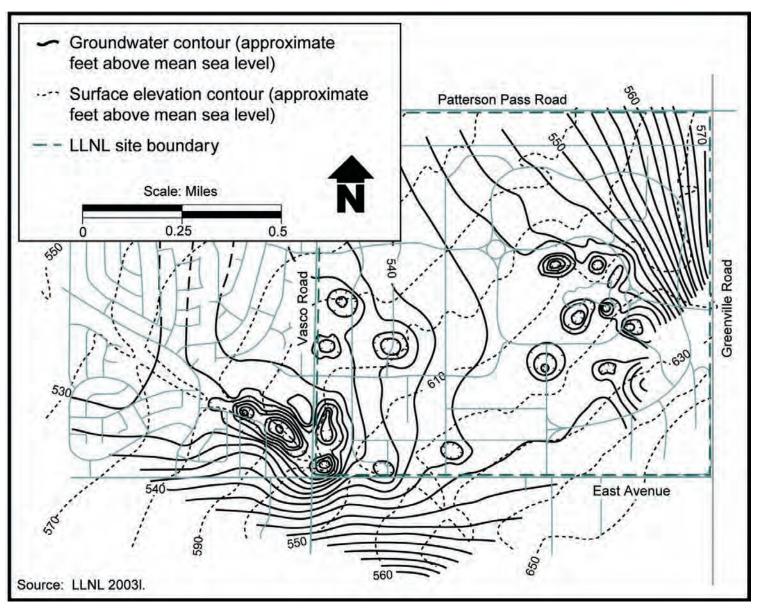


FIGURE 4.11.3.2–3.—Livermore Site and Vicinity Approximate Groundwater and Surface Elevation Contours

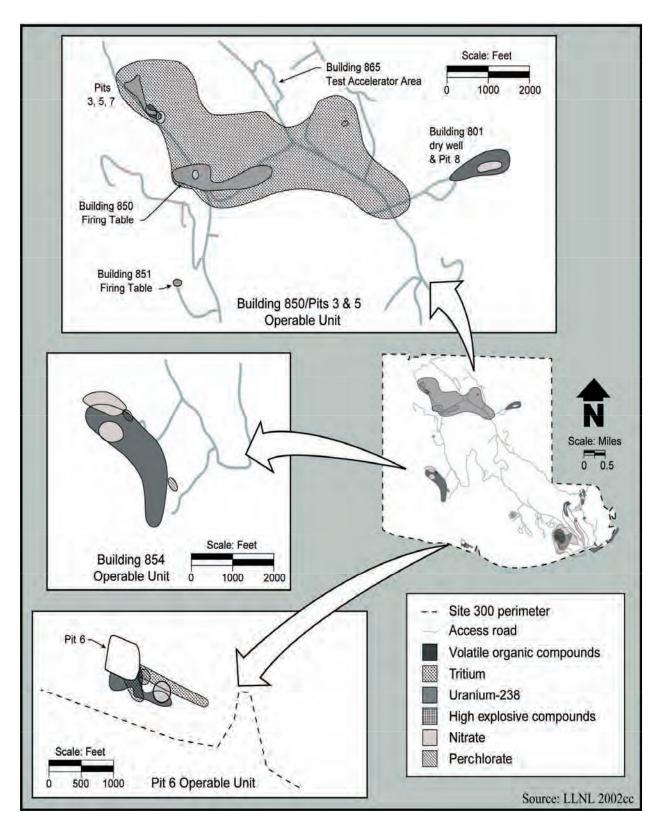


FIGURE 4.11.3.4–2.—Extent of Groundwater Contamination at Site 300

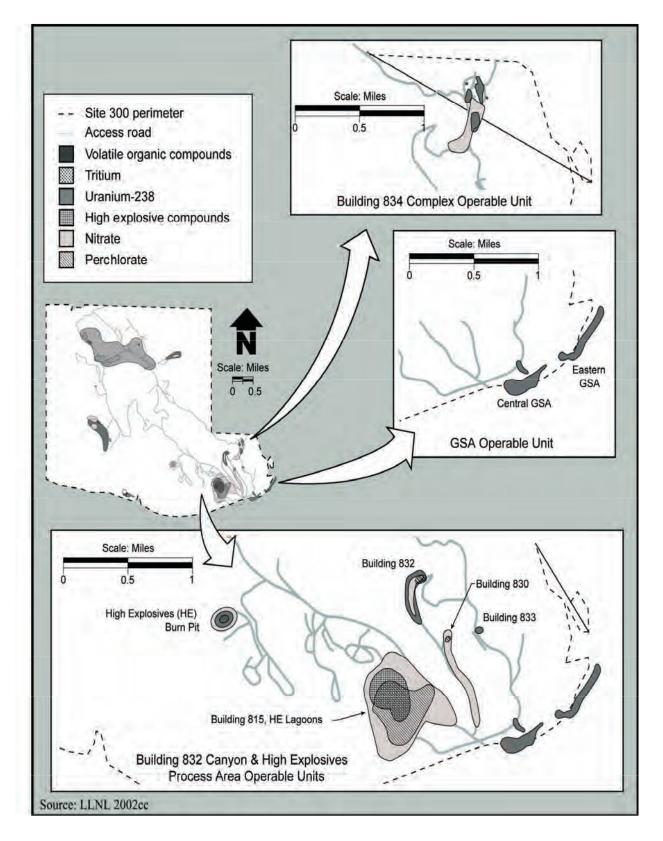


FIGURE 4.11.3.4–2.—Extent of Groundwater Contamination at Site 300 (continued)

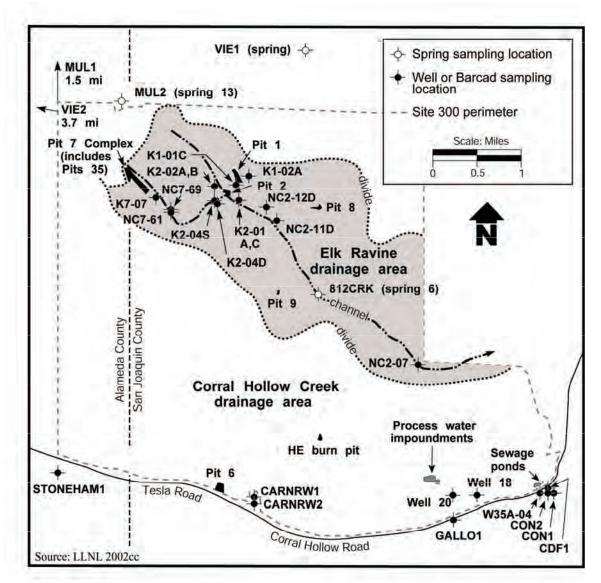


FIGURE 4.11.3.4–3.—Site 300 Monitoring and Supply Well Locations

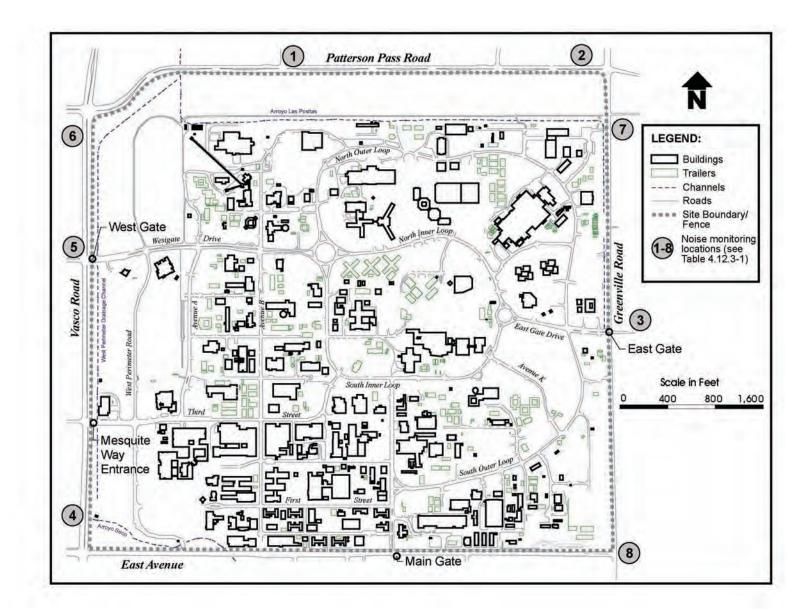


FIGURE 4.12.3–1.—Noise Monitoring Locations Near the Livermore Site

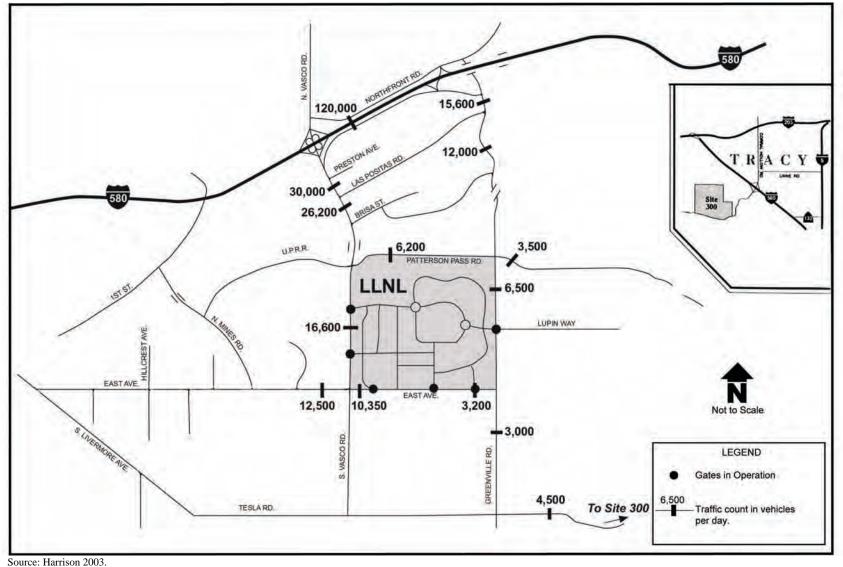


FIGURE 4.13.1–1.—Regional Transportation Network with Traffic Counts

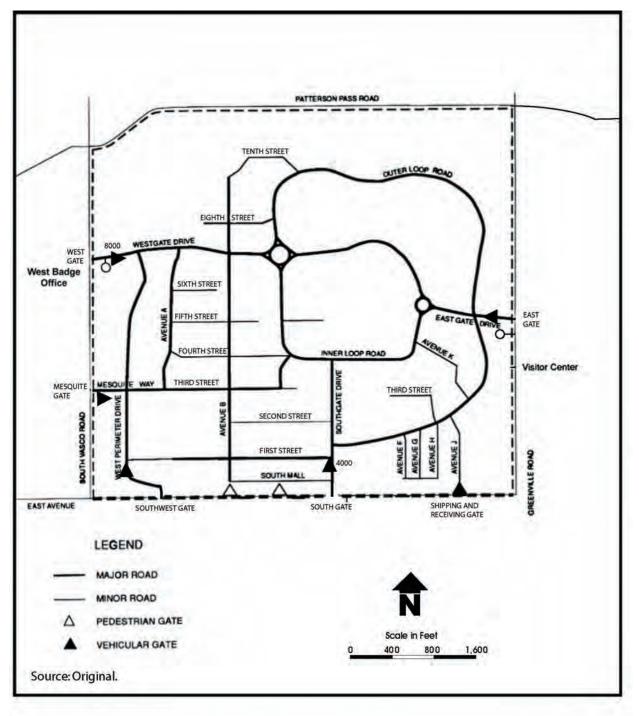


FIGURE 4.13.4–1.—Livermore Site Transportation Network

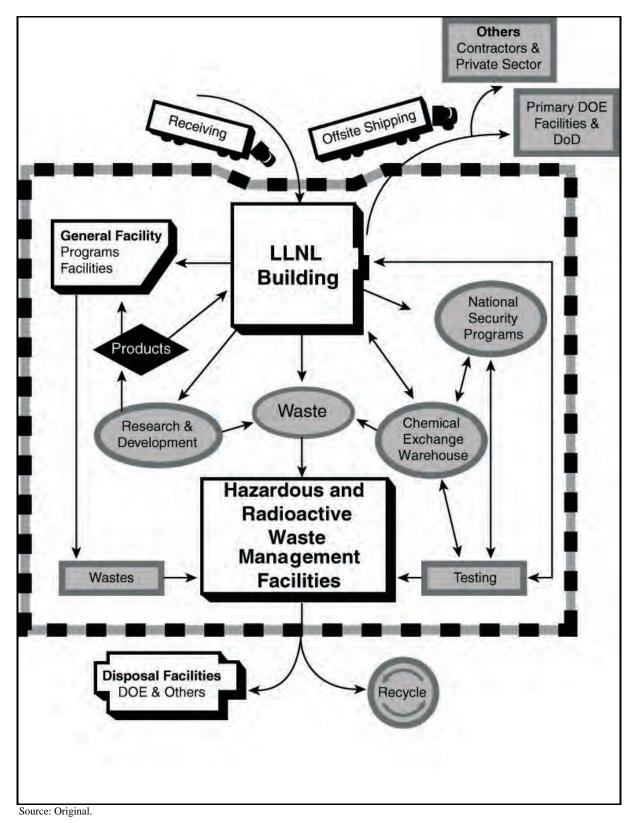


FIGURE 4.15.1.2–1.—Conceptual Illustration of Material Movement at Lawrence Livermore National Laboratory

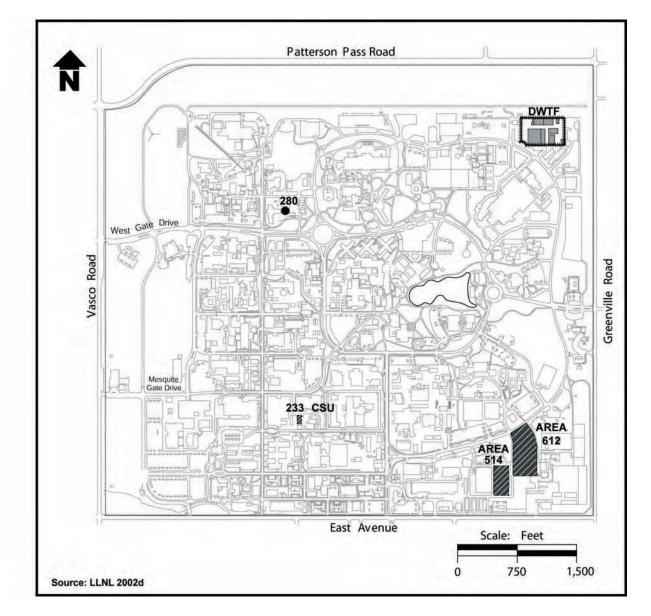
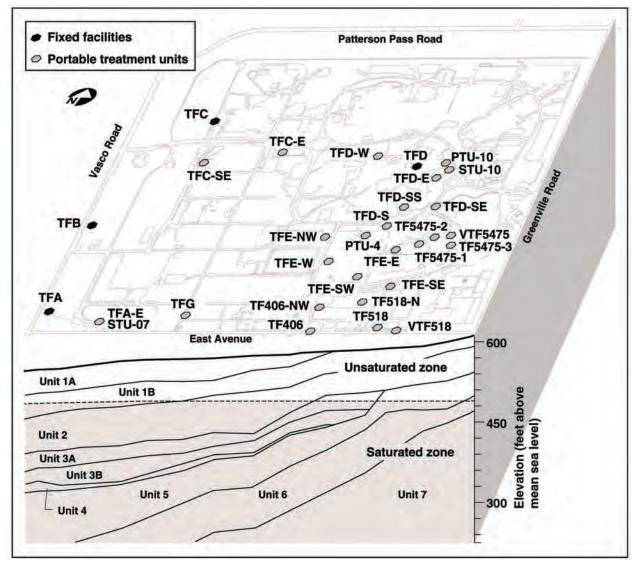
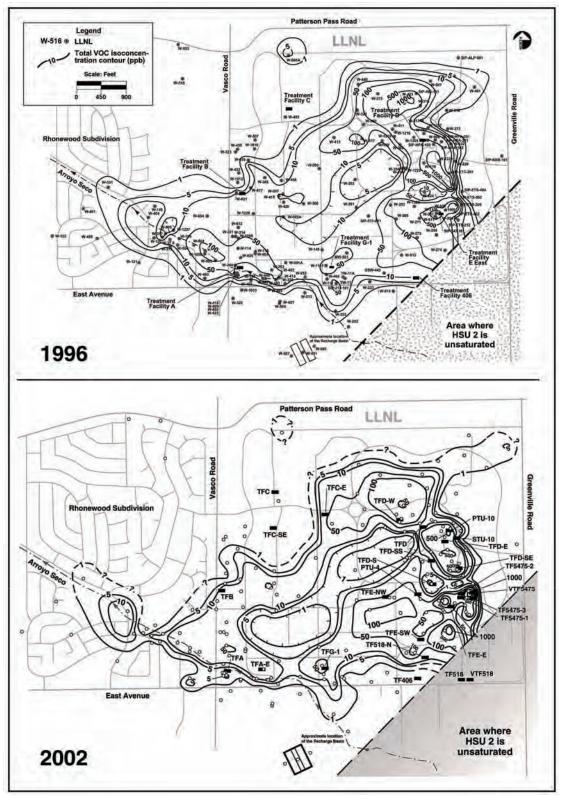




FIGURE 4.15.2–1.—Livermore Site Map Showing Locations of the Decontamination and Waste Treatment Facility and Other Permitted Waste Management Facilities

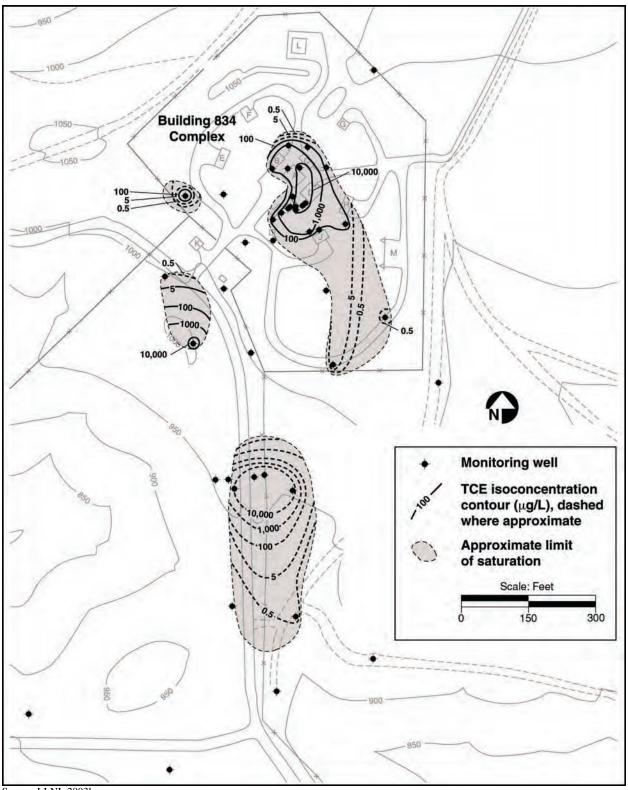

Source: LLNL 20031.

FIGURE 4.17.1.1–1.—Map and Cross Section of the Livermore Site Showing Hydrostratigraphic Units and the Locations of Treatment Facilities as of 2002

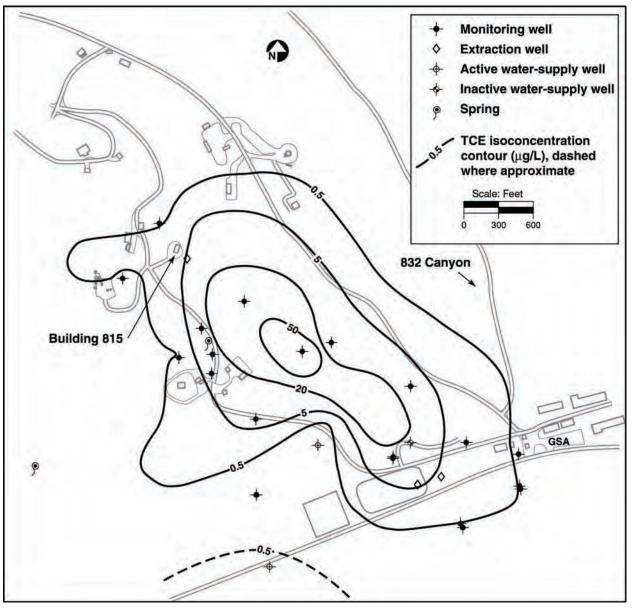

Sources: LLNL 1997e, LLNL 2003l.

FIGURE 4.17.1.3–1.—LLNL Comparison of Total VOC Concentrations between 1996 and 2002 at the Livermore Site (Hydrostratigraphic Unit 2)

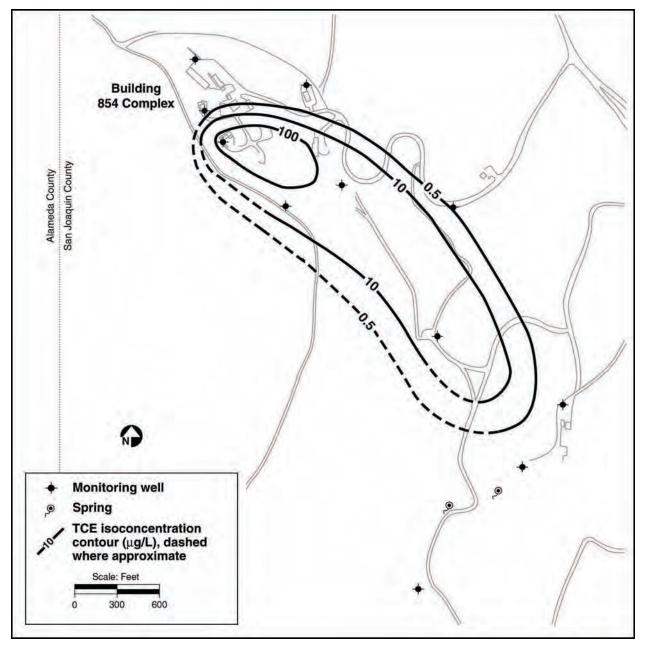
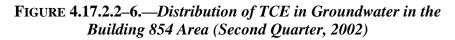

Source: LLNL 20031.

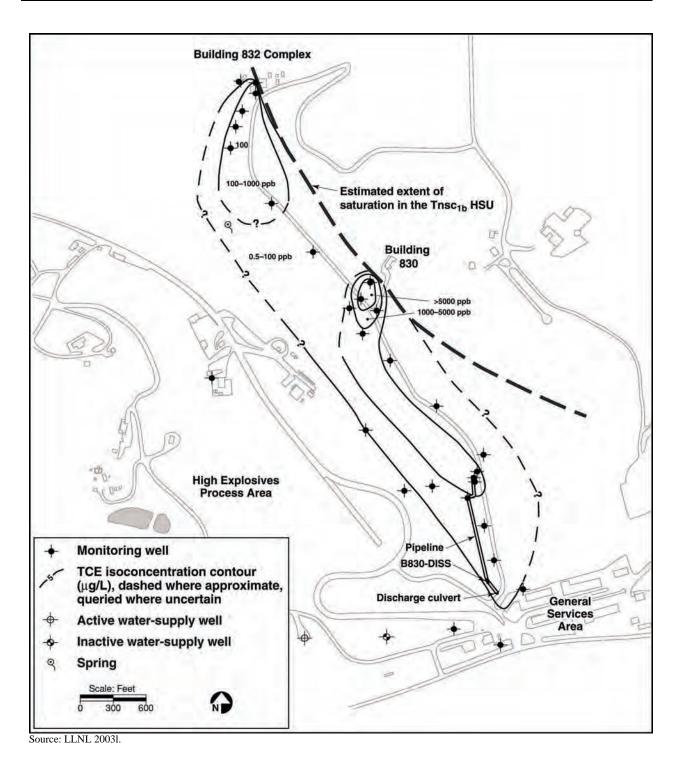
FIGURE 4.17.2.2–3.—Distribution of TCE in Groundwater at the Building 834 Complex (Second Quarter, 2002)



Source: LLNL 20031.

FIGURE 4.17.2.2–4.—Distribution of TCE in Groundwater in the High Explosives Process Area (Second Quarter, 2002)

Source: LLNL 20031.



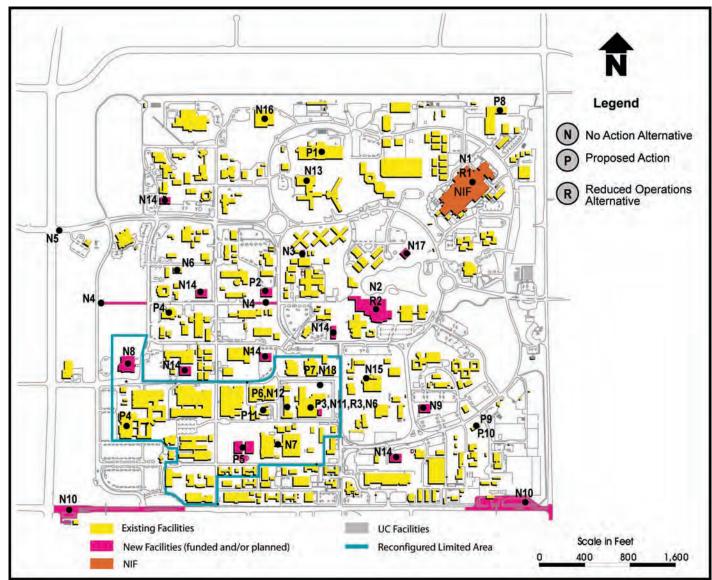


FIGURE 4.17.2.2–8.—Distribution of TCE in Groundwater in the Building 832 Canyon

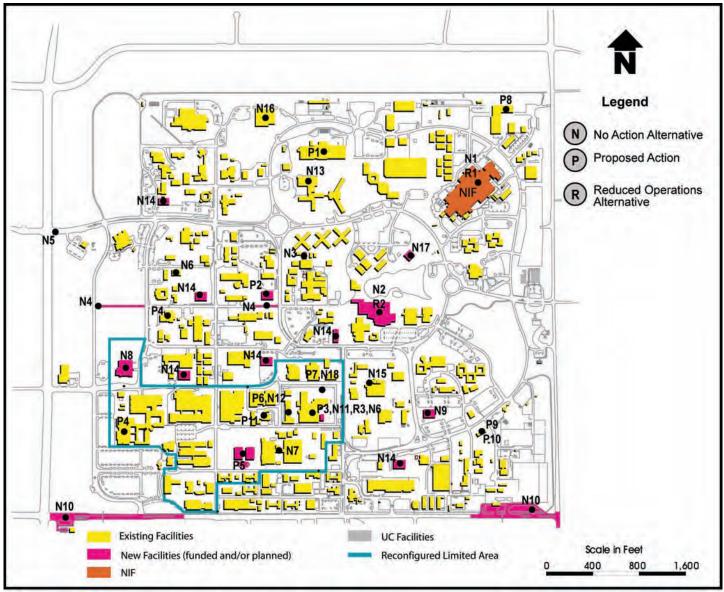

Source: LLNL 2003o.

FIGURE 5.2.1.2–1.—Locations of New Facilities Under the No Action Alternative

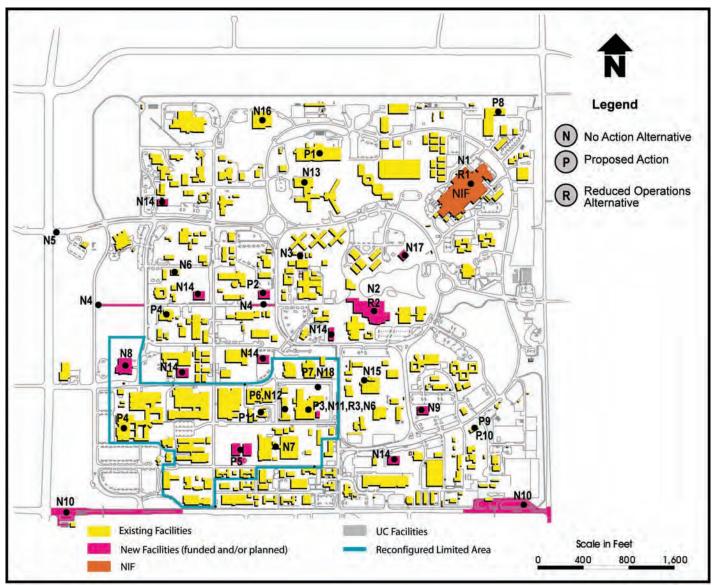

Source: LLNL 2003o.

FIGURE 5.2.6.1–1.—Location of New Facilities Under the No Action Alternative, Including Those in Undeveloped Areas

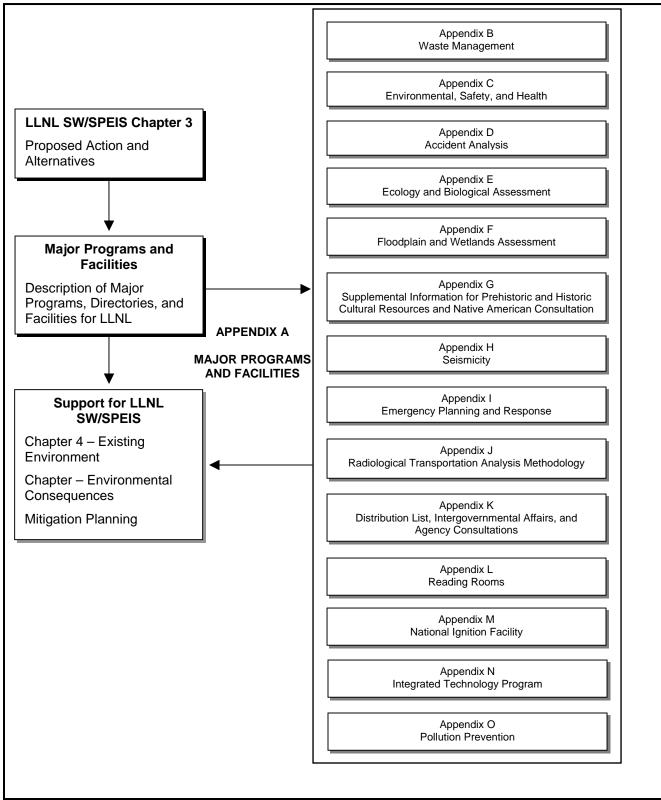

Source: LLNL 2003o.

FIGURE 5.3.1.2–1.—Location of New Facilities Under the Proposed Action

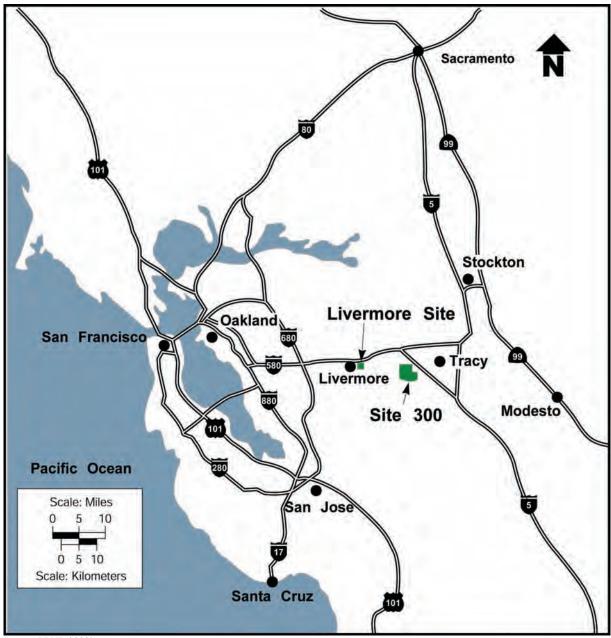
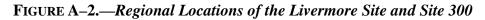

Source: LLNL 2003o.

FIGURE 5.3.6.1–1.—Location of New Facilities in Undeveloped Areas Under the Proposed Action



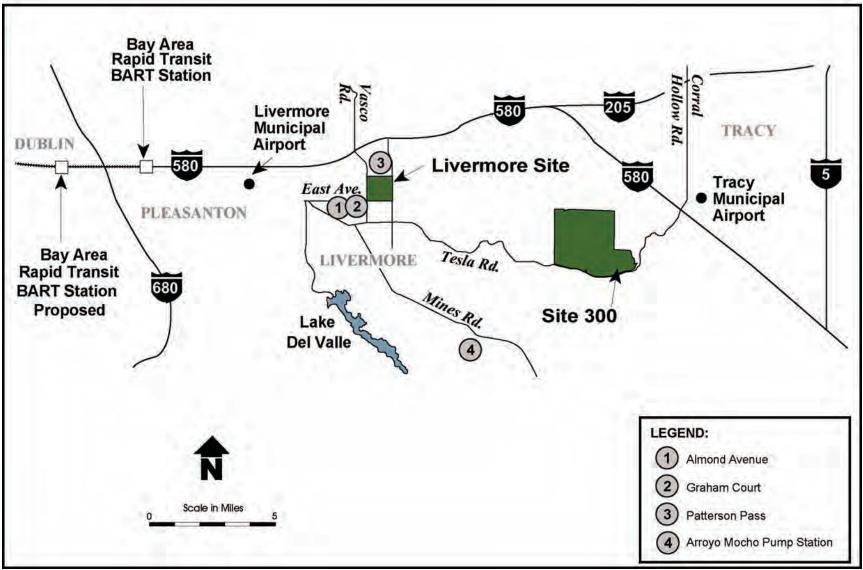
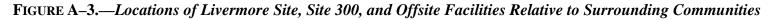
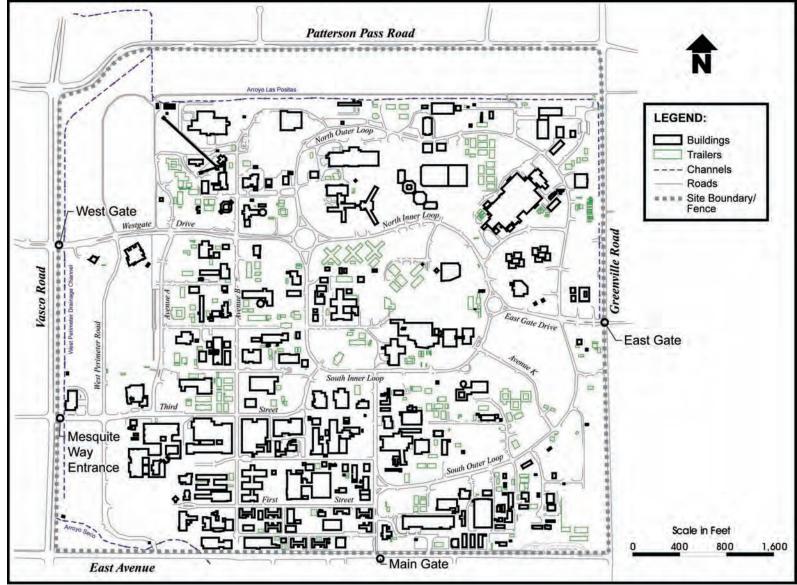
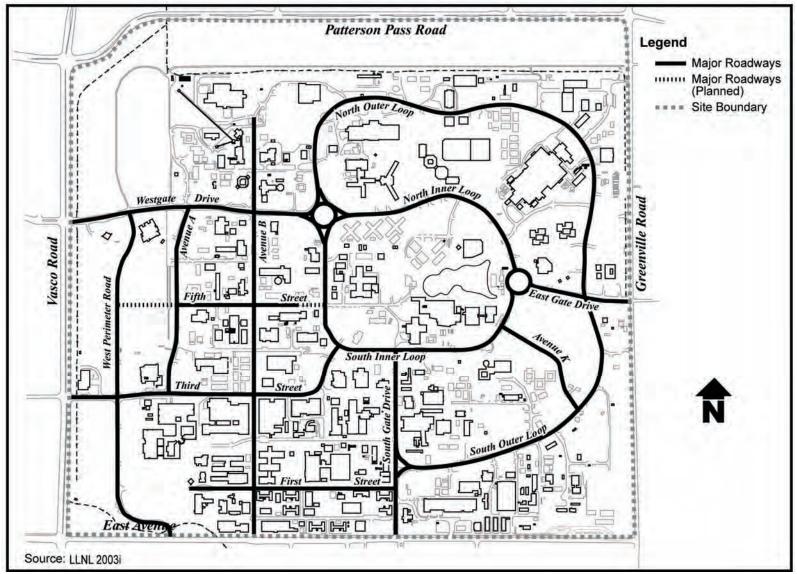
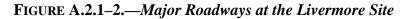

Source: Adapted From LLNL 1992a.

FIGURE A-1.—Crosswalk of Appendix A in Relation to Site-wide/Supplemental Programmatic Environmental Impact Statement




Source: LLNL 20031.


Source: LLNL 2003cj.



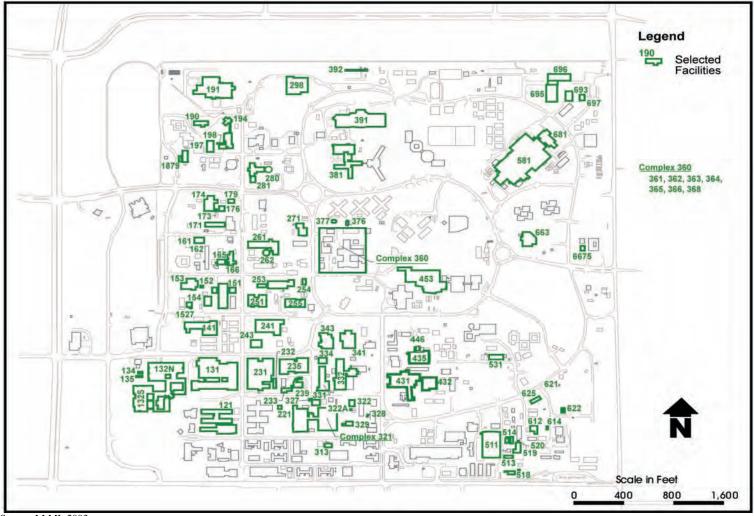
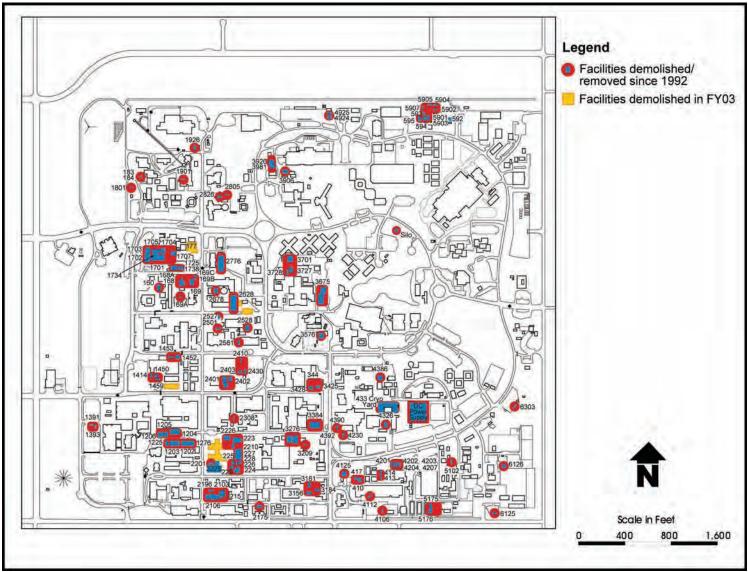

Source: LLNL 2003o.

FIGURE A.2.1–1.—*Livermore Site Map*


Source: LLNL 2003o.

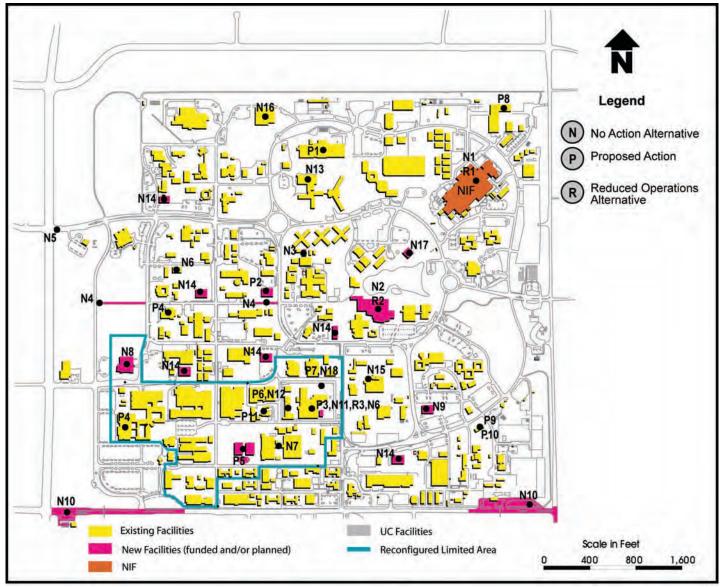

Source: LLML 2003o.

FIGURE A.2.2–1.—Selected Facility Locations at the Livermore Site

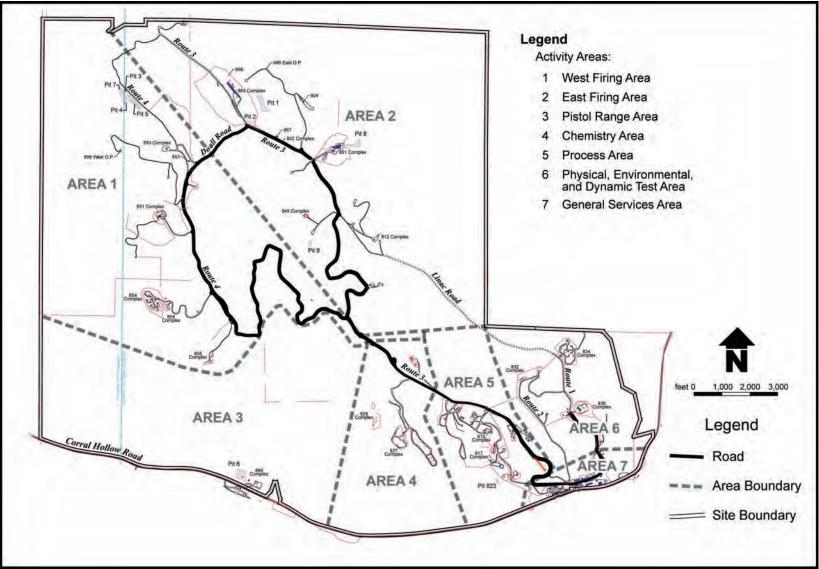

Source: LLNL 2003cj.

FIGURE A.2.2–2.— Facilities Demolished Since 1992 Environmental Impact Statement/Environmental Impact Report at the Livermore Site

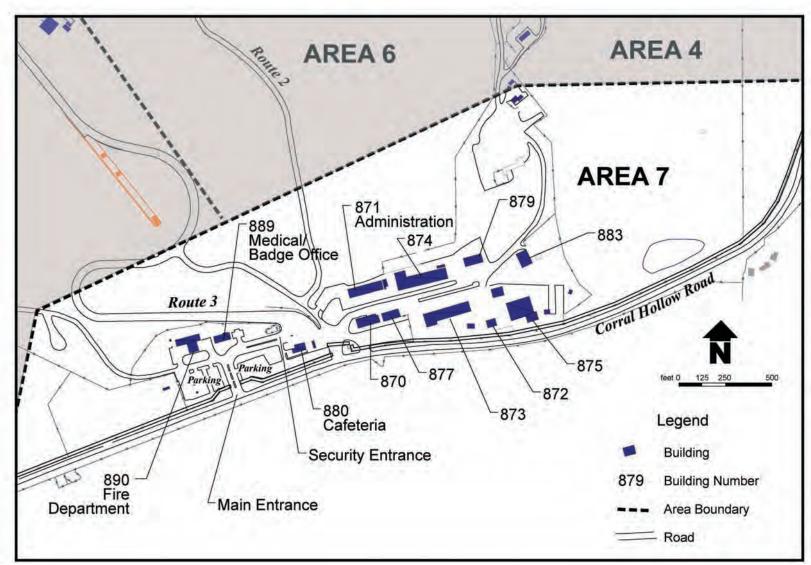
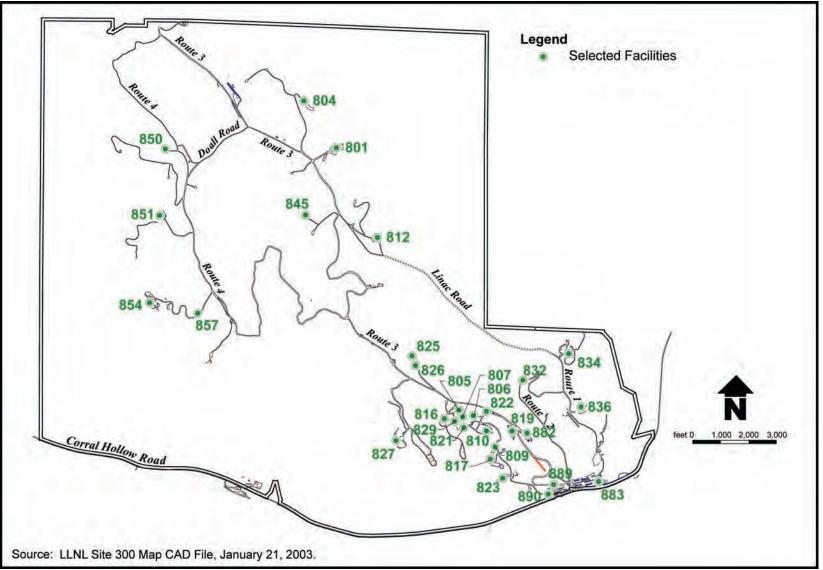
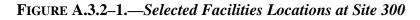
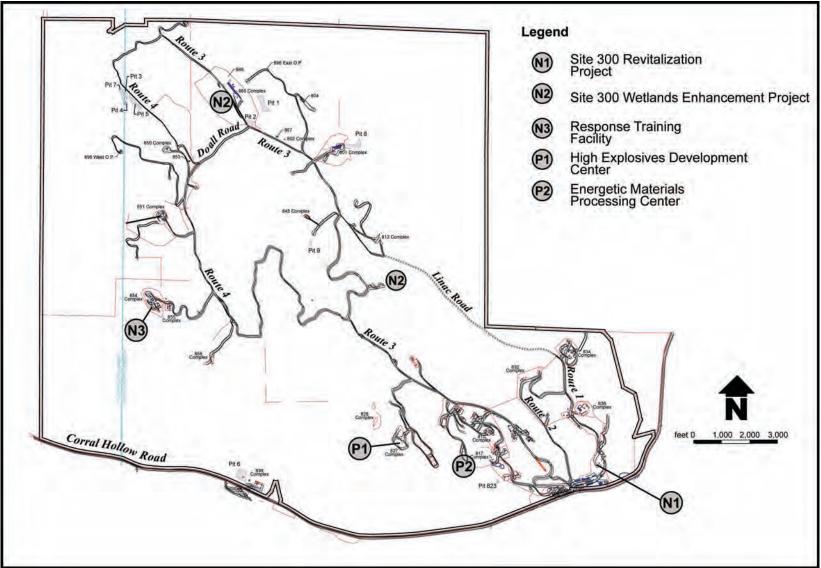
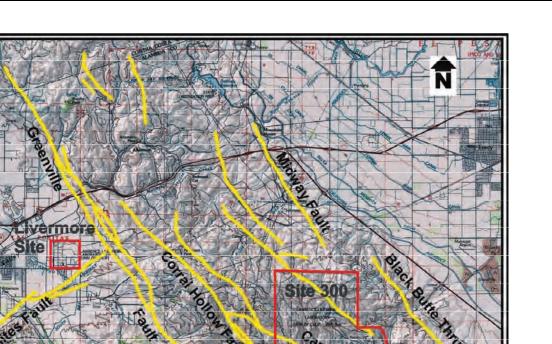

Source: LLNL 2003o.

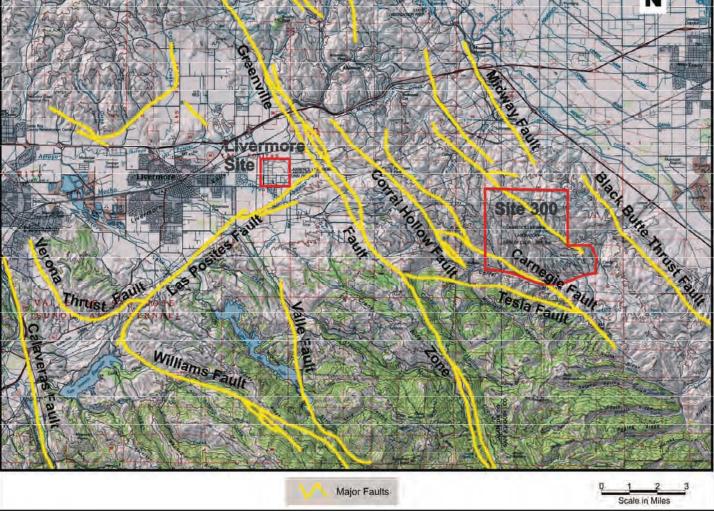
FIGURE A.2.3–1.—Program Projections at the Livermore Site

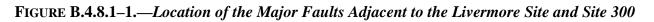

Source: LLNL 2003p.

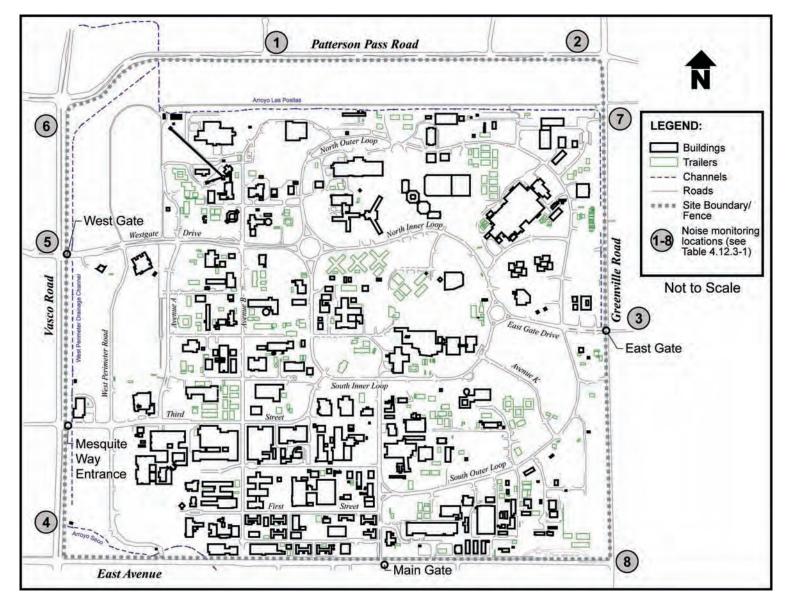


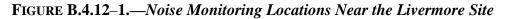

Source: LLNL 2003p.

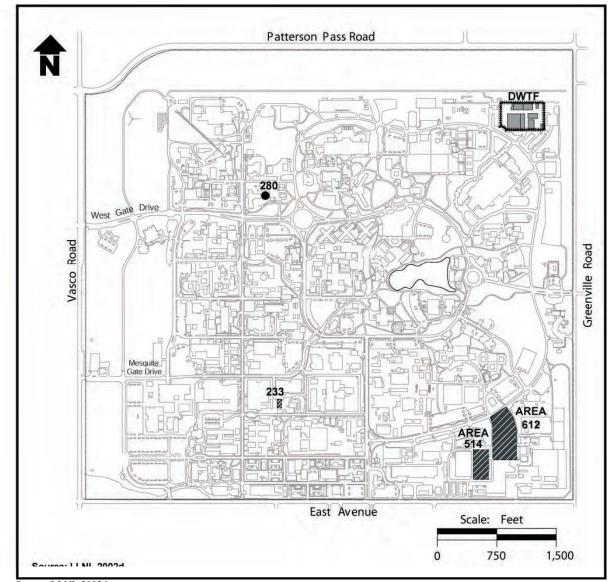

Source: LLNL 2003p.

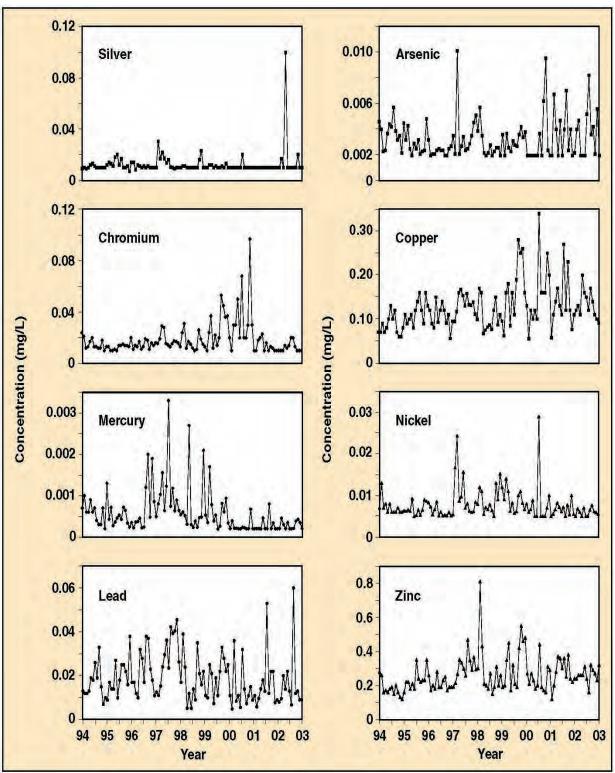



Source: Original.


FIGURE A.3.3–1.—Site 300 Program Projections Project Locations




Source: LLNL 1992a.


Source: LLNL 1992a.

Source: LLNL 2002d.

FIGURE B.4.15.2–1.—Livermore Site Map Showing Locations of the DWTF and Other Radioactive and Hazardous Waste Management Facilities

Source: LLNL 20031.

FIGURE C.4.1–1.—Monthly 24-Hour Composite Sample Concentrations for Regulated Metals in Lawrence Livermore National Laboratory Sanitary Sewer Effluent Showing Trends from 1994 to 2002

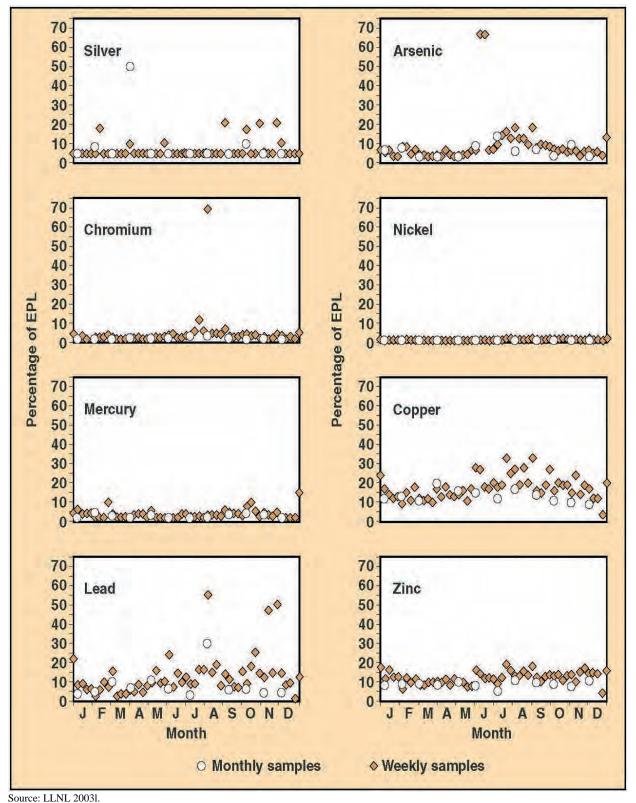


FIGURE C.4.1–2.—Results as Percentages of Effluent Pollutant Limits for Regulated Metals in Lawrence Livermore National Laboratory Sewage, 2002

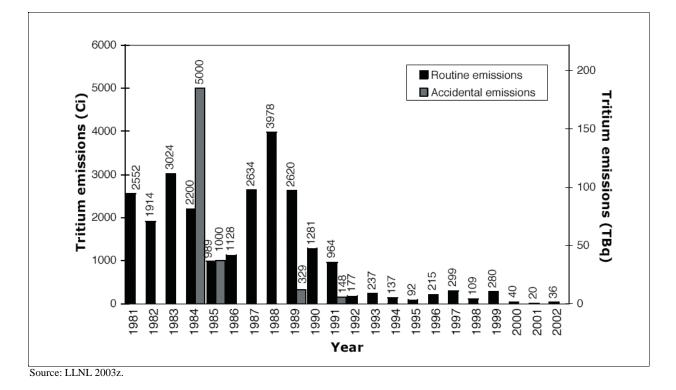
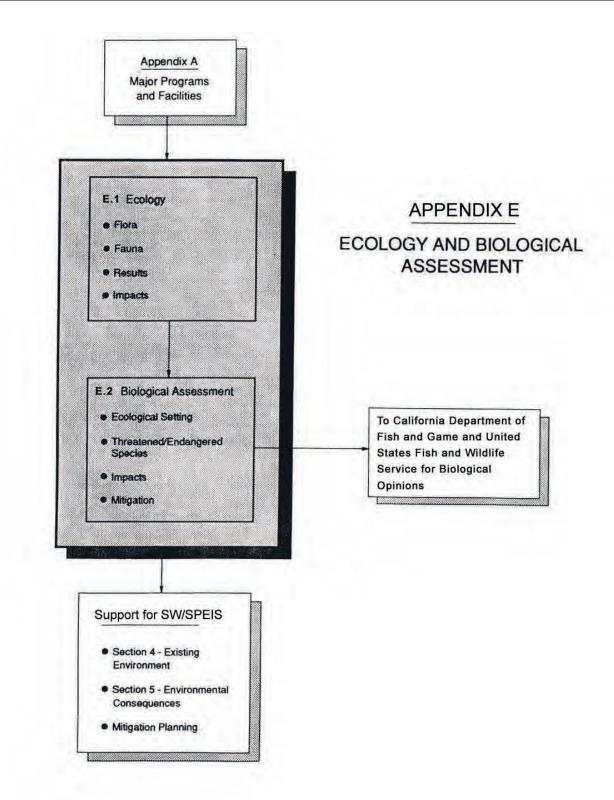
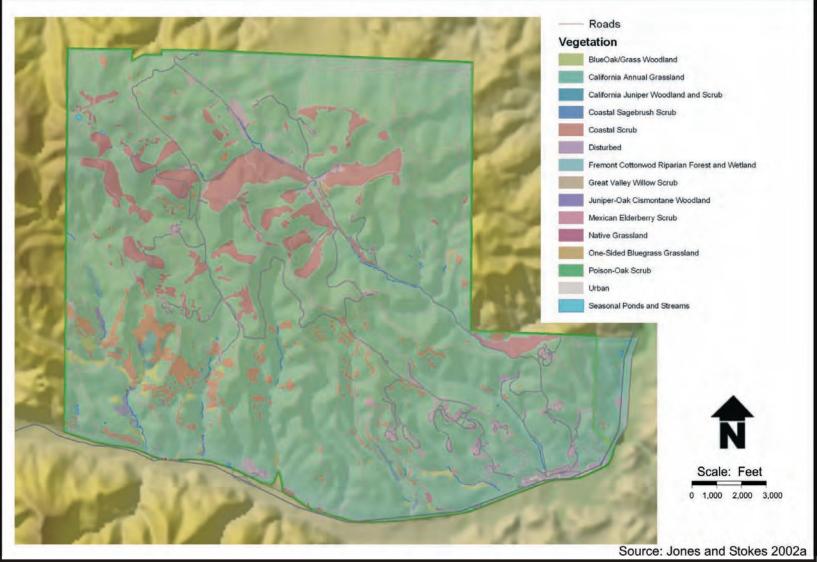
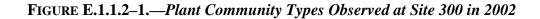



FIGURE C.4.2.2–1.—Recent Tritium Emissions From the Tritium Facility, 1981 – 2002


TABLE C.4.2.2–1.—Curies of Important Radionuclides Released From Lawrence Livermore			
National Laboratory			
Curies Released Annually			

Site and Type of Radioactive Airborne Effluent Released	Curies Released Annually		
	No Action Alternative	Proposed Action	Reduced Operation Alternative
Livermore Site			
Tritium			
Building 612 yard	2	2	2
Building 331 stacks	210	210	210
Outside Building 331 (contaminated equipment awaiting storage)	1	1	1
Site 300			
Tritium	194	194	145
Uranium-234	0.0058	0.0058	0.0058
Uranium-235	0.00080	0.00080	0.0008
Uranium-238	0.062	0.062	0.062



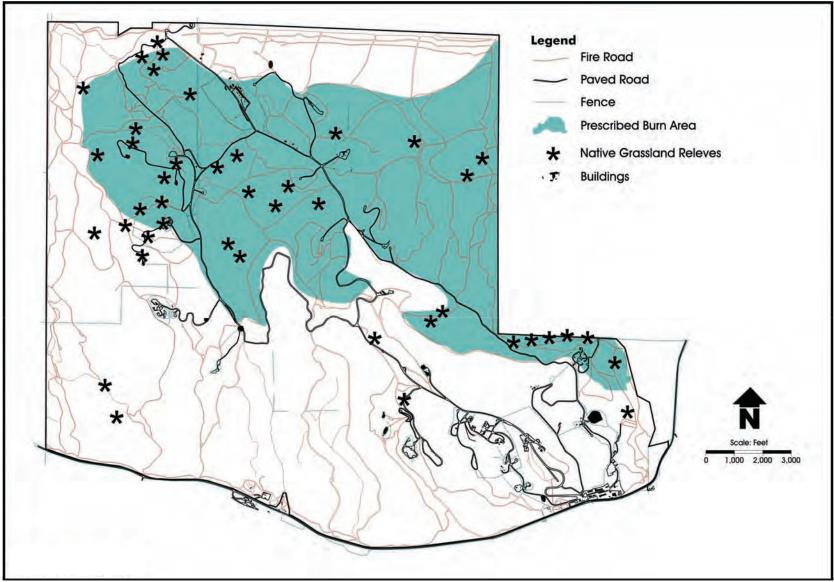
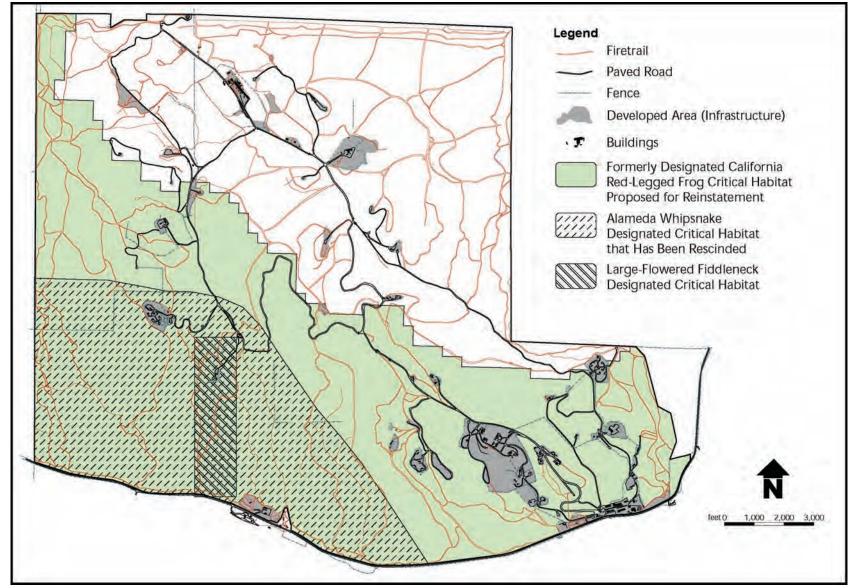

Source: LLNL 1992a.

FIGURE E-1.—Appendix E Interface with Other Site-wide Environmental Impact Statement Sections, Appendices, and Regulatory Reviews

Source: Jones and Stokes 2002a.

Source: BioSystems 1986a.



Source: Bloom 2002.

FIGURE E.1.2.2–1.—Loggerhead Shrike Nesting Locations at Site 300 in 2002

Source: Jones and Stokes 2001.

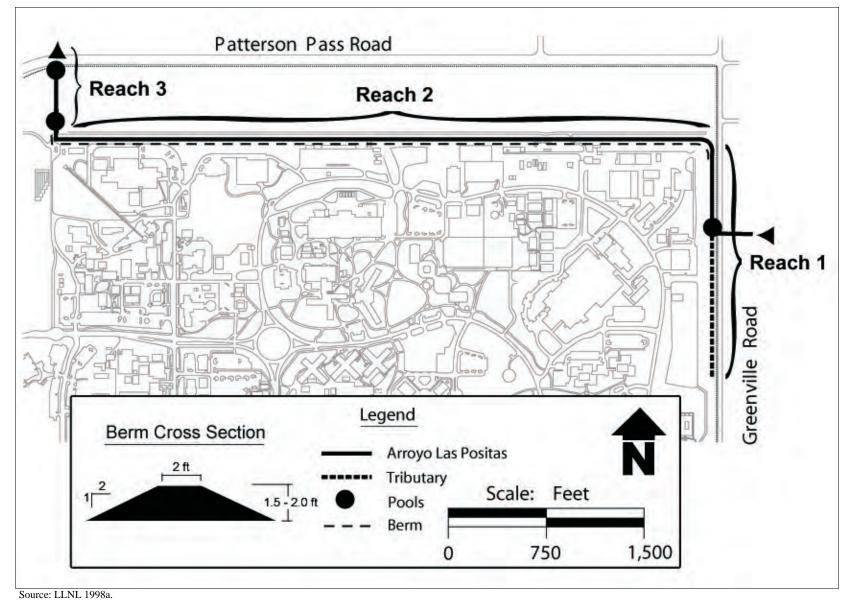


FIGURE E.2.1.5.1–1.—Arroyo Las Positas Maintenance Project, Reach 2 Berm Design

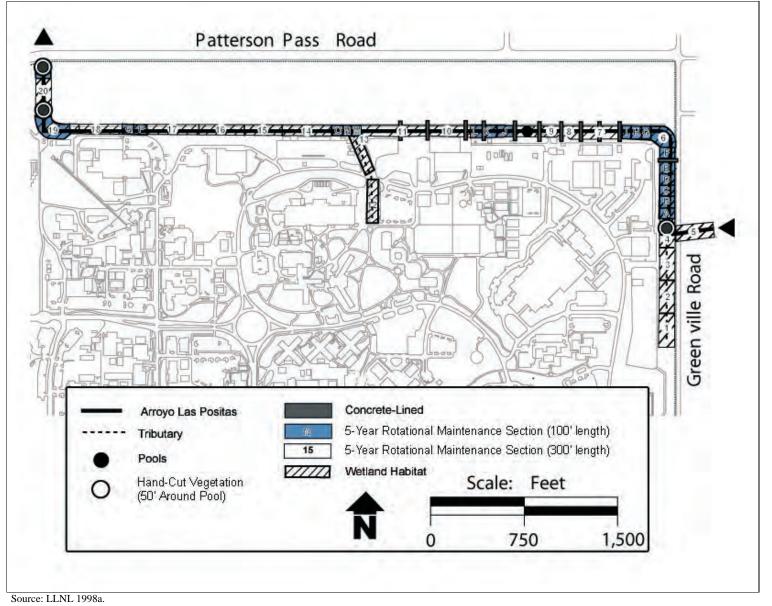


FIGURE E.2.1.5.1–2.—Arroyo Las Positas Maintenance Project (Wetland Features)

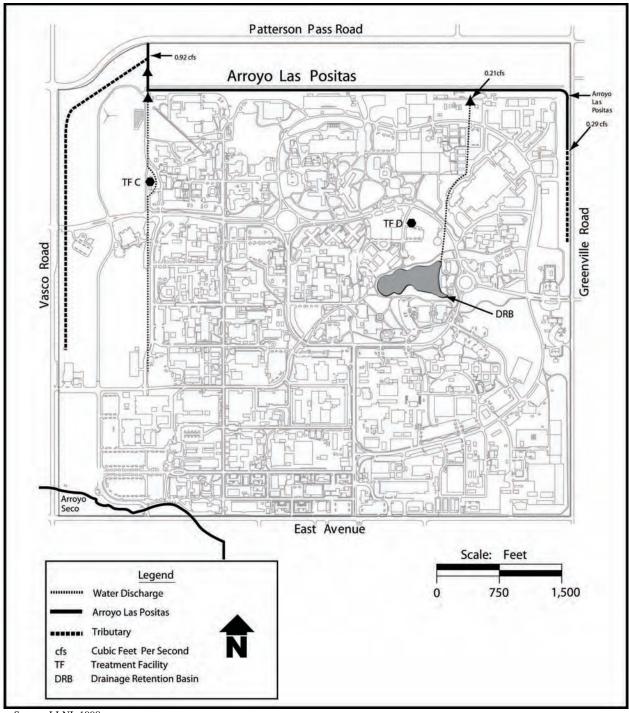
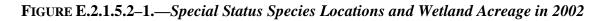



FIGURE E.2.1.5.1–3.—Arroyo Flows and Augmentations in June 1998

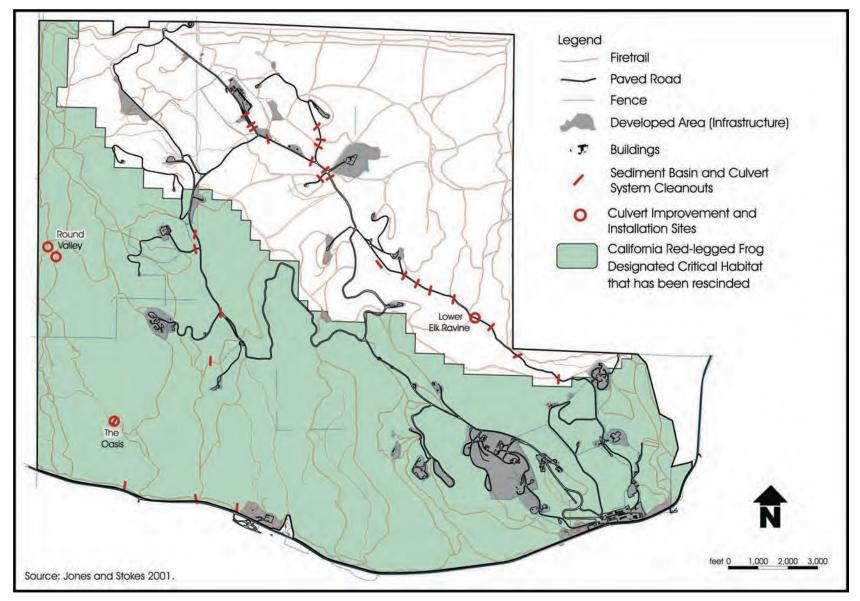
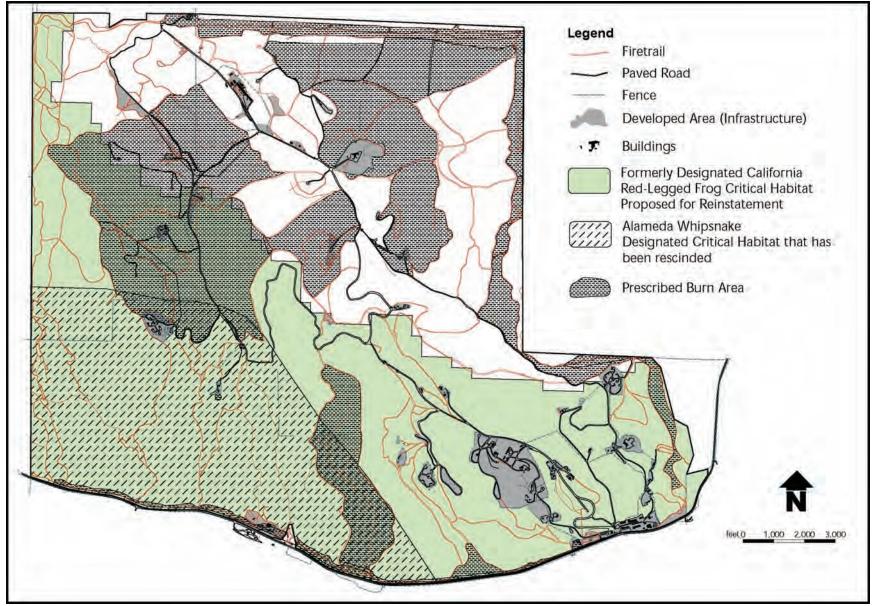



FIGURE E.2.2.5.2–1.—Culvert Repair and Installation at Site 300

Source: Jones and Stokes 2001.

FIGURE E.2.2.5.4–1.—Prescribed Burn Areas at Site 300

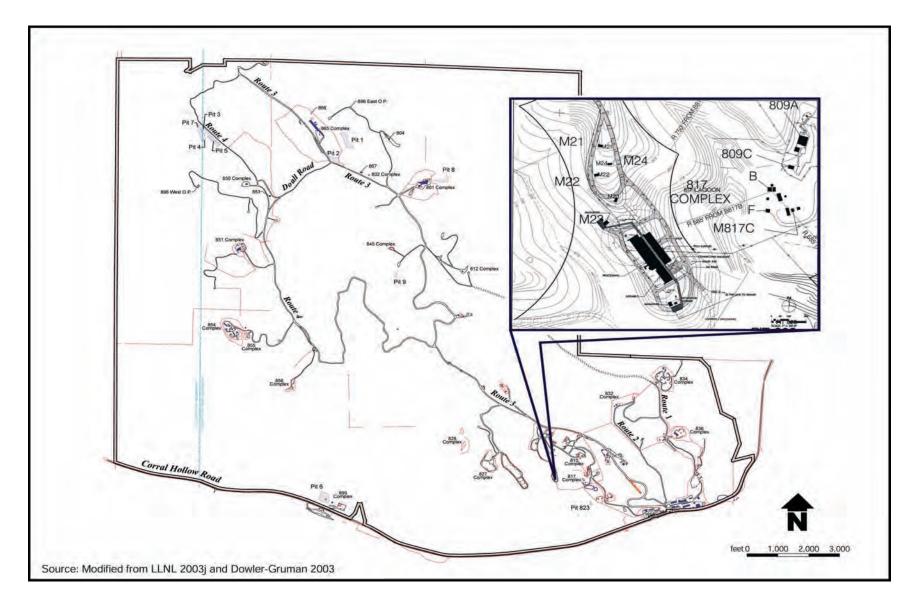
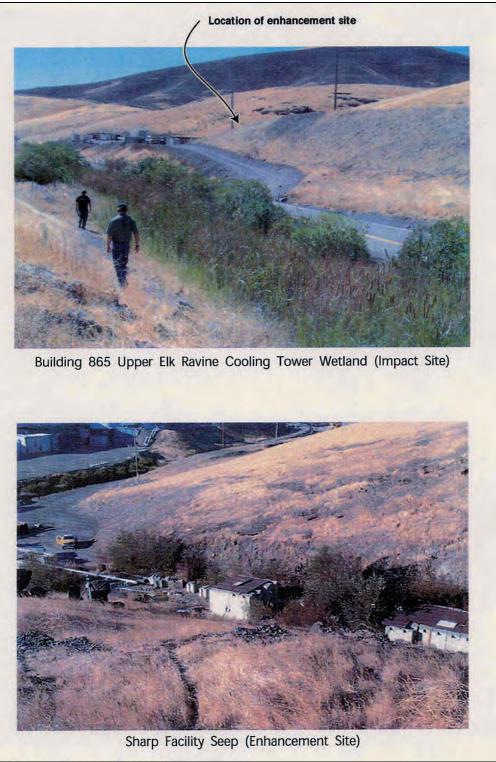
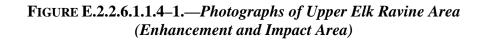




FIGURE E.2.2.5.6–1.— Proposed Energetics Materials Processing Center at Site 300

Source: Jones and Stokes 2001.

Source: LLNL 2003ad.

FIGURE E.2.2.6.1.2.1–1.—*Erosion in Elk Ravine above Building 812*

E.2.2.6.1.3 Mitigation and Avoidance Measures

To protect the California red-legged frog and its habitat, the following avoidance and mitigation measures would be implemented at Site 300 during maintenance activities (Jones and Stokes 2001):

- The loss of breeding habitat for the California red-legged frog at Building 865 would be offset by plans to enhance California red-legged frog habitat onsite (see Section E.2.2.9).
- All storm drainage system maintenance would be performed during the dry season, or when water is not present in the work area. In the four areas scheduled for culvert improvement or installation, a preactivity survey would be conducted within 24 hours of construction. A qualified biologist would be present during construction to examine potential burrow sites within the work zone to determine if they are occupied by the California red-legged frog.
- Prior to fire trail grading, prescribed burning, storm drainage system maintenance, and culvert improvement and installation activities, a qualified biologist would provide worker awareness training to all project personnel. This training would include recognition of California red-legged frog and its habitat.

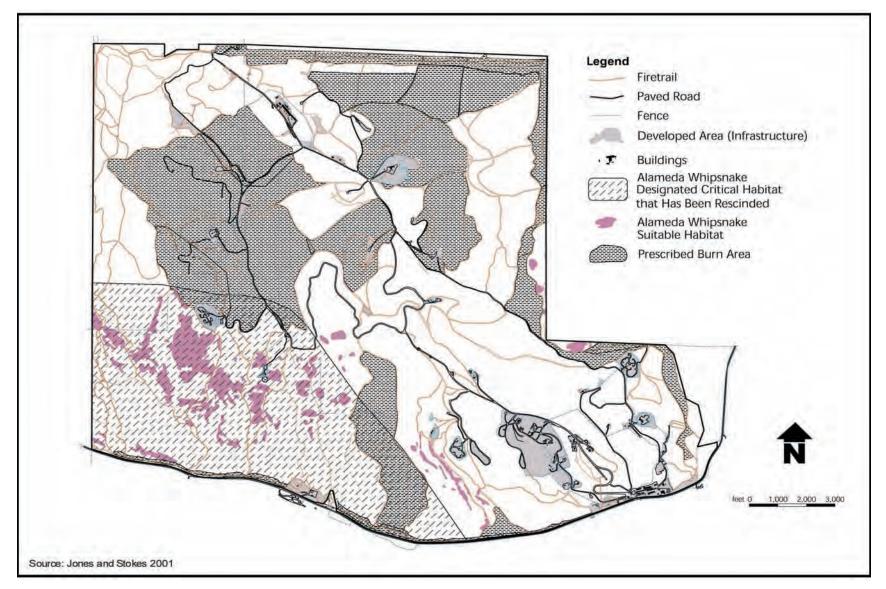
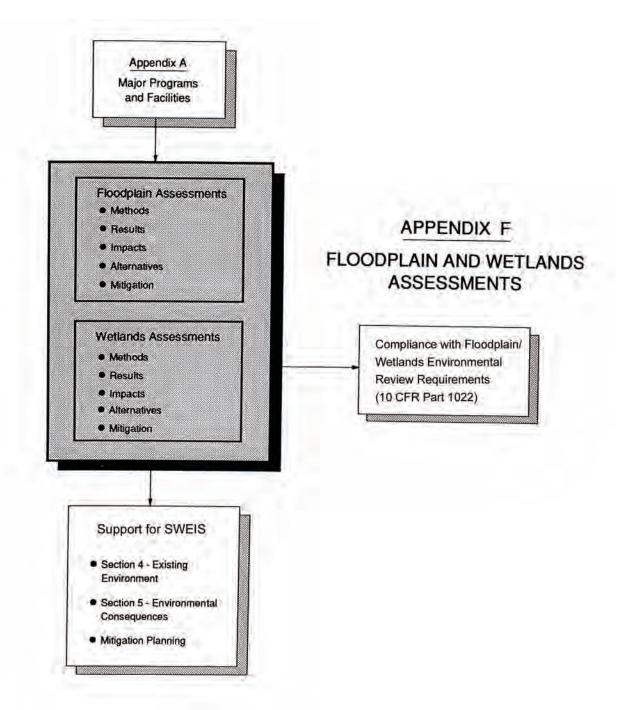
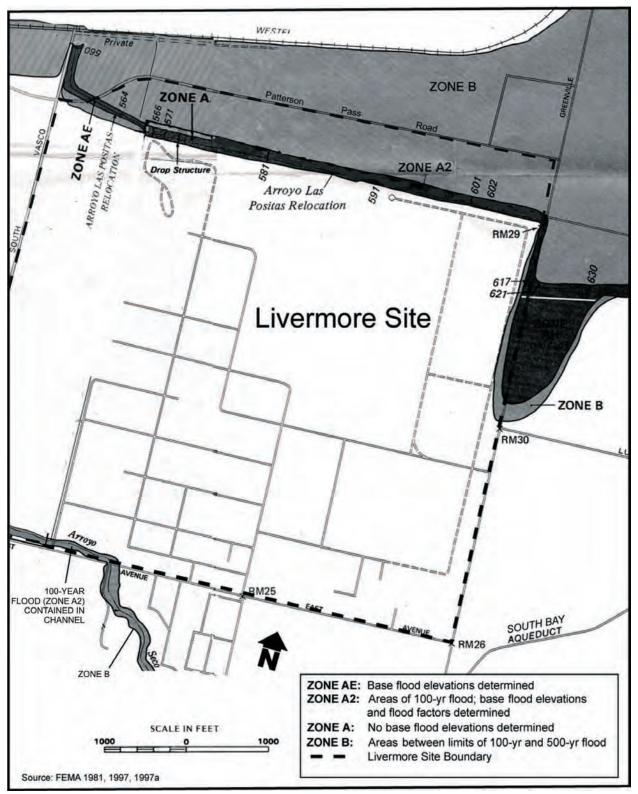
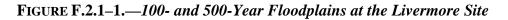




FIGURE E.2.2.6.2.1.3–1.—Formerly Designated Critical Habitat and Suitable Habitat for the Alameda Whipsnake at Site 300



Source: Original.

FIGURE F.1–1.—Appendix F Interface with Site-wide Environmental Impact Statement Sections, Appendix A, and Regulatory Reviews

Source: FEMA 1981, 1997a, 1997b.

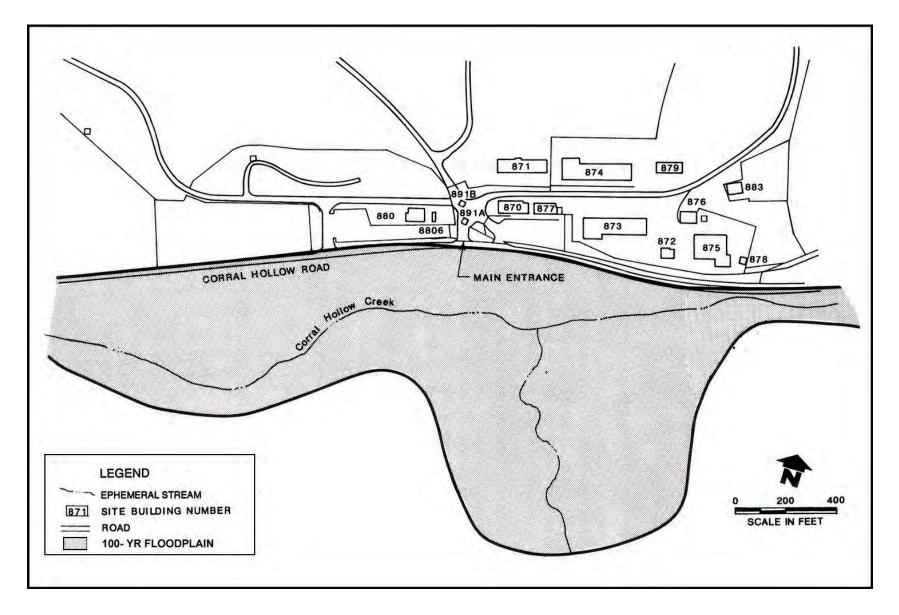
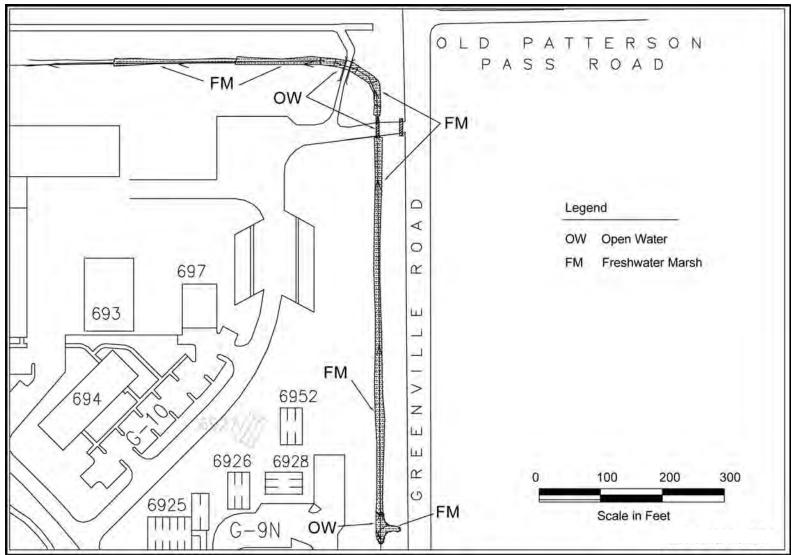
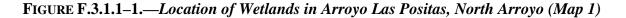
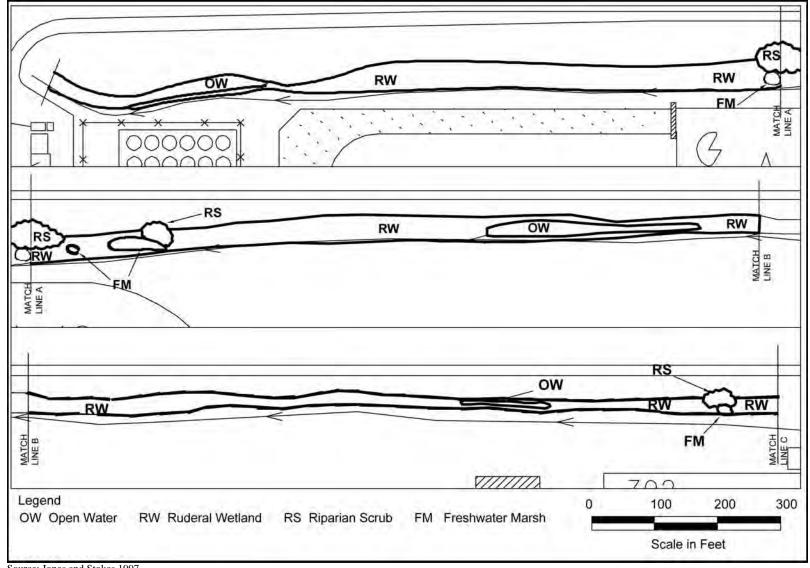
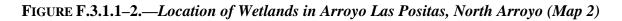
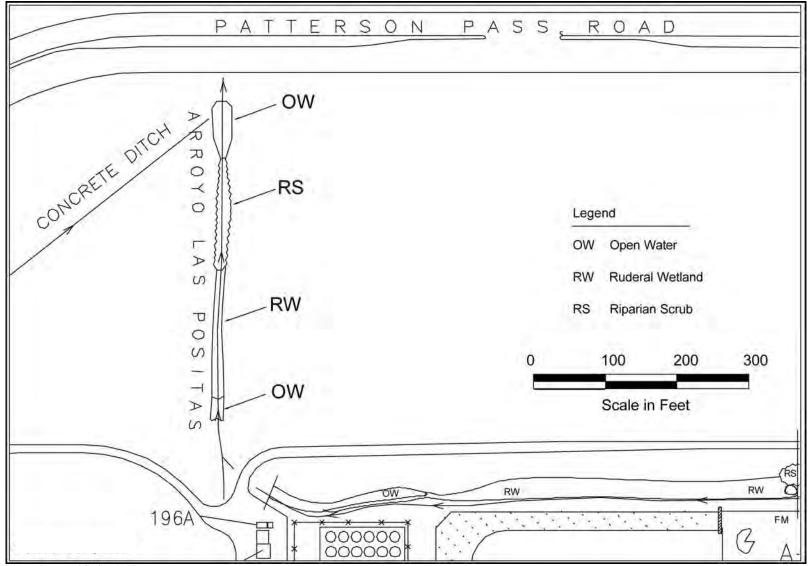
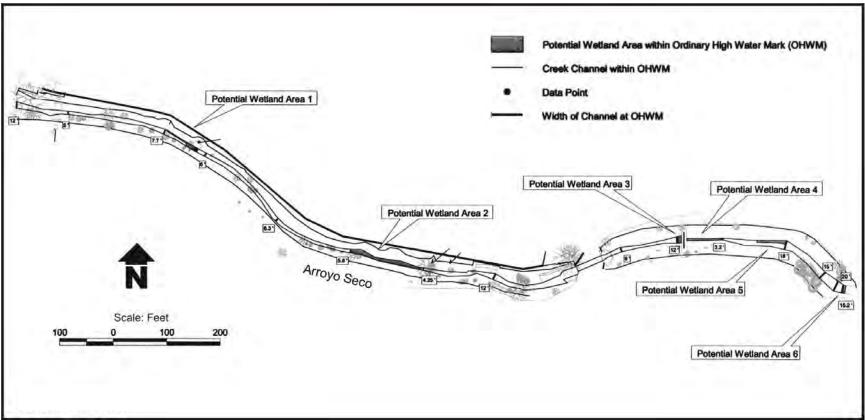
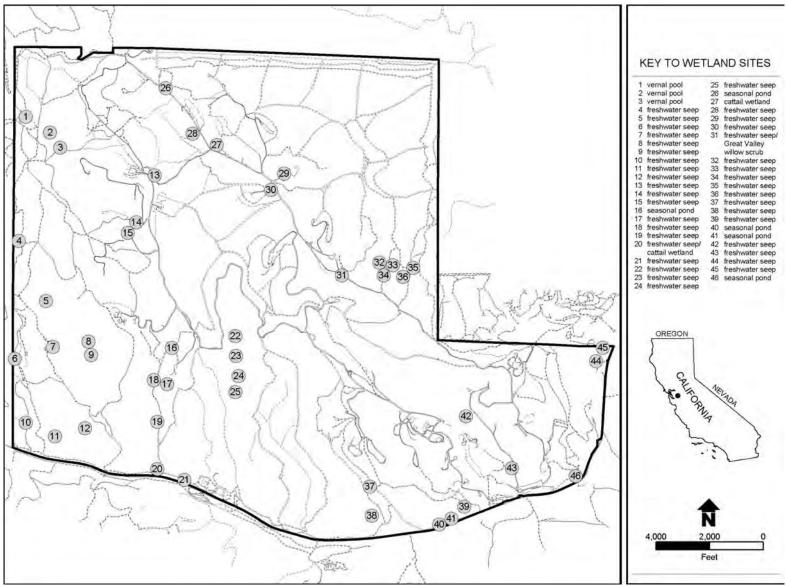





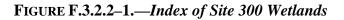
FIGURE F.2.1–2. —100-Year Floodplain Along Corral Hollow Creek in the Area of Site 300 Main Entrance




Source: Jones and Stokes 1997.


Source: Jones and Stokes 1997.

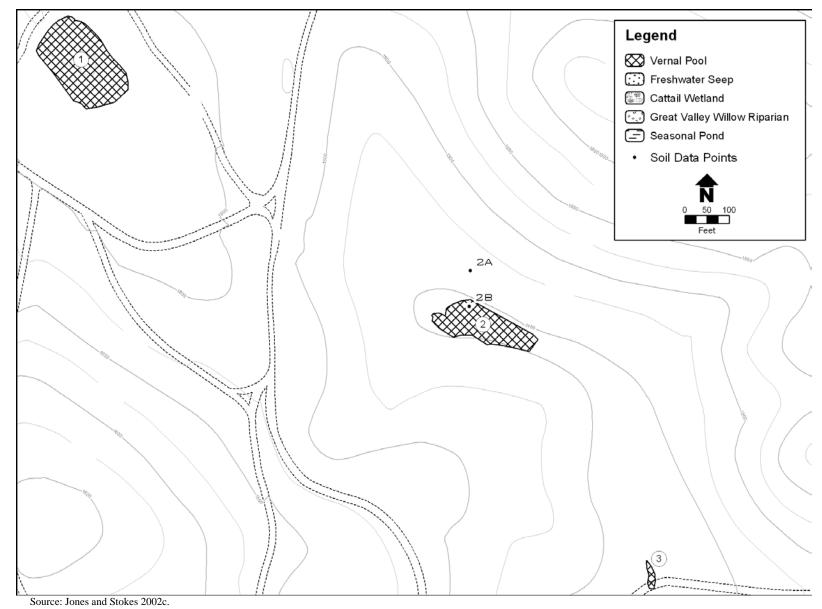
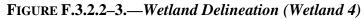
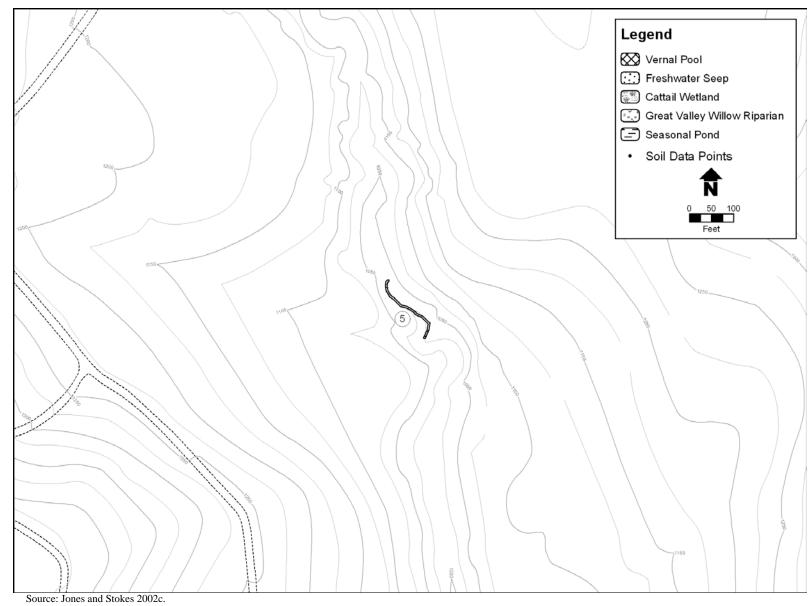

Source: Jones and Stokes 1997.

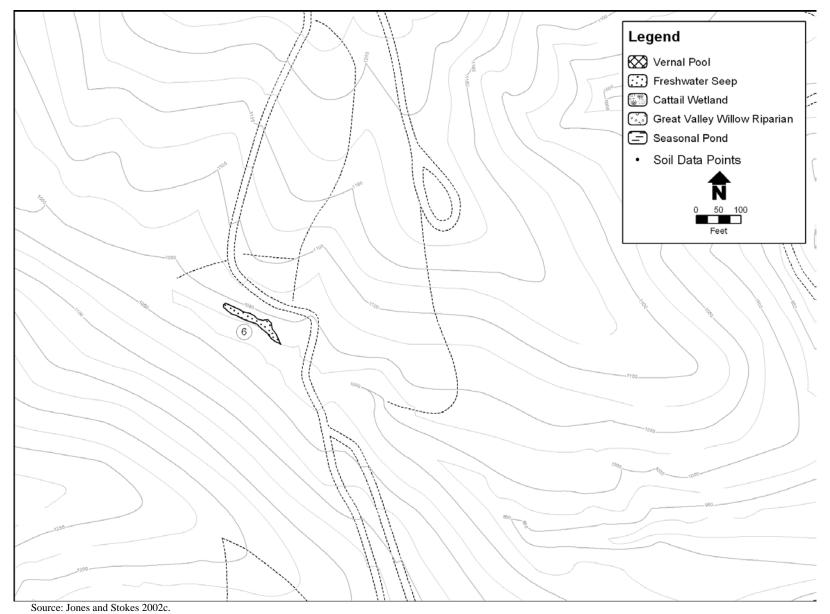


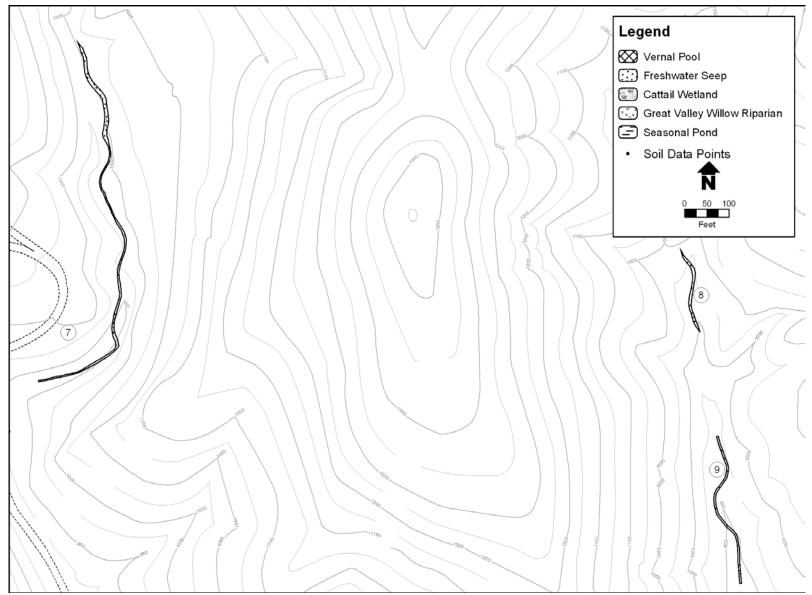
Source: LLNL 2001ap.

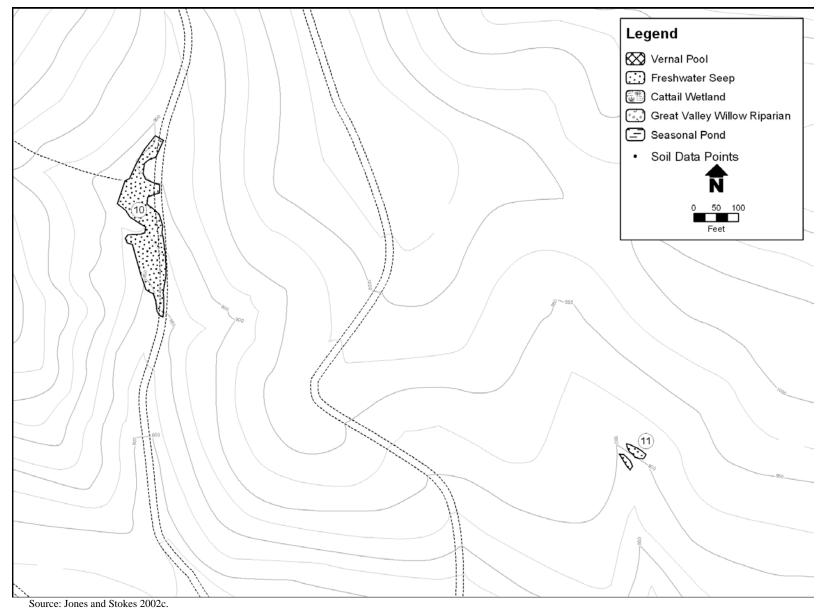
FIGURE F.3.1.1-4.—Location of Potential Wetlands in Arroyo Seco

Source: Jones and Stokes 2002c.


FIGURE F.3.2.2–2.—Wetland Delineation (Wetlands 1, 2, and 3)





Source: Jones and Stokes 2002c.

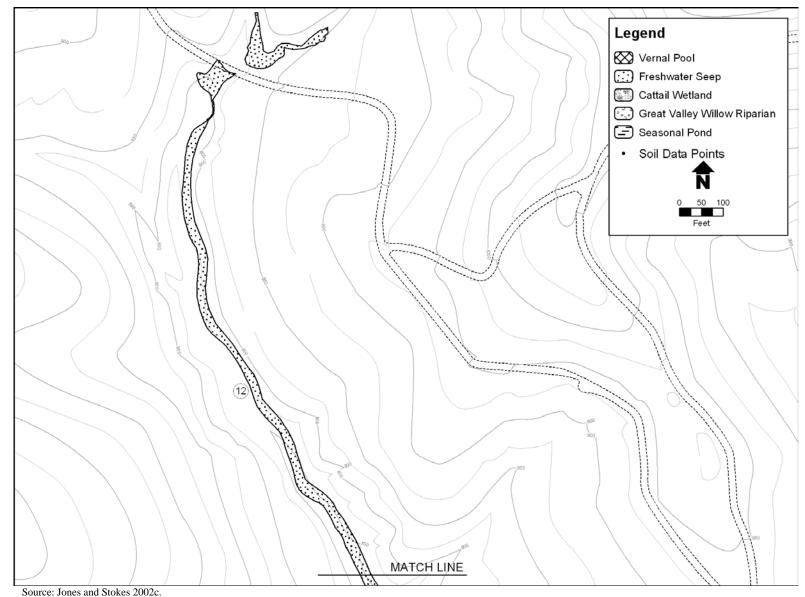


FIGURE F.3.2.2–8.—Wetland Delineation (Wetland 12)

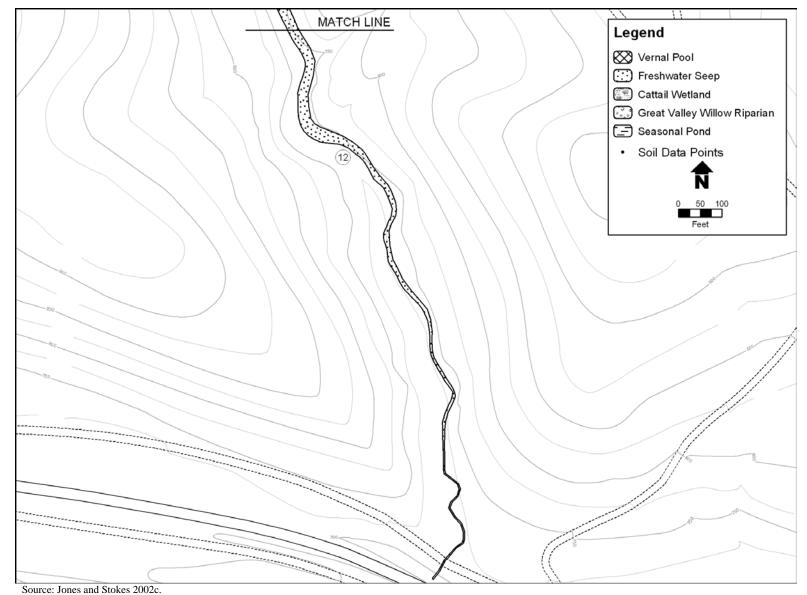
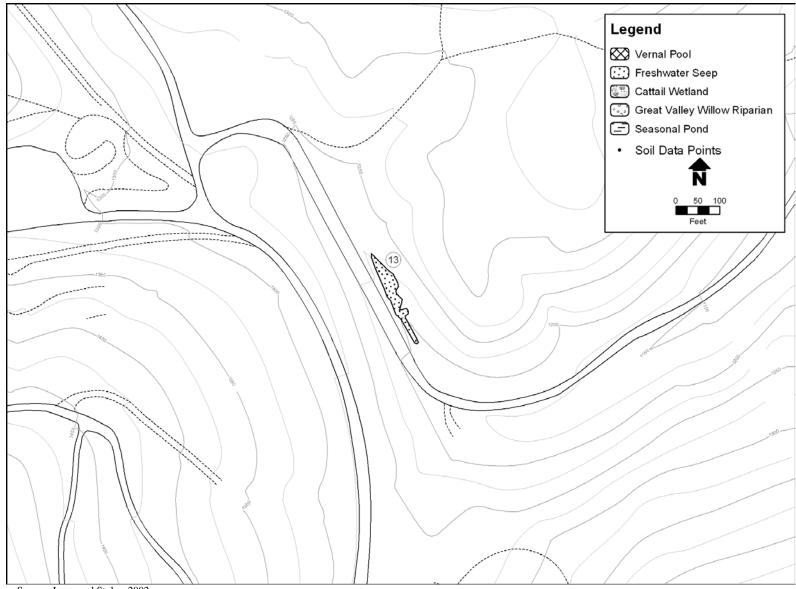
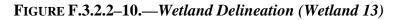
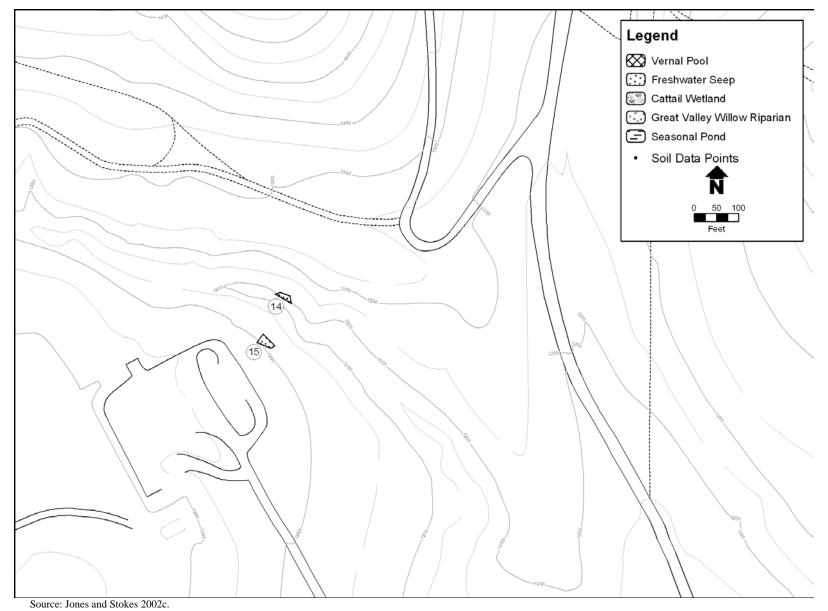
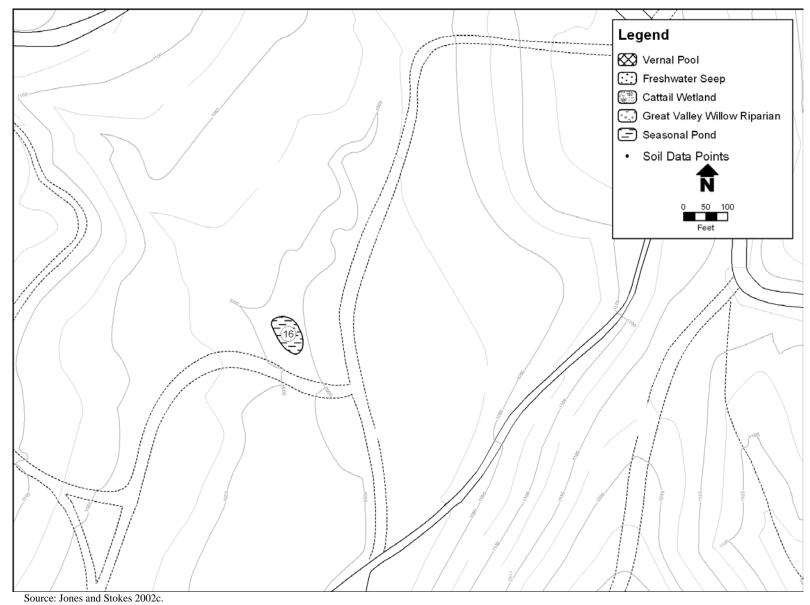
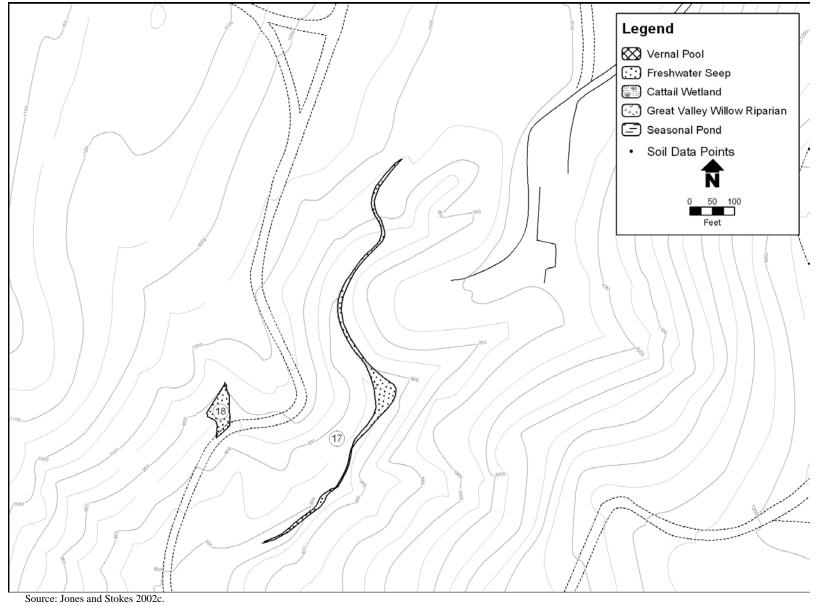
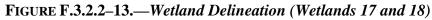
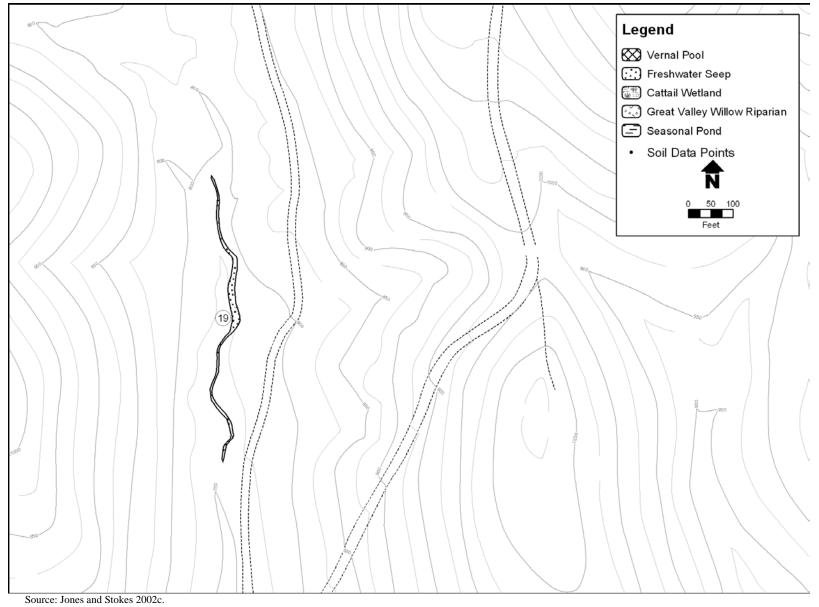
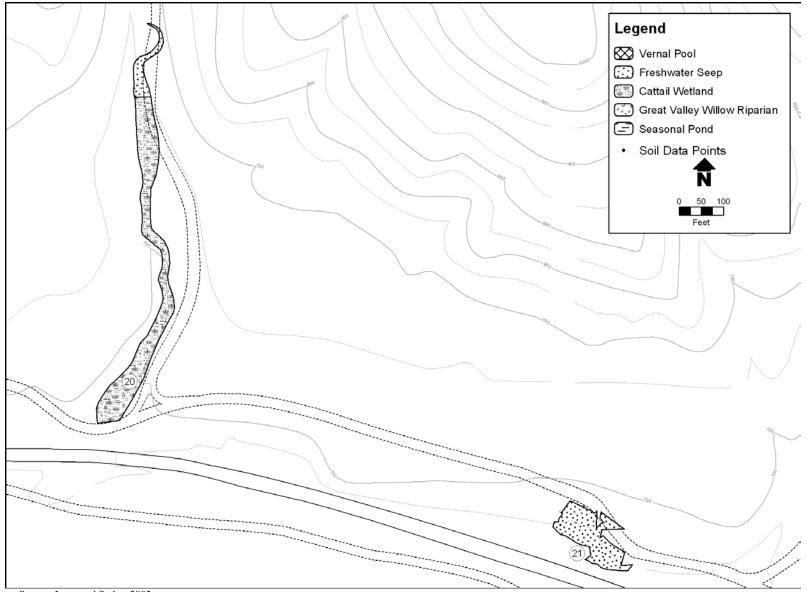
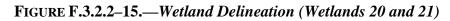





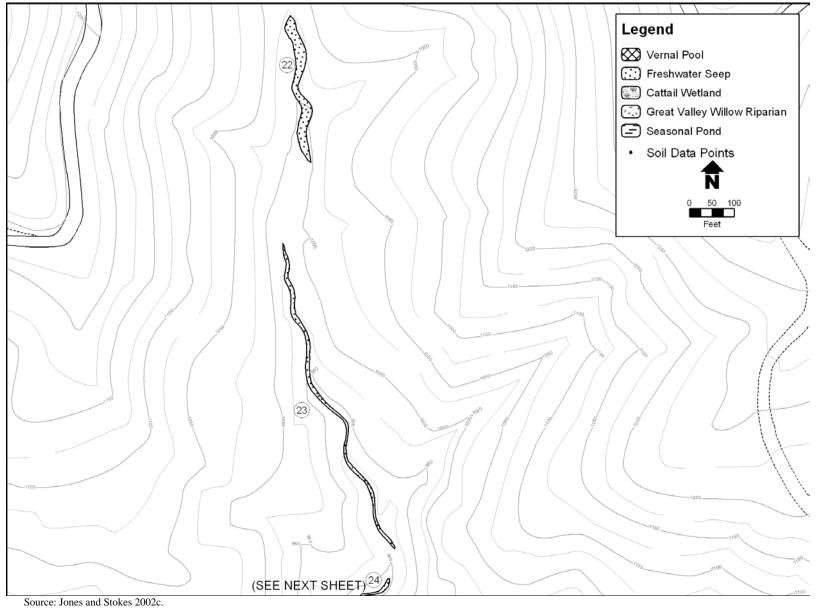
FIGURE F.3.2.2–9.—Wetland Delineation (Wetland 12) (continued)

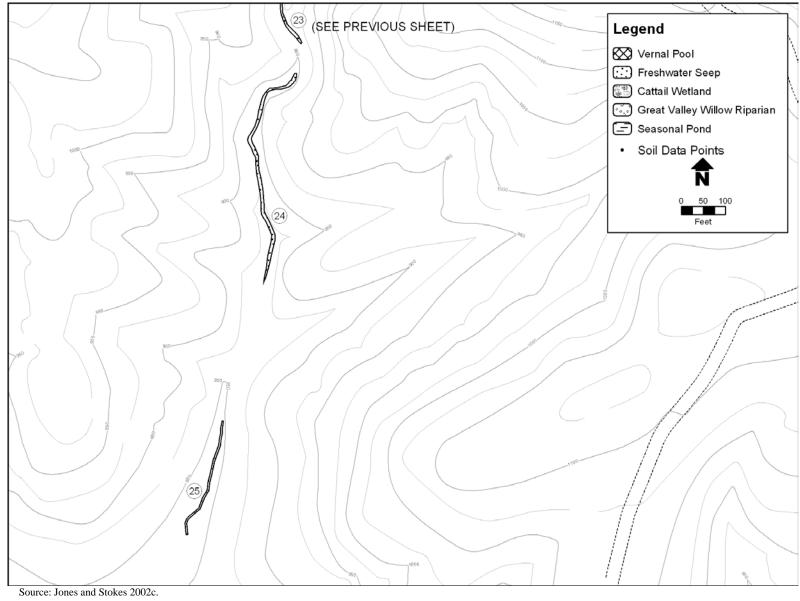
Source: Jones and Stokes 2002c.

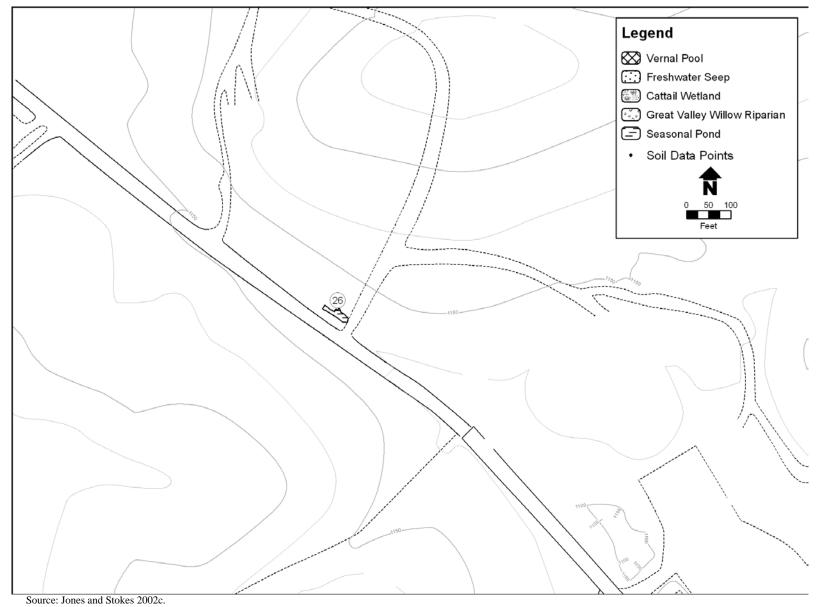

FIGURE F.3.2.2–12.—Wetland Delineation (Wetland 16)

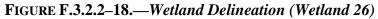


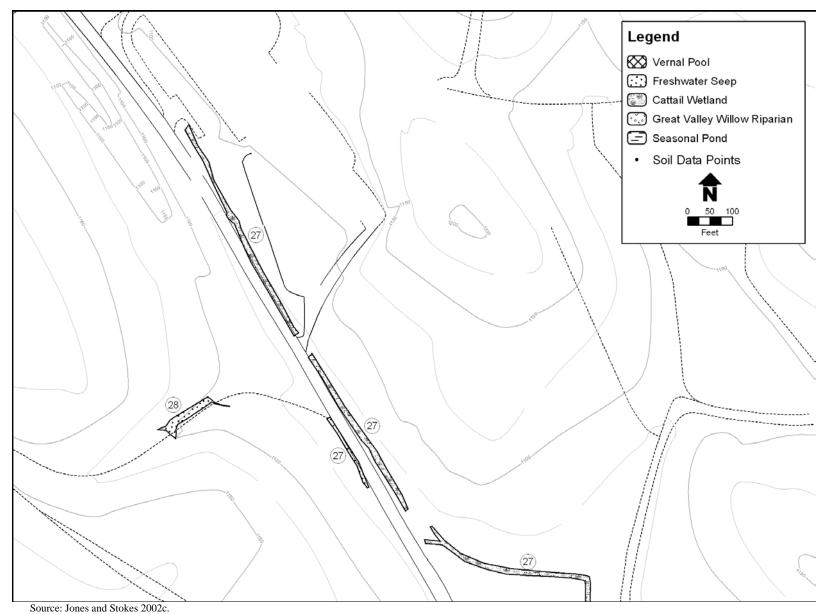


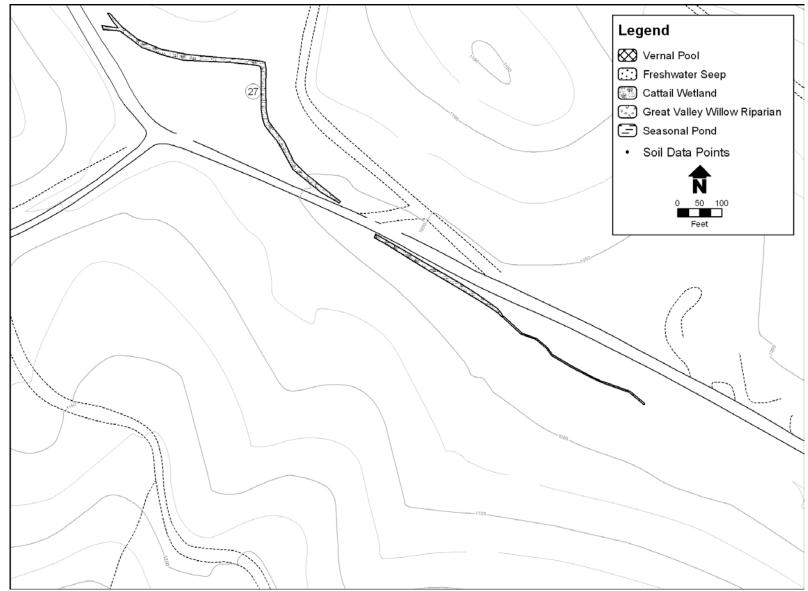


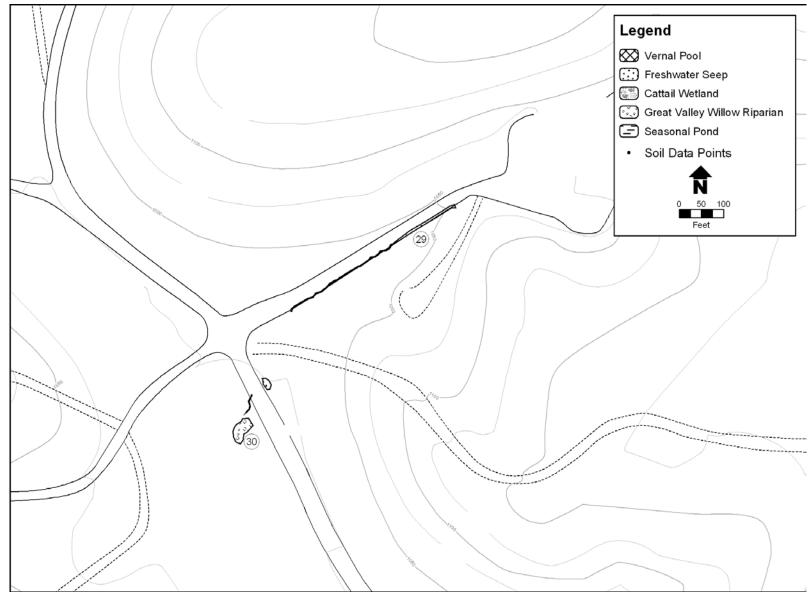
Source: Jones and Stokes 2002c.

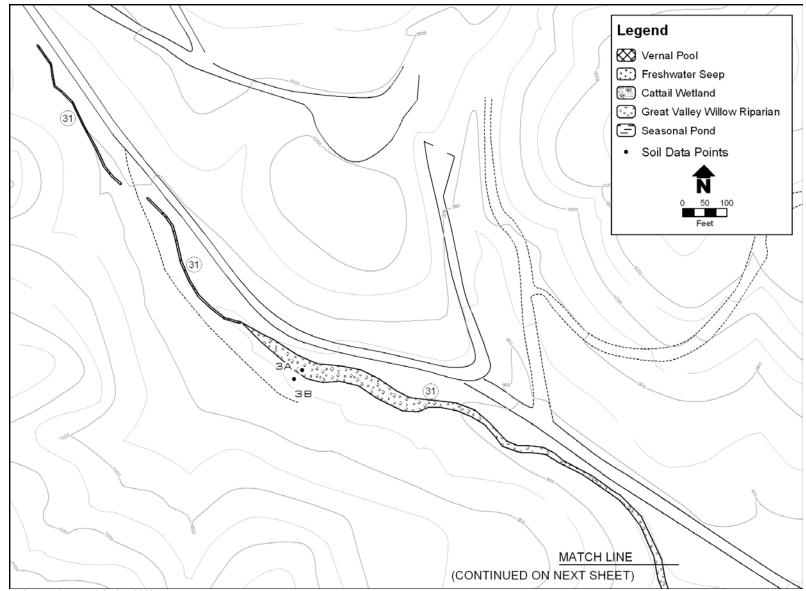


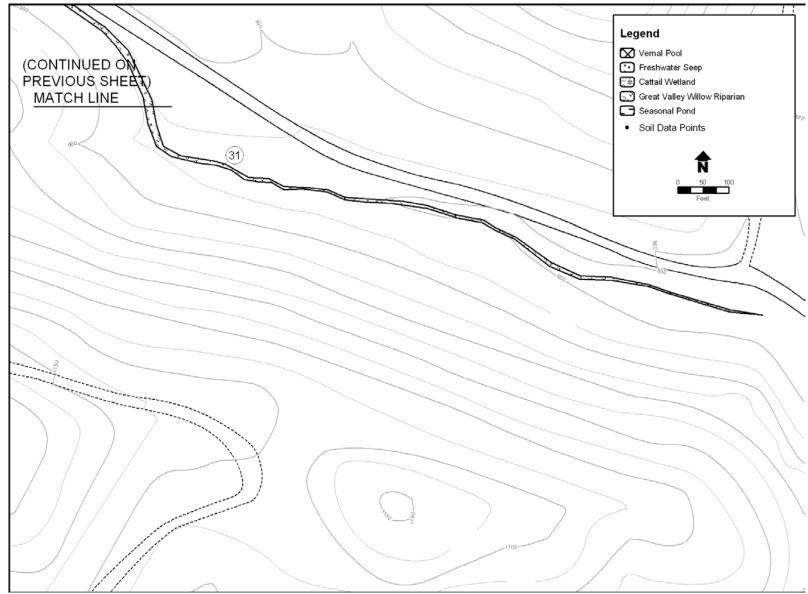






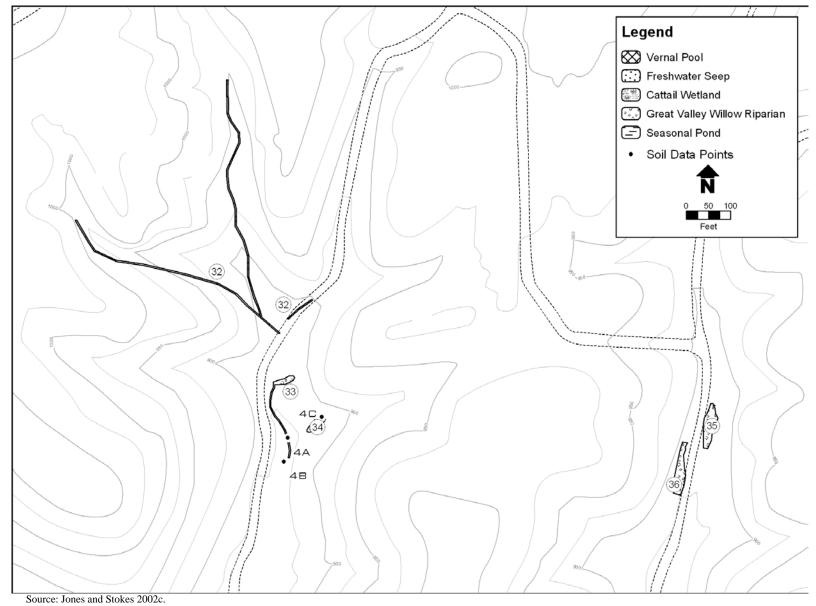
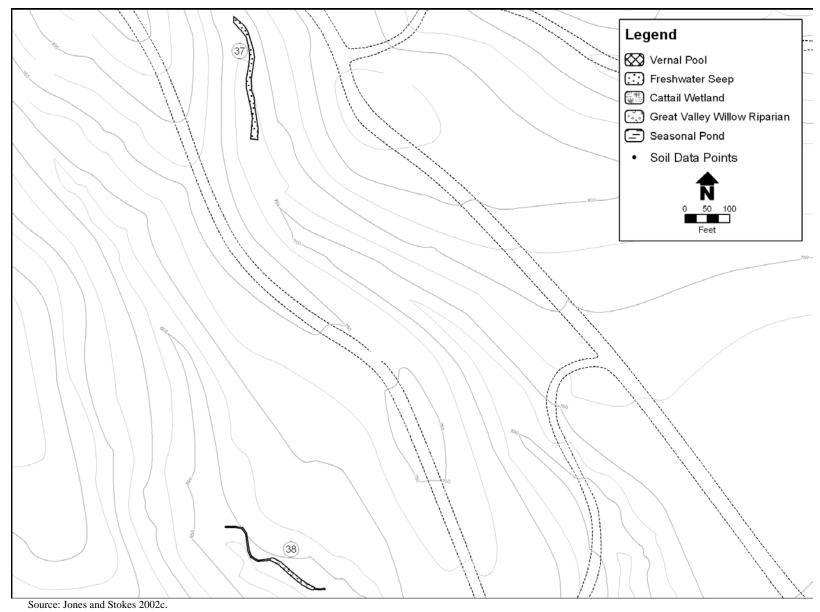
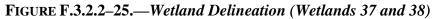
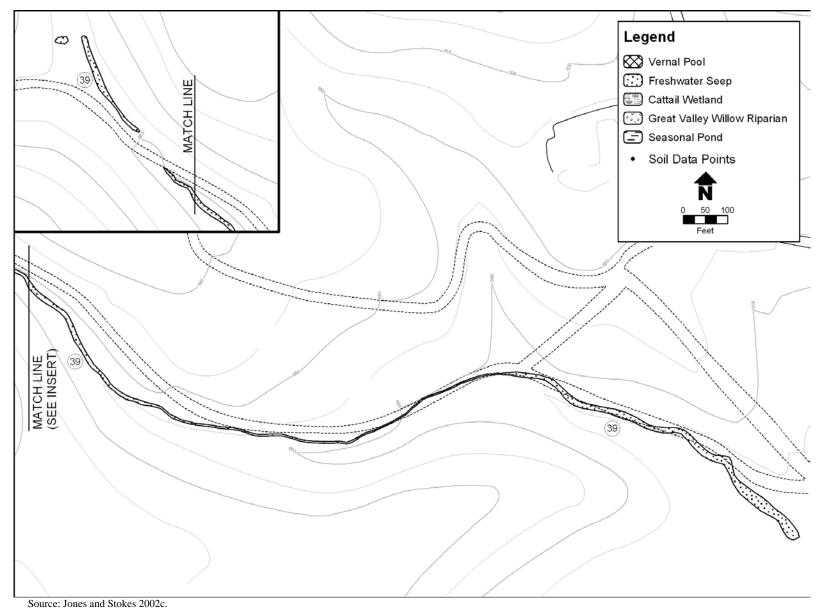


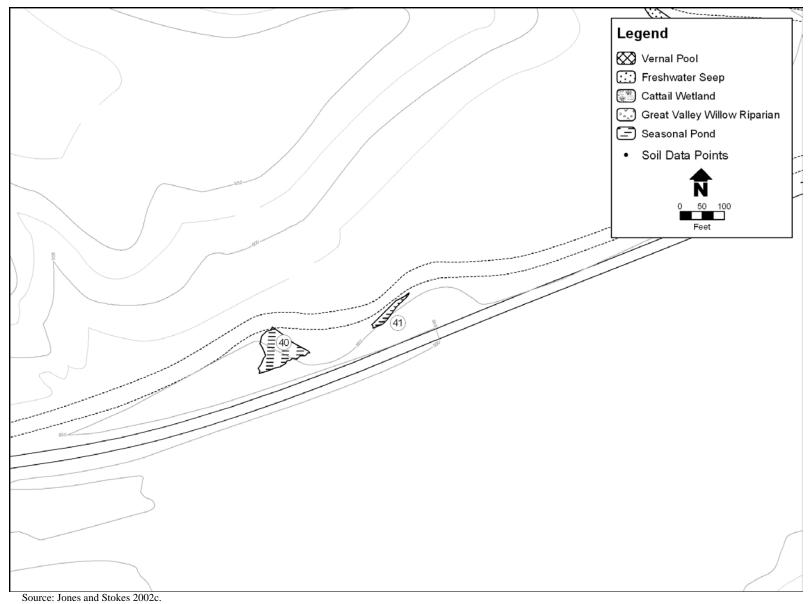

Source: Jones and Stokes 2002c.

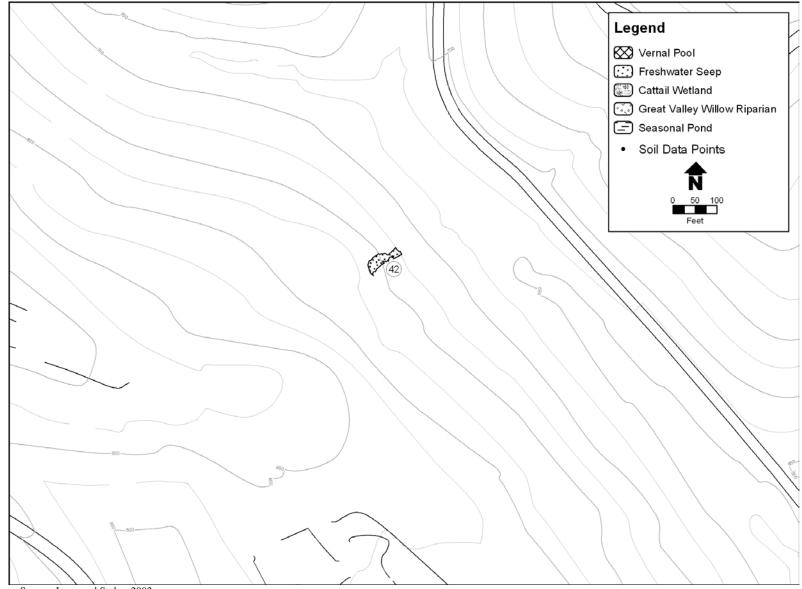

Source: Jones and Stokes 2002c.

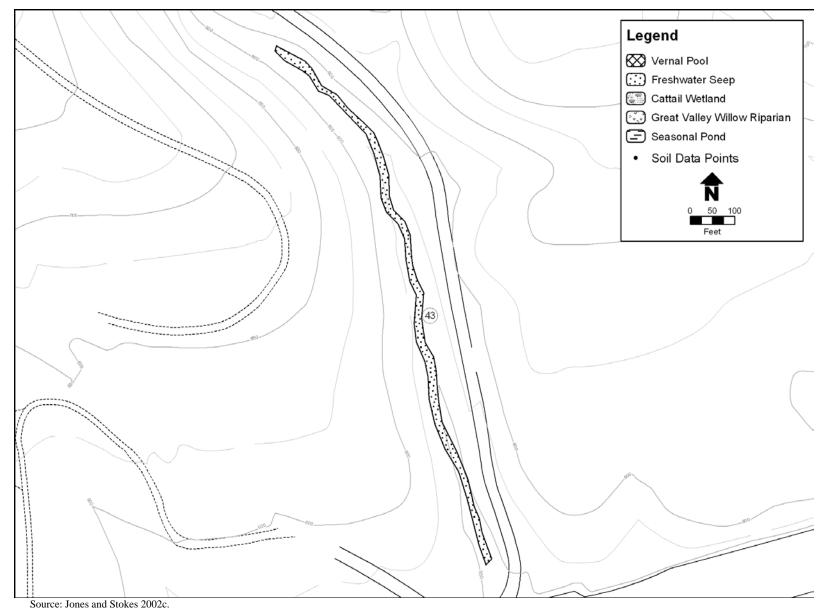
Source: Jones and Stokes 2002c.

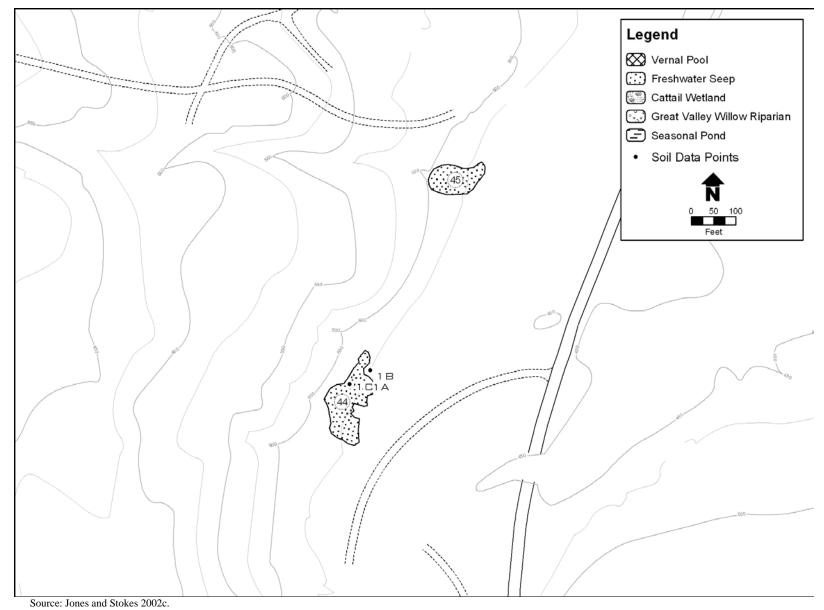
Source: Jones and Stokes 2002c.

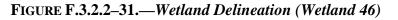

FIGURE F.3.2.2–24.—Wetland Delineation (Wetlands 32, 33, 34, 35, and 36)

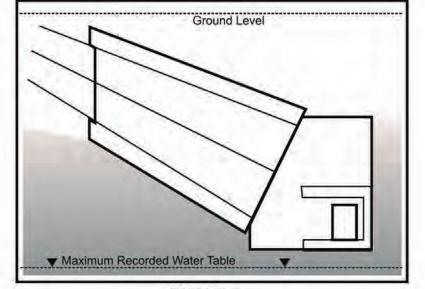


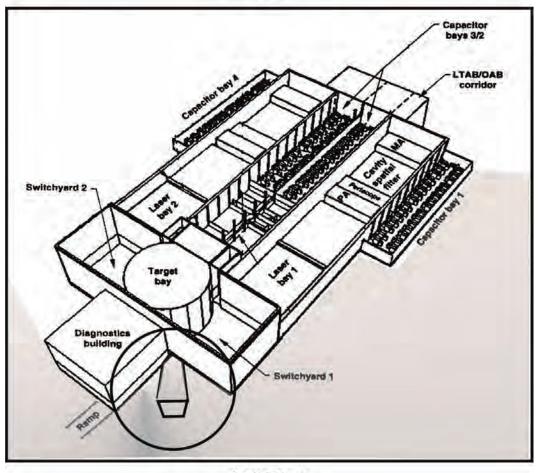




Source: Jones and Stokes 2002c.







Source: Jones and Stokes 2002c.

Side View

Aerial View

Source: Original. FIGURE M.3.2.4–1.—Location of the Neutron Spectrometer at the National Ignition Facility and Cross Section of the Neutron Spectrometer