

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review:

High-Temperature Heat Pump for Commercial Space and Water Heating

High-Temperature Heat Pump for Commercial Space and Water Heating

Oak Ridge National Laboratory Kashif Nawaz (Section Head, Building Technologies Research) (865) 241-0972 WBS 03.02.02.36.NS02

Project Summary

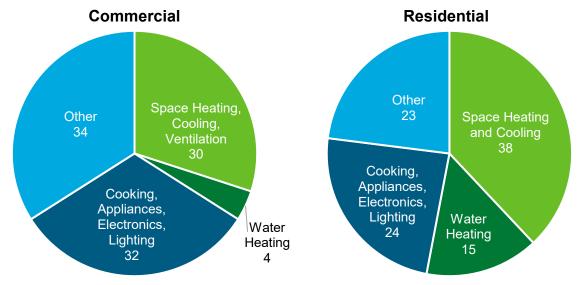
OBJECTIVE, OUTCOME, AND IMPACT

This project is focused on the development and performance optimization of a high-temperature heat pump for space and water heating for commercial buildings. The team wil design and demonstrate a heat pump with a 30 kW or higher capacity that can provide at least a 180°F sink temperature with an acceptable coefficient of performance (COP).

TEAM AND PARTNERS

Oak Ridge National Laboratory (ORNL):

Kashif Nawaz, Lei Gao, Zhiming Gao, Steve Kowalski, Jubair Shamim, Jian Sun, Pengtao Wang, Cheng-Min Yang **Copeland:** Drew Welch **Rheem:** Ati Manay, Vishwanath Ardha, Baojie Mu, John Tidwell, Saman Beyhaghi


STATS

Performance Period: April 2022–June 2026
DOE Budget: \$1.5M/year, Cost Share: \$500K
Milestone 1: Analysis of system configuration
Milestone 2: Component acquisition and validation followed by development of a prototype
Milestone 3: Lab-scale and field validation of performance under realistic operating conditions

Problem

- Processes in buildings and industrial applications account for 60% of direct and indirect CO₂ emissions
- More than 1.8 quads of energy are used annually in gas-fired equipment for commercial heating applications, accounting for more than 94 MMT of CO₂ emissions in 2021

Total CO₂ emissions from commercial and residential sectors

Alignment and Impact

A direct replacement for gas-fired technology for commercial-building heating

- Electrification of commercial buildings
- At least 50% reduction in direct CO₂ emissions
- · Implications for cold-climate heating systems

An integrated heat pump concept with unprecedented sink temperature

- Optimized process integration for simultaneous air and water heating
- Implications beyond buildings (industrial decarbonization)

Demonstration of an acceptable COP at all operating conditions

- System design to maximize performance
- Potential for scaling up for large-scale deployments

Positioning the United States for competitive markets

- · An accelerated development plan to assume a leading role
- Lessons learned from current/ongoing developments (IEA Annex 58)

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050

Energy justice

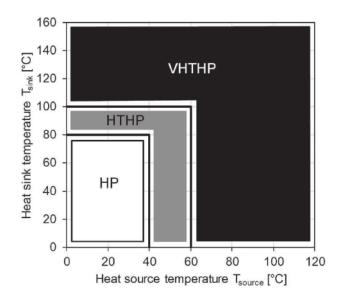
40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

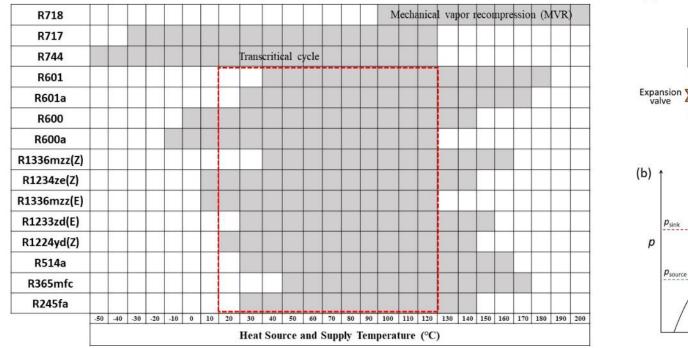
Reduce onsite fossil -based CO₂ emissions in buildings 25% by 2035 and 75% by 2050, compared to 2005

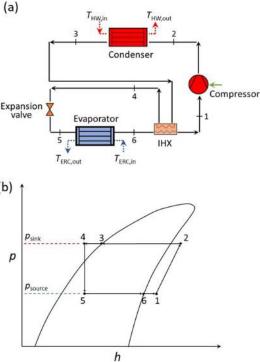

5 | EERE

Approach

- For heating and domestic hot water in urban multifamily applications, today's solution is often a combustion-fueled boiler
- High water temperatures supplied by boilers are difficult to obtain with today's heat pump technology
- High temperature heat pumps (HTHPs) or very high temperature heat pumps (VHTHPs) are being developed around the world and may meet these application needs

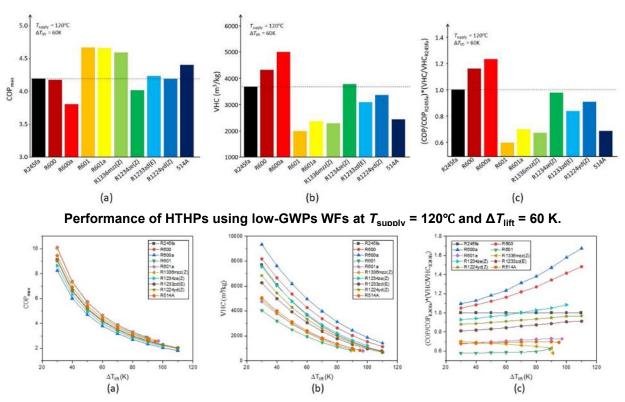
Accepted definitions of high and very high temperature heat pumps


From: Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., & Bertsch, S. S. (2018). High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. *Energy (Oxford), 152,* 985-1010. https://doi.org/10.1016/j.energy.2018.03.166

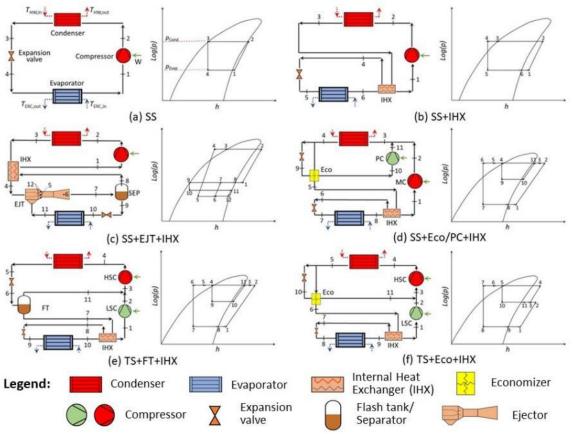


The ORNL team is developing a comprehensive research, development, and demonstration framework for commercial/industrial HTHPs.

Refrigerant Selection Process



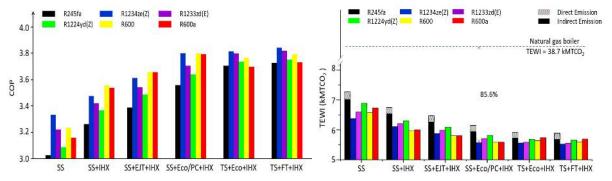
Temperature application ranges of refrigerants in HTHPs ($T_{supply} \ge 100^{\circ}C$)


Refrigerant Selection Process

- No perfect low-GWP refrigerant exists; a trade-off between the COP and volumetric heating capacity (VHC) must be considered.
- R600 and R600a are appropriate for the balanced COP and VHC scenarios, but A3 flammability requires specific safety measurements.
- R601, R601a, and R1336mzz(Z) are appropriate for the highest COP, but R601 and R601a require very large compressors.

××°

System Configuration Analysis

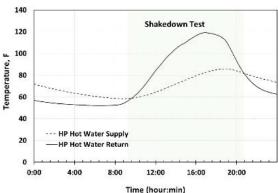


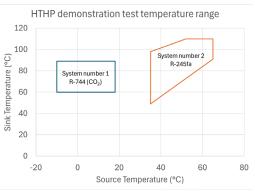
System Configuration Analysis

Waste heat: $32^{\circ}C \rightarrow 27^{\circ}C$, 2–14 MW

Supply heat: $75^{\circ}C \rightarrow 85^{\circ}C$ for space and water heating

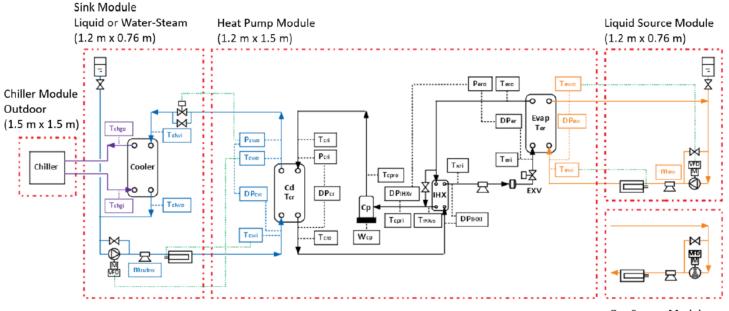
Maximum COP = 3.78 ± 0.04

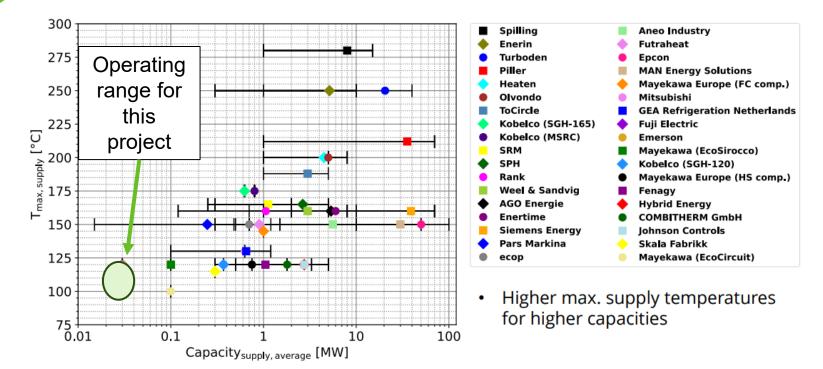

Performance of HTHPs with various configurations and low-GWP WFs: (a) COP and (b) TEWI.


In this analysis of replacing boilers at the ORNL campus with HTHPs that use the supercomputer waste heat as a heat source, a 1 MW HTHP reduces the total equivalent warming impact (TEWI) by 33,000 MMT CO₂ (85.6%).

Demonstration Test Facility

- The facility is complete and ready to demonstrate the operation of commercial-scale heat pumps.
- The source and sink are demonstrated through controlled heater and chiller networks.
- The first demonstration 58 kW system uses CO₂ as a refrigerant.
- The second system to be demonstrated with the facility will have 41 kW capacity and use R-245fa.





 The ORNL HTHP research test bed can accommodate 30–100 kW capacity with a range of gas and liquid sink temperatures

Gas Source Module (1.2 m x 0.76 m)

Market Review and Assessment

Benjamin Zühlsdorf, IEA HPT Annex 58 High Temperature Heat Pumps Final Webinar, 23 April 2024.

 \odot

Partner Engagement

- We are working on the approval for a CRADA with an HVAC OEM and a compressor supplier to develop a product with these characteristics:
 - Heat sink temperature goal = 180° F (stretch goal heat sink temperature = 230° F)
 - Minimum heat source temperature goal = 0° F (stretch goal heat source temperature = -15° F)
 - Heating capacity ≥50 kW (170,600 Btu/h)
 - Target application = replacement of a combustion boiler in multifamily housing
 - COP ≥2
- The prototype will be tested at ORNL, and test results over a range of conditions will feed a life cycle cost analysis to demonstrate the viability of this technology in the application

Thank you

Oak Ridge National Laboratory

Kashif Nawaz, Senior R&D Staff (865) 241-0972 / nawazk@ornl.gov WBS 03.02.02.36.NS02 The **Building Technologies Research and Integration Center (BTRIC)** at ORNL has supported DOE BTO since 1993. BTRIC is comprised of more than 60,000 square feet of lab facilities conducting RD&D to develop affordable, efficient, and resilient buildings while reducing their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Large-Scale Climate Simulator

2-Story Commercial

Building Flexible Research Platform

Envelope and

Equipment

Laboratories

Envelope

Systems Research Center Environmenta

Flexible Research Platform

HVAC/R

Chamber

Scientific and Economic Results

Apparatus

139 publications in FY24 140+ industry partners 60+ university partners 16 R&D 100 awards 64 active CRADAs

Maximum Building

Energy Efficiency

Research Laboratory

Heat, Air

and Moisture

Chamber

Building Equipment Testing

Multizone

Chamber

BTRIC is a DOE-Designated National User Facility

Reference Slides

Project Execution

		FY20XX				FY20YY				FY20 <mark>ZZ</mark>			
Planned budget													
Spent budget													
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Past Work													
Q1 Milestone: Example 1													
Q2 Milestone: Example 2 lis planned date of milestone)													
Q3 Milestone: Example 3													
Q4 Milestone: Example 4													
Q1 Milestone: Example 5													
Current/Future Work													
Q3 Milestone: Example 6													
Q4 Milestone: Example 7													
Insert more Milestones as needed													

- Go/no-go decision points
- Explanation for slipped milestones and slips in schedule

