

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: High-Temperature Combination Heat Pumps for Low-Cost Electrification

High-Temperature Combination Heat Pumps for Low-Cost Electrification

National Renewable Energy Laboratory, Group14 Engineering Nelson James, Researcher III nelson.james@nrel.gov WBS: 3.2.2.59

Project Summary

OBJECTIVE, OUTCOME, & IMPACT

This project aims to **reduce barriers to decarbonization** in multifamily homes by developing combination electric heat pumping systems suitable for interfacing with legacy convective heat emitters. Prototype heat pumping systems will be developed targeting **20% lower installed costs** for heat pump retrofits in multifamily homes using hydronic heating systems.

TEAM & PARTNERS

Modeling & Performance Characterization

Stakeholder Engagement

STATS

Performance Period: 10/2022 – 09/2025 DOE Budget: \$2,027k, Cost Share: \$0k Milestone 1: Stakeholder engagement for design guidance Milestone 2: Techno-economic modeling and optimization of heat pump system. Milestone 3: Prototype experimental characterization

More than **3.8 million multifamily housing units** rely on gas-driven steam or hot water systems to provide space heating. These legacy systems generally utilize **high-temperature radiators** that present challenges for electrification with heat pumps.

Cost-effective heat pumping solutions for these buildings can help ensure that all segments of the population reap the benefits of **equitable decarbonization**.

Alignment and Impact

- Increase building energy efficiency
 - Heat pump to achieve efficiency targets COP_{H} of 2.1 at 5°F
- Accelerate onsite emissions reductions
 - Provide efficient electrification option for millions of buildings using high-temperature hydronic systems
- <u>وجم</u> Prioritize equity
 - Explore priorities of income-qualified housing and disadvantaged communities
 - Prioritize affordability
 - Drop-in replacements with a lower installation and operating cost

Percentage of Fossil Fuel Heated Homes Using Steam or Hot Water Systems by Household Income

EIA RECS 2020

Deliverables: Laboratory demonstration of heat pump suitable for legacy hydronic systems

\$

Current Solutions

- Reduce hot water temperature requirements:
 - Replace heat emitters with larger devices.
 - Reduce building load via envelope retrofits.
 - Replace heat emitters with fan-coils.
 - Adding radiant panels.
- Retrofit with in-unit heating
 - Mini-splits
 - Window units
 - PTACs

- Heat Pump Drop-In Replacements
 - Numerous air-source product offerings for water delivery temperatures < 160 °F.
 - Limited offerings for water delivery temperatures > 160 °F.

××°

Approach

- System and Component Modeling.
- Techno-Economic Optimization.
- Prototype Development:
 - Modify equipment for high temperature combination heat pumping.
- Experimentation:
 - Steady-state prototype characterization.
 - Hardware-in-the-loop evaluation.

- Stakeholder Engagement:
 - Outreach interviews.
 - Regional assessments.
 - Design Guidance

A holistic approach to deploying combination heat pump systems suitable for convective heating in multifamily buildings

>0							
(× Apj	oroach	OBJECTIVES	<u>ACTIVITIES</u>	<u>OUTPUTS</u>	<u>OUTCOMES</u>		
Mode B B B B B B B B B B B B B B B B B B B		Develop low-cost combination heat pumps for multifamily buildings	Generate stakeholder driven design criteria	Guidance for designing low-cost high temperature lift combination	Reduced barriers to decarbonization in multifamily homes		
Laboratory experimentation		Reduce electrification retrofit cost by easily	Model heat pumping and water distribution systems	Simulation tools to	Expanded product offerings for electrification		
		integrating with legacy hydronic infrastructure	Integrate cost and performance system modeling	for performance and cost targets	Increased use of space and water		
Target m	narkets	Substitute system components with	Construct and characterize	Pre-commercial prototype system	heating systems with refrigerant GWP <750		
Bui	Climate Zones Utility Structures ling Characteristics	lower cost alternatives to drive down hardware costs	prototype system Evaluate grid- interactive controls	Market assessment to aid in targeted system deployment	20% lower installed cost multifamily heat pumps		
8 EERE							

Approach

behavior.

Challenges

1 Large Temperature Lift: Risk Mitigation Strategy Prevent compressor overheating. Achieve efficiency targets. • Compressor - Multi-stage Compression 2 Cost Reduction: Overheating - Dual Fuel Systems Establish baseline costs. • Reduce costs of material inputs. ٠ Capacity loss at low - Supplemental heating integration Simplify retrofit/installation ٠ outdoor temperature procedure. Limited Deployment - Explore cost reducing measures 3 System Installation: - Identify and address stakeholder of Proposed Space and electrical capacity Solution needs ٠ constraints. - Explore role of utility programs to aid deployment **Control Optimization:** 4 Simulating realistic building

Progress and Future Work: Stakeholder Engagement

 Results of interviews with stakeholders compiled into 39-page report on challenges and needs for electrifying affordable multifamily housing and delivered to BTO.

Stakeholder Demographics

Stakeholders by Location	
CA	5
CO	15
FL	4
Stakeholders by Type	
Affordable Housing Developer/Owner	7
Architect	3
Design Engineer	5
Design Engineer/Installing Contractor	2
General Contractor	1
Housing Finance Authority	2
O&M Contractor	1
Utility/Rebate Program Administrator	3

Feedback Excerpts

Constructability

- Older buildings with larger/bulkier existing equipment may have more space availability for heat pumping devices.
- Sufficient outdoor air access required for interior mechanical rooms

Design/Infrastructure

- Lower capacity/temperature heat pumps may uncover issues that were previously compensated for by boiler systems.
- There is a lot of variation in central water heating systems.
 Flexibility in configuring the equipment would help during the retrofit process

Progress and Future Work: System Modeling

• R32, 2-phase injected air-to-water vapor compression heat pump cycle with series heat exchangers for hydronic and DHW heating

 \bigcirc

https://doi.org/10.1016/j.apenergy.2024.124225

 \odot

Progress and Future Work: Regional Assessment

$$SCOP_{h} = \frac{\sum_{t=0}^{8760} \left(\dot{Q}_{hydro}(t_{hr}) + \dot{Q}_{dhw}(t_{hr}) \right)}{\sum_{t=0}^{8760} \left(\dot{W}_{comp}(t_{hr}) + \dot{W}_{pump}(t_{hr}) + \dot{W}_{fan}(t_{hr}) + \dot{W}_{elec}(t_{hr}) \right)}$$

 $\dot{Q}_{hydro}(t_{hr})$: Hourly sensible space heating load. $\dot{Q}_{dhw}(t_{hr})$: Hourly domestic hot water (DHW) load. $\dot{W}_{comp}(t_{hr})$: Hourly electrical load of the compressor. $\dot{W}_{liquid}(t_{hr})$: Hourly electrical load of the liquid pumps. $\dot{W}_{fan}(t_{hr})$: Hourly electrical load of the fan. $\dot{W}_{elec}(t_{hr})$: Hourly electrical load of the electric heater.

https://doi.org/10.1016/j.apenergy.2024.124225

Progress and Future Work: Emissions and Costs

 \odot

Progress and Future Work: Prototype Testing

 In-house modifications to off-the shelf vapor injected air-to-water heat pump unit

- Planned Modifications
 - Adding secondary heat exchanger for DHW
 - Imposing 2-phase injection
 - Refrigerant replacement

 CRADA negotiation with heat pump OEM underway to evaluate alternative compressor, refrigerant, and system designs

- Steady-state testing of prototype heat pump
- Hardware-in-the-loop testing of prototype heat pump
- Material Substitutions and Design Optimization
- O Techno-economic and target market assessment

Thank you

National Renewable Energy Laboratory Group14 Engineering Nelson James – Researcher III Nelson.James@nrel.gov WBS: 3.2.2.59

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Reference Slides

Project Execution

	FY2023		FY2024				FY2025					
Planned budget		675k			675k				675k			
pent budget		675k			392k			Ok				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Initial thermodynamic modeling		Þ										
DHW storage and distributiong modeling			Þ									
Costs. vs. performance modeling				•								
Model projected saving and performance targets												
Stakeholder engagement report												
Current/Future Work												
Fabrication of prototype system												
Preliminary test data on prototype system												
Experimentallay achieve performance target												
Hardware-in-the-loop plan developed												

• Challenges in CRADA execution led to the need to replace OEM project partner for prototype characterization and technoeconomic assessment.

💒) T

Team

Nelson James, Ph.D. Project PI, Researcher III, NREL

Jeff Maguire Distribution Modeling, Researcher IV, NREL

Junyoung Kim, Ph.D. Modeling and Experimentation, Postdoc, NREL

Bethany Sparn Experimentation and Controls, Senior Researcher, NREL

Ransisi Huang,

System Modeling,

Researcher III,

Ph.D.

NREL

Jon Winkler, Ph.D. Design and Experimentation, Researcher V, NREL

Michael Levinson, CEM Stakeholder Engagement, Multifamily Housing Director, Group14 Engineering

Erik Swanton, P.E. Stakeholder Engagement, Sr. Energy Project Manager, Group14 Engineering

Kyle Zimbelman Stakeholder Engagement, Energy Engineer Group14 Engineering