

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

South El Monte Autonomous Controls Retrofit

South El Monte Autonomous Controls Retrofit

City of South El Monte, The Energy Coalition, Passive Logic John Poehler; Director of Public Works PI Tel (626) 652-6802; jpoehler@soelmonte.org Award# DE-EE0009466

Project Summary

OBJECTIVE, OUTCOME, & IMPACT

- Demonstrate autonomous building controls and digit twin model function for 3 host buildings
- Develop recommendations to scale this technology
- Leveraging CA ratepayer funds and programs to accelerate deployment of technology

TEAM & PARTNERS

- City of South El Monte (Building Owner/Operator)
- Passive Logic (Technology Innovator)
- The Energy Coalition (Facilitator)

STATS Performance Period: 07/2021 through 06/2026 DOE Budget: \$747,494, Cost Share: \$1,010,482 Milestone 1: Installation of equipment and control devices Milestone 2: Measurement & verification analysis Milestone 3: Findings Report and Dissemination Plan

Successful implementation of high-performance control has been shown to reduce HVAC energy use in commercial buildings by 30%. Nationwide deployment would correspond to an absolute reduction of >3% of total U.S. energy consumption. - United State Department of Energy EERE Website

The Challenge:

- **Control is Hard**: Small labor pool for design/install/programming of controls
- **High-Performance Control is Harder**: Only a subset of that pool can do high performance
- **Control is Expensive**: Today controls are reserved for big budget buildings
- **Control Doesn't Scale**: Today controls are reserved for large buildings

Autonomous Model-Based Control as a Solution:

- Simplified (Programming Free) Workflow: Draw your system, get controls, reduce labor by 90%
- Autonomous Controls: High performance, self-commissioning, flexib and edge based
- **Scalable Pricing:** Enables scaling down opening up new market segments

Alignment and Impact

Project Goals, Deliverables and Impact

Project Goals and Deliverables

- Deliverable to South El Monte: 30% Savings on energy cost
 - Autonomous Controls
 - Replacement of gas-fired RTUs with high efficiency heat pump RTUs
 - LED Lighting Retrofit
- Deliverable to DOE: Findings Summary and Recommendations for Replication
 M&V to validate savings ۲

 - Develop recommendations on scaling to other public agencies
 - Develop strategies to utilize public agency rate payer programs

Impact for South El Monte

- Reduced operational costs Increased capital for community investment Highlight South El Monte as model for energy efficient municipalities ٠

Alignment and Impact National Climate Goal Alignment

Greenhouse Gas Emission Reduction	 Increased Building Efficiency High Performance Controls Continuous commissioning and FDD Heat pumps and LEDs
Power System Decarbonization	 Grid Flexibility via Demand Response and Communication Demand response HVAC controls as edge compute/integration platform Predictive controls allow for power generation planning Enabling buildings as batteries
Energy Justice	 Democratization of controls Enabling broader pool of installers Scaling to small projects and small budgets

Alignment and Impact Blueprint Alignment

Increase Building Energy Efficiency	 High-performance controls Continuous commissioning and FDD Heat pumps and LEDs
Accelerate Onsite Emissions Reduction	Converting Gas to Heat Pumps
Transform Grid Edge at Buildings	 Enabling grid interactive buildings HVAC controls as edge compute/integration platform
Minimize Lifecycle Emissions	LED Longevity (compared to incandescent or fluorescent)
Prioritize Equity	 Eliminate technical and capital barrier to entry for controls contractors (Democratization of controls)
Prioritize Affordability	Scalable pricing model
Prioritize Resilience	HVAC controls as edge compute/integration platform

Approach Project Approach

Monitoring

- Power monitoring
- Environmental monitoring
- 6-month minimum baselining period

Building Retrofit

- Lighting retrofit (LEDs, occupancy monitoring, daylight sensors)
- HVAC retrofit
 - **Original Scope**: Like-for-like replacement of 9 of the gas-fired RTUs
 - **Updated Scope**: replace 100% of gas-fired RTUs with heat pumps (additional cost covered by City)
- Additional Scope: Heat pump water heaters (additional cost covered grant through SoCalREN)
- 6-month minimum re-baselining period with new equipment (before controls enabled)

Autonomous Controls Installation and Commissioning

Measurement & Verification and Reporting

Replication, Dissemination and Ratepayer Program Assessment

End-to-End Digital Twin Workflow & AI framework

- Integrated workflow
- Code free tooling
- Model based control
- Continuous model tuning
- Continuous Cx / FDD

Operational BIM

Approach Power / Energy Reduction Validation

- Monitoring building main power (after solar) and each RTU at each building via eGauge4015 and eGauge4030
- Connected via web API and stored in Cloud DB
- Establishing 3 power profiles
 - a. Before Lighting/HVAC Retrofit (~2 years)
 - b. After Lighting/HVAC Retrofit (≤6 months)
 - c. After PassiveLogic Installation (≤6 months)
- Energy savings at each step will be validated via weather normalized energy analysis using power meter data.

Power Metering Design & Visualization Community Center

Approach

Comfort / Environmental Validation

- 102 sensors are gathering 232 metrics across the 3 buildings
- HVAC Monitoring:
 - a. RTU Supply Air Temperature and RH
 - b. RTU Return Air Temperature and RH
- Indoor Monitoring:
 - a. Temperature
 - b. Relative Humidity (RH)
 - c. CO₂
 - d. PM
 - e. Occupancy
- Monnit Battery Power 900MHz Solution Selected
- Connected via web API and stored in Cloud DB
- This data will be used to analyze comfort before and after the updates.

1	Finalize Design	DONE
2	Equipment Procurement	DONE
3	System Installation	In Progress
4	Commissioning	In Progress
5	Launch Digital Twin Model Control Strategies	On Track*
6	Measurement & Verification	On Track*
7	Perform Analysis	On Track*
8	Dissemination Plan	On Track*

***On Track** means that we are meeting the newly established timelines based on approved project extensions

Progress

HVAC/Lighting Accomplishments, Milestones and Findings

- As of June 2024 HVAC and lighting upgrade EEMs are COMPLETE
 - a. 26 Gas fired RTUs (~170 tons total nominal capacity) removed
 - b. Replaced with high efficiency heat pumps
- Change in HVAC energy usage (PRELIMINARY):
 - a. Community Center: -68.3% (?!?) ONLY 1 MONTH OF DATA VERIFYING
 - b. Senior Center -36.7%
 - c. Mini Center: -29.6%
 - d. Project: -56.3%
- Discussion
 - a. Lighting upgrade is not visible in power data (likely due to changes in occupancy)
 - b. HVAC Improvement is great!
 - c. Too great...
 - d. Energy decrease has NOT been corroborated with billing.
 - e. Energy decrease has NOT been aligned with occupancy/usage
 - f. Savings are in the right direction, but more analysis is needed

Weather Normalized Average Daily Electrical Usage Pre / Post HVAC Upgrade

82 84 86 88

Daily Average Temperature (F)

Pre Upgrade

Post Upgrade

66 68 70 72 74 76 78

Analysis Period: Pre Upgrade = Aug 2023 Post Upgrade = Aug 2024

Progress

Controls Installs Accomplishments and Milestones

- PassiveLogic Controls installation is IN PROGRESS
- As of October 2024:
 - Electrical subcontractor has completed all wiring
 - Hives (PassiveLogic controllers) have been installed in all 3 buildings
 - Sense Nanos (PassiveLogic sensors) have been installed in all 3 buildings
- Digital twins have been created for all buildings
- Data is being gathered for digital twin tuning

Progress Issues, Lessons and Solutions

Issue	Lesson Learned	Solution
Long Lead Times	Avoid pandemics	Applied for project extension
Inflation	DOE Budget is fixed	City budget flexibility
Scope Increase	 DOE Budget is fixed Scope creep is a thing and sometimes that's OK sometimes 	 City budget flexibility Ratepay programs (SoCalREN)
Personnel Turnover	 The project is the people Progress/momentum can be lost with people 	 Increased meeting frequency to get back on track Get the right people in the right places
Technology Development Delays	Product development is hard	 PassiveLogic self installing Using a RS-485/IP Router Considering reducing scope

Future Work

Project Execution

Controls Finalization

- Complete wiring and installation
- Connect to RTUs via BACnet for monitoring
- Take over control of RTUs via BACnet (after the re-baselining period has ended)

• Measurement, Verification and Reporting

- Continue gathering data through post-controls-retrofit period
- Analyze data and calculate savings
- Report on above

• PassiveLogic Commercialization Plan (More on this on reference slide if desired)

- Soft Roll Out REIT Partnerships / Self Installing
- Technology Partnerships Select US MSIs
- General Release North America VARs and MSI

• Public Agency Scaling and Ratepayer Programs (More on this on future slides)

\odot

Future Work

Public Agency Scaling and Ratepayer Programs

• Public Agency Scaling:

- Leverage the California Technical Forum (CalTF)
- Active participation in CaITF to refine and align methodologies with statewide protocols.
- Utilize CaITF to ensure the consistency and accuracy of energy savings estimates for control measures.
- Engage in CaITF discussions to support the scalability of energy efficiency measures (EEMs) across public agencies.

• Utilizing Ratepayer Programs

- Integrate the approach into ratepayer-funded initiatives to scale EE efforts.
- Example: SoCal Regional Energy Network (SoCalREN) Public Sector Programs.
 - SoCalREN helps small commercial buildings in public agencies implement EEMs through tailored solutions and technical assistance.

Thank you

City of South El Monte The Energy Coalition Passive Logic

John Poehler; Director of Public Works Tel (626) 652-6802 jpoehler@soelmonte.org

Award # DE-EE0009466

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Reference Slides

Project Execution

Federal Quarter Q4 Q1 Q2 Q3	
Project Budget Period 1 Budget Period 2 Budget Period 3	
Project Quarter Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12	Total
Planned Federal Budget \$487,396 \$156,998 \$103,100	\$747,49
Planned Cost Share \$242,381 \$84,327 \$77,942	\$404,65
Planned Total \$729,777 \$241,325 \$181,042	\$1,152,1
Actual Federal Budget \$654,969 \$85,343 \$7,182	\$747,49
Actual Cost Share \$832,766 \$99,228 \$78,488	\$1,010,4
Actual Total \$1,487,735 \$184,571 \$85,670	\$1,757,9
Past Work	
1.1.1 Update EEMs	
1.2.1 Develop Survey	
1.22 Receive Survey Responses	
1.3.1 Draft Project Deison	
1.3.2 Finalize Project Design	
1.4.1 Create M&V Plan	
1.5.1 Install DAQ System	
2.1 Release RFP	
2.2 Procurement Complete	
3.1 Complete Installation	
3.1.1 Contractor Selected	
3.2.1 Update DAQ System	
Current / Future Work	
4.1 Commission System	
4.2 EEM Installation Inspection	
4.3 Hive Commissioning Assistance	
5.1 Launch Autonomous Control	
6.1 Digital Twin Calibration	
6.1.1 M&V Check 1	
6.1.2 M&V Check 2	
6.13 MAY Check 3	
7.1 MAV Complete	
7.1.1 Savings Calculations	
7.1.2 Final Report Submitted	
8.1 Publish Paper	
Project Quarter 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020	

COVID disruptions, personnel turnover and inflation cost increases caused major early delays

Go/No Go 1

Go/No Go 2

Andres Gonzalez

John Easterling

Pranesh Venugopal

The Energy Coalition Facilitator

John Poehler

Administration Oversight

Project Manager

Passive Logic Technology Provider

22 | EERE