

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Super-Efficient Air-Conditioning Unit

Performing Organizations: Baryon inc., Argonne National Laboratory, Oak Ridge National Laboratory, University of Illinois at Chicago Presenting: Dr. Demis Pandelidis Pl: Jeffrey Premer jeff@baryon.us tel: 702 888 2229 FOA Project BENEFIT 2020 2196-1902

Project Summary

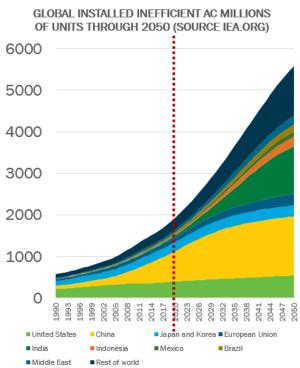
OBJECTIVE, OUTCOME, & IMPACT

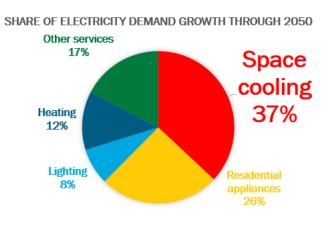
-ESCCC cooling technology which allows to save from 50 up to 90% energy for air conditioning -The technology is based on an unique two phase cooling process

-The technology is most efficient in humid climates

TEAM & PARTNERS

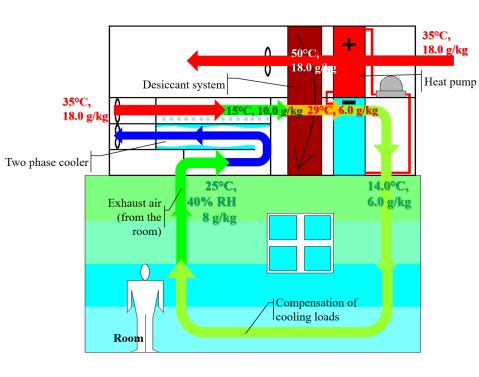
-Baryon inc.

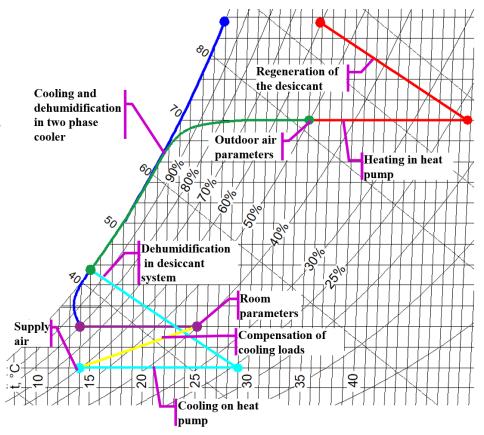

- -Argonne National Laboratory
- -Oak Ridge National Laboratory
- -University of Illinois at Chicago


STATS

Performance Period: 10.2022-10.2024 DOE budget: \$2,849,033, Cost Share: \$750,000 **Go/No-Go 2:** Demonstrate a laboratory-based prototype which will achieve ≥70% of the target effectiveness during the experimental tests **Final milestone:** Air conditioning module with a capacity of 10

kW (34,120 Btu/hr) operating in a real environment achieving at 60-80% energy savings in comparison with the traditional system.




Alignment and Impact

- 1) power consumption: proposed unit can significantly decrease the energy consumed by air conditioning systems, with the cooling COP varying from 12.0 up to 30, which corresponds to 50-80% energy savings.,
- 2) Highest effectiveness in humid climates: the system is dedicated for humid climates, where most of the human population lives and where AC is a necessity. Air conditioning systems are responsible for 40-60% of the energy consumption in buildings in humid climates.
- 3) New type of air cooler: Two phase cooler in ESCCC uses dedicated mini-channel structure, special materials and dedicated water distribution system, which allows it to obtain very high effectiveness
- 4) Universality: the proposed system offers a complete temperature and humidity control solution which doesn't need any supplementary equipment (eg. Cooling towers, dry coolers etc.),
- 5) Closed water cycle: unique arrangement of the unit allows recover condensate from TPC and membrane unit for the purpose of evaporation,
- 6) No mineral deposition: TPC in the unit uses unique water distribution system, which allows to completely prevent the mineral formation in the wet channels, by using self-cleaning mechanism,
- 7) 100% fresh air: proposed device supplies 100% fresh air stream to the building with minimal energy consumption (typical AC systems use 10% of fresh air). Fresh air creates a much healthier indoor environment (effective room ventilation is essential in minimizing the spread of bacteria and viruses, such as COVID-19),
- 8) Lifetime: the unit is passive, it is made of synthetic materials, its structure is less complicated than traditional systems. Due to this fact its expected life expectancy is 25-30 years compared to 10-20 of traditional AC.

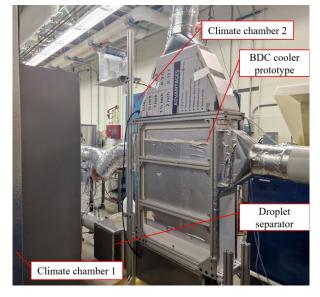
Approach

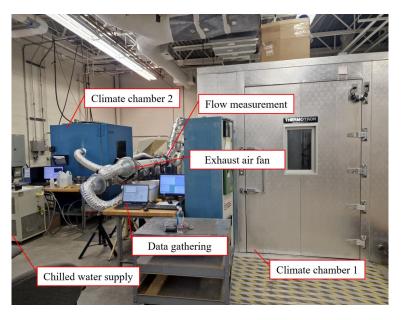
Approach

Theoretical research

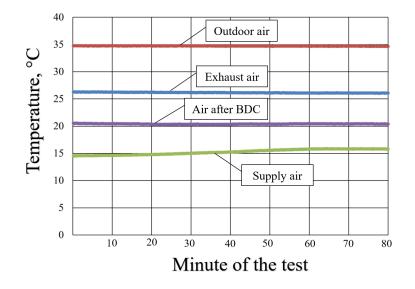
Numerical simulation of the crucial components Initial validation of the models Numerical simulation of the integrated system **Experimental research** Material testing Water distribution testing **Crucial components testing** Prototype testing Integrated system testing

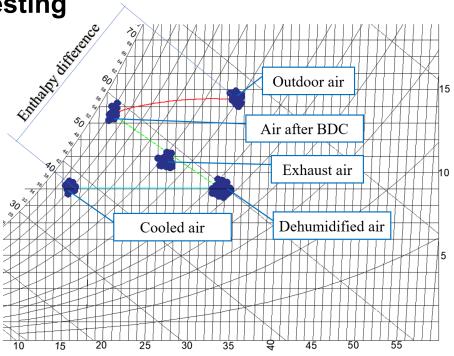
Improved prototypes development and testing





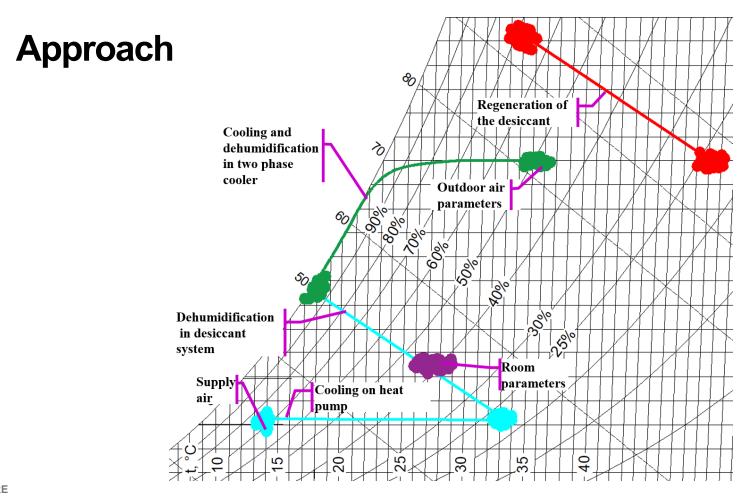
First prototype development and testing





First prototype development and testing

Improved prototypes development and testing



Improved prototypes development and testing

××°

Supply temperatures after two phase cooler :17.1 to 18.5°C Supply temperatures :12.1 to 14.5°C 90% of the target effectiveness achieved

COP thermal varying from 2.0 to 3.3 COP electrical varying from 9.1 to 11.1

89% of the target effectiveness achieved

- Go/No-Go 2: Demonstrate a laboratory-based prototype which will achieve \geq 70% of the target effectiveness during the experimental tests
- Final milestone: Air conditioning module with a capacity of 10 kW (34,120 Btu/hr) operating in a real environment achieving at 60-80% energy savings in comparison with the traditional system.

Progress and Future Work

- EU Licensee district cooling
 - 10 year agreement signed
 - US multinational OEM
 - Commercial pilot April 2025
 - Mass production 2026
 - Anchor customer:
 - 4 billion Euro revenue utility
 - 5.7+ million customers
 - Utility will sell cooling as a service to their customers
 - Other customer discussions underway

- EU Licensee pre-cooling
 - 10 year agreement signed
 - US multinational OEM
 - Commercial pilots underway
 - Mass production 2025
 - Many anchor customers (multi family home and office landlords)
 - High cost of energy in Europe (~0.25 Euro per kWh), very fast 1 year payback

Overlaps and Future Work

Thank you

Performing Organizations: Baryon inc., Argonne National Laboratory, Oak Ridge National Laboratory, University of Illinois at Chicago Presenting: Dr. Demis Pandelidis; PI: Jeffrey Premer jeff@baryon.us Tel: 702 888 2229 FOA Project BENEFIT 2020 and/or any other Project 2196-1902

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Reference Slides

Project Execution

	Year 1				Year 2				Year 3			
	Q1	Q_2	Q ₃	Q_4	Q1	Q_2	Q ₃	Q_4	Q1	Q_2	Q3	Q4
Task 1												
Milestone 1.1												
Milestone 1.2												
Milestone 1.3												
Task 2												
Milestone 2.1												
Milestone 2.2												
Milestone 2.3												
Go/No-Go 1												
Go/No-Go 2												
Task 3												
Milestone 3.1												
Milestone 3.2												
Milestone 3.3												
Go/No-Go 3												
Task 4												
Milestone 4.1												
Milestone 4.2												
Task 5												
Milestone 5.1												
Milestone 5.2												

u∎u ⊞≣

Sabri Cetin