

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: GEB by ME <u>G</u>rid-interactive <u>Efficient</u> <u>Buildings by</u> <u>Modular Design of</u> Plug-and-play <u>E</u>quipment

GEB by ME: <u>Grid-interactive Efficient Buildings by</u> <u>Modular Design of Plug-and-play Equipment</u>

Oak Ridge National Laboratory Kyle Gluesenkamp, Distinguished R&D Scientist gluesenkampk@ornl.gov BTO WBS 03.02.02.54

Pacific Northwest Pacific Northwest National Laboratory Michael Poplawski, Chief Engineer michael.poplawski@pnnl.gov BTO WBS 03.02.02.69

Project Summary

Objective

 Develop a novel concept of modular plug-and-play equipment ecosystem that is low-cost and easy to retrofit to realize electrified grid-interactive efficient buildings

Outcome & Impact

- Develop preliminary prototypes and simulations for plug-andplay, grid-integrated equipment to guide next-gen R&D.
- Achieve 50% reduction in CO2 emissions and 60% reduction in peak demand through an integrated system approach.
- Catalyze the market introduction of a low-cost, easy-to-retrofit modular equipment ecosystem for buildings.
- Providing accessible electrification solutions for hard-todecarbonize communities.

TEAM & PARTNERS

- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- University of Maryland
- Melink ZERO
- NexTEMP Solutions (formerly GEOAire)

STATS

Performance Period: FY23 - FY26

DOE Budget: \$2,250k, Cost Share: \$397k (15% TPC)

Milestone 1: Market and technology assessment (FY24 and FY25) Milestone 2: Modular modeling platform development (FY24, FY25) Milestone 3: Modular heat pump water heater development (FY24, FY25) Milestone 4: Modular, reversible hydronic heat pump development (FY25, FY26) Milestone 5: Whole house design optimization simulation (FY25, FY26) Milestone 6: Complete system field demonstration (FY26)

- Upgrading HVAC and WH equipment is a major expense (\$3.2 k 12.5k_{r1})
 - Electrifying may require an electrical panel upgrade (\$3k_[2])
 - Incremental upgrades are not possible

 Existing market dynamics and factors have resulted in limited investment in R&D for affordable efficient technologies for underserved communities (~970,000 household living in public housing units_[3])

- **Split incentives**: Renters are not incentivized to invest in HVAC improvements because the systems are integrated into the walls, floor, and attic, and can't be taken to their next home (44 million rental household_[4 5])
- Federal Inflation Reduction ACT offers rebates for micro/portable electric heat pumps; however, these technologies are not widely available, tend to be expensive, and require a dedicated 120/240 V circuit

- Current HVAC and WH systems do not communicate with each other or the grid
- Increasing penetration of renewable but **intermittent generation of renewable** generation technologies poses a new challenges for grid management.

Impact

Project Impact

• Develop an efficient low-GWP modular smart building equipment system with grid integration capabilities

- Inform early-stage R&D, accounting for energy and cost performance, and considerations across integration, use and installation
- Provide a 50% reduction in CO2 emissions and 60% reduction in peak demand
- Allow for easy and low-cost installation, **plug ang play/grab** and go modularity of components, easier retrofits, a singular compressor/condenser unit, and a low GWP refrigerant

Societal Impact

- An **accessible electrification solution** for crucial decarbonization of communities that are often overlooked and challenging to decarbonize (such as renters, and disadvantaged communities)
- The current R&D can **educate and influence** decision-making by utility and industrial companies and local, state, and federal policymakers, leading to accelerated decarbonization and electrification of all communities supporting federal energy justice incentives.

Alignment – electrification options for renters

Affordability and Equity

- Speed up access to **affordable**, **energy-efficient low-GWP modular heat pump technology** for electrification without needing panel upgrades
- DIY options empower low-income households, renters, and multi-family residents to invest in energy-efficient products they can own, helping **overcome the split incentive and affordability barriers**

Resilience

• **Improved resilience** by adding load flexibility to electrification, especially in low-income housing with affordable thermal energy storage module

Increase Energy-Efficiency

• Accelerates the availability of highly efficient low-GWP modular products, delivering **over 40% performance improvement** compared to existing low-cost, inefficient space conditioning and water heating systems

On-site emissions reduction

• A low-capital upgrade option that reduces on-site emissions by replacing inefficient gas-fired water heaters and furnaces, as well as high-GWP HVAC equipment, achieving a **50% reduction in CO2 emissions**

Transform the Grid Edge

- Integrating residential HVAC and water heating equipment with the grid facilitates greater renewable energy adoption and low-emission grid utilization
- Attain a **60% reduction in peak demand** to reduce upfront grid infrastructure costs and promote the transition to electrification

Approach – Current Market Landscape

Existing Products

- Packaged Terminal Heat Pump Unit (PTHP)
- Portable Heat Pump (PHP)
- Saddle Window Unit
- Heat Pump Water Heater (120 or 240 volt)
- 120 volt mini-split

EERE

Shortcomings of Existing Products

- **Voltage Ratings:** Some products are rated for 120 V; the majority operate at 208/240 V
- Circuit Limitations: 120 V products are not suitable for plugin shared circuits
- **Installation:** Professional installation typically required
- **Operation Mode Limitations:** Designed for either space conditioning or water heating not both. Not modular.
- Global Warming Potential (GWP): Some products use low-GWP refrigerant (R32), while majority still use high-GWP refrigerant (R410A)

Bosch 120 Volt Mini-Split

Approach – Novel Modular HVAC Ecosystem

New Modular Product Ecosystem

- Modular heat pump units create thermal energy interconnection
- Consumers can upgrade their HVAC system selectively without professional installation
- Applicable to single-family and multi-family homes, and apartments

Minimum Viable Product Set

- 1x Modular Heat Pump Unit
- 1x Outdoor Heat Exchanger
- 1x Indoor Unit (water heater or space conditioner)

Plug-and-play & Grab-and-go

- 120 V power source like other consumer products
- Hydronic connections between units allow for DIY
 assembly/disassembly

Approach – All-encompassing HVAC technology

Packaged Window Heat Pump

- Cooling and heating window unit
- Space conditioning only
- No storage or GEB capability .

Thermal Storage Mini-Split Heat Pump

- Thermal energy storage during off-peak
- Space conditioning is only available appliance Indoor Air Unit
- Refrigerant connections at home required •

Water Heater Storage System

- CO₂ heat pump over-heats water off-peak
- High-voltage (240 V) connection required

Outdoor Heat Pump

Water less energy dense than PCM

GEB by ME Ecosystem

- Multiple appliances
- Easy DIY 120 V and hydronic quick-connects •
- Energy storage and grid-connected load shifting

Outdoor

Approach – Novel Cost Solution & Equipment Development

Lower Cost through Simple Installation

- DIY installation through quick-connect hydronics, plug and play/grab and go device ecosystem
- 120 V plug-in power for each module

Device Ecosystem

- Modular HVAC components communicate and work together
- Reversible heat pump integration with thermal energy appliances facilitates response to different appliance demands and grid signals

Modular 20-gal Heat Pump Water Heater

- Compact, modular 20-gal HPWH to provide instant hot water at use location, connected to main hot water network
- Focus on FHR (smaller tank) and low cost (market competitive)

Approach – Market Engagement and Stakeholders

Market Impact

- Allow for low-cost installation and easy retrofit with plug-and-play modularity of components
- Result in a payback period shorter than 5 years due to the higher whole-house energy efficiency and easier installation

Market Engagement

- Will seek multiple stakeholder viewpoints on stakeholder needs and preferences, cost targets and affordability
 - ✓ E.g., building owners/occupants, supply chain, retrofit workforce network, utilities, lowincome programs and organizations
- Will publish a market assessment of the modular equipment system

Progress – Experimental

- First Breadboard Prototype for Water Heating
- Overview

ORNL has designed and is building the first breadboard prototype for modular water heating.

- Design Documentation
 - Detailed P&ID Diagram
 - Detailed Electrical Diagram
- Components
 - Fan coil unit designed to be powered over Ethernet (PoE) – 48V, < 1 amp
- Current Status
 - Breadboard prototype is in progress

Overlage Setup Progress – Experimental Setup

Progress – Modeling

- Modeling Platform Development
 - Developing detailed components and system level modular model in Modelica
 - Provide final optimized configuration for field prototype
- Detailed components model for
 - Compressor, and EEV
 - Indoor/Outdoor Heat Exchanger
 - Thermal Storage Tank (Sensible/Latent)
 - Secondary Loop
 - Thermal Storage Tank (Sensible/Latent)

Current Status

- Developing component model and simplified cycle model for verification
- Future Work
 - Model validation with experimental data
 LEERE

Progress – Assessment of Potential Market #1

- Target: Multifamily homes with individual (1 per residence) fossil-fuel water heaters installed in the home and less than \$50,000 household net income.
- Impact: Energy use reduction resulting from HPWH efficiency improvement

Rank	State	# of Homes	% of MF Homes
1	California	583,000	14%
2	New York	292,000	8%
3	Texas	269,000	10%
4	Illinois	236,000	14%
5	Massachusetts	202,000	18%
6	Ohio	120,000	12%
7	Colorado	111,000	19%
8	New Jersey	110,000	9%
9	Michigan	107,000	15%
10	Connecticut	103,000	23%

3.4M Multifamily Homes with Individual Fossil Fuel Water Heaters and < \$50k Household Income

Progress – Assessment of Potential Market #2

- Target: Commercial buildings with point-of-use electric tankless water heaters that are converted to modular HPWHs.
- Impact: Peak demand (kW) reduction, estimate by building type. For context, typical commercial electric demand charges can range from \$6 to \$14 per kW per 2017 NREL research.

Building Type	No. of Buildings	Average Sq. Ft.	Average kW Demand Reduction per Building				
Office	81,000	24,000	3.7				
Assembly	79,000	11,000	8.4				
Vehicle repair/storage	79,000	9,900	1.7				
Non-refrigerated Warehouse	78,000	36,100	1.8				
Strip Mall	55,000	38,500	4.5				
Retail	52,000	7,200	1.8				
Education	48,000	12,500	10.0				
Restaurant	36,000	5,000	2.5				
	Building TypeOfficeAssemblyVehicle repair/storageNon-refrigerated WarehouseStrip MallRetailEducationRestaurant	Building TypeNo. of BuildingsOffice81,000Assembly79,000Vehicle repair/storage79,000Non-refrigerated Warehouse78,000Strip Mall55,000Retail52,000Education48,000Restaurant36,000	Building TypeNo. of BuildingsAverage Sq. Ft.Office81,00024,000Assembly79,00011,000Vehicle repair/storage79,0009,900Non-refrigerated Warehouse78,00036,100Strip Mall55,00038,500Retail52,0007,200Education48,00012,500Restaurant36,0005,000				

Progress – Assessment of Compatibility with Commercial DC Distribution Technologies

 Emerge Alliance Class 2 NEC power 24 VDC 100 VA (W) Pacific Northwest

- Power over Ethernet Class 2 NEC power + data 48-56 VDC
 90 W per port \$\$
 - USB 3.0 Class 2 NEC power + data 5-48 VDC 240 W \$\$
- Fault Managed Power Class 4 NEC power + data up to 450 V (AC or DC) 2 kW \$\$\$

Future Work & End Vision

Future Work

- Modular heat pump water heater development, prototyping, and validation for hardware
 - ✓ Sizing and selecting compressor, heat exchangers, compressorized system components, storage tank
 - ✓ Goal of UEF > 3.3 and FHR > 30 gal per one modular 20-gal HPWH unit
- Modular modeling and simulation platform development (UMD)
- Modular reversible hydronic heat pump development integrated with water heater and energy storage
- Expand and evaluate reversible hydronic heat pump system with water heater, energy storage, and outdoor system addition
- Supervisory agent-based, grid-responsive modular controls development
- Updated/additional market and technology assessments (PNNL)

End vision: A new affordable modular plug-and-play HVAC product ecosystem

- Demonstrate proof-of-concept hardware, potentially using commercially available DC electrical distribution technologies
- Demonstrate modular controls that enable simple plug-and-play system operation
- Provide modular modeling and simulation platform for a) supporting design and analysis, and b) predicting performance of real-world systems
- Provide assessment of multiple potential target markets, and develop product-to-market commercialization strategy with Original Equipment Manufacturer (OEMs)

Thank you

Oak Ridge National Laboratory Kyle Gluesenkamp Distinguished R&D Scientist gluesenkampk@ornl.gov BTO WBS 03.02.02.54 Pacific Northwest National Laboratory Michael Poplawski Chief Engineer michael.poplawski@pnnl.gov BTO WBS 03.02.02.69

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Ë

Project Execution

		FY2024		FY2025				FY2026				
Planned budget	\$675k		\$675k			\$0						
Spent budget	\$543k (incl. late FY23)		plan: \$762k (incl. sub)			plan: \$720k (incl. sub)						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Milestone: Market and Technology Assessment												
Milestone: Detailed design of Modular HPWH Platform												
Future Work												
Milestone: Modular Modeling Platform Development												
Milestone: Assemble and Instrument the Modular HPWH Prototype												
Milestone: Laboratory Performance Evaluation verified the performance goals, reaching a UEF >3.3 and FHR >3 gallons												
Milestone: Market and Technology Landscape												
Milestone: Establishment of co-simulation platform												
Milestone: Whole HPWH Unit Model Development and Verification												
Milestone: Assemble and Instrument Modular Reversible Hydronic Prototype in Environmental Chamber and achieve 60% peak load shifting and 50% CO_2 reduction for a single bedroom												
Milestone: Simulate Whole House Energy Management												
Milestone: Modular System Control Optimization												
Milestone: Design and Fabricate a modular hydronic heat pump for field demonstration												
Milestone: Start Field Demonstration of modular HPWH												
Submit the project final report												

Subcontract to University of Maryland was in place FY24 Q4

Target

Actual

Project Lead, System Design, Experimental, and Controls (Oak Ridge National Laboratory)

Pa Shan

Kyle Gluesenkamp Distinguished R&D Staff

Bo Shen Senior R&D Staff

Xiaobing Liu Senior R&D Staff

Navin Kumar Technical Staff

Borui Cui Associate R&D Staff

Sajjan Pokhrel Postdoctoral Researcher

Joshua Stiborek Postdoctoral Researcher

Market and Technology Assessment (Pacific Northwest National Laboratory)

Michael Poplawski Chief Engineer Team Lead

Josh Butzbaugh Energy Analyst

Anay Waghale Electrical Engineer 3

Modeling, Controls, and Optimization (University of Maryland, CEEE)

Reinhard Radermacher Director CEEE Minta Martin Professor

Co - Director CEEE

Research Professor

James Tancabel Postdoctoral Researcher

Haopeng Liu Postdoctoral Researcher