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Check-valve assembly to facilitate counter -flow heat exchangers in both
cooling and heating modes (arrows in heating mode )

Main refrigerants at Play Reference:
A Complex Picture in Continuous Evolution https://www.danfoss.com/media/7174/low-gwp-whitepaper.pdf
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. Project Summary

OBJECTIVE, OUTCOME, AND IMPACT e

» Develop low-cost, direct-expansion heat pump using
long-term refrigerants with GWP <150 and suitable for
mainstream building and equipment structures

* Optimize cooling and heating performance o

» Achieve seasonal cooling performance of season
energy efficiency ratio (SEER) >16.0 =

==

HWayValve

* Achieve seasonal heating performance of heating i
seasonal performance factor (HSPF) >9.0 ] |
5-mm tube cross-counterflow_outdoor coil
TEAM AND PARTNERS STATS
ORNL Team: Bo Shen, Zhenning Li Performance Period: 10/2020-09/2025
Partner: DOE budget: $600k (FY24)
) . . FY21-FY23: Develop cost-optimized, GWP <150 residential heat
Copeland Helix Innovation Center pumps
Su per Radiator Coils FY21: Develop optimized component technologies and novel system
Arkema configuration to maintain counterflow in both modes
FY22-FY23: Laboratory evaluation of GWP <150 heat pump prototype
COPELAND and verification of high-end performances
FY24-FY25: Develop low-cost, direct-expansion heat pump using
I 13‘;’55@0,2 ARKENA ultra-low-GWP refrigerants (GWP <10)—focus on propane hydronic
CoiLs.

and CO, mixture systems
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Problem
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Requirements to reduce environmental impacts of heat pump systems: refrigerants
with GWPs >750 will be banned after 2023; long-term, industry will pursue
refrigerants with GWP < 150

Most low-GWP mixtures are flammable; new heat pump designs must reduce
refrigerant charge and avoid explosion risk

Low-GWP mixtures have high temperature glide; switching from cooling to heating
mode makes counterflow HX as parallel-flow, inducing performance degradation

New heat exchanger designs and new flow control devices (i.e., valves) are needed
to guarantee desirable heat pump performance under cooling and heating modes

New low-GWP heat pumps must accommodate current manufacturing and
installation processes and fit into current house structures

New design method for heat pump with low-GWP refrigerants is needed to make
products cost effective and easily accepted by end users




& Alignment and Impact

Increase building energy efficiency and reduce GHG

emissions
 Deliver component technologies (heat exchangers, flow controls, and
Qb compressors) and system configuration to support transition to
L refrigerant with high glide and GWP <150 and to reduce direct GHG

Greenhouse gas em|SS|OnS

Fissione e« Demonstrate high-end efficiency levels in cooling and heating modes
for high-glide refrigerants and reduce indirect GHG emissions

« SEER >16.0 (SEER2 >15.3) and HSPF >9.0 (HSPF2 >7.5)
o s.s Prioritize equity, affordability, and resilience
o6 %= . Optimize cost structure for residential users to improve affordability

A
Energy . Est_ablish production and installation path to apply low-GWP, high-glide
justice refrigerants
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Approach public-domain heat pump /coil design and optimization
tool capable of HFC, HFO, natural refrigerants, and more

DOE/ORNL Heat Pump Design Model (HPDM)
upgraded to simulate low-GWP mixtures

OAK 1. Tube element: in-&- i i istributi
“RIDGE DOE/ORNL Heat Pump Design Model Fin-&-Tube Coil Air flow distribution
] ! i | Lo |
. I TOpTse g Ty F My
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Approach (cont’d)

» Designed a system configuration to maintain HX cross-counterflow
configurations in cooling or heating mode

Maximize: EER

Subject to:
AT
B ATsuperheat, evaporator outlet =10 - % [R]
OPOrAOR | D[R] AT i ot o <15 [R]
| Qo =1055kW
B | SHRevapommr' SHRbaseline,evaporator | < 1%
1 < Noiyewits evaporaior < Ntubes per bank of evaporator
1< Nojyeviss condenser < Ntubes per bank of condenser
Dimension Height evaporator =Height, ;..
constraints | Lengthmpmm, =Length,,.;..
Height e, =Height, ;.
Length,,, jns. =Lengthy, .
Tube diameter varies among 5 mm,7 mm,9 mm

—
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New system configuration maintaining counterflow HXs in dual modes

(a) 5-mm Tube Layout

Staggered

(b) 7-mm Tube Layout
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(¢) 9-mm Tube Layout
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Off-the-shelf tube layout



.Progress Model-Based Design Optimization

) Only heat:'ng perforrr;ance supea"ior Bloth COOffngl' and heatirlvg I
to baseline performance superior to baseline
¢
T5F RAS4CSmm  B<— p4s7A 5Smm &
| R444B 295 A2L 7.6 8.9 92.11 T NI
238  A2L 5.4 6.2 78.94 * %
(o] 7 [ A A =
146 A2L 6.0 6.0 824 B oA RA10A Baseline
w2
139 A2L 61 69 9015 = 651 £ 'S ® Only coolh'ng performance superior ]
251 A2L 53 6.0 88.74 o| tabazine
A olor Legens
Keys. 6 i ¢ [ ] EIRZIJIJOS\ . 7
b R32
» Optimize multirow coils, 5 mm tubes J Shape Legend .
. . . . @ Bascline Drop-in
+ Flow control devices maintain optimum heat 37 B s | | & KOTA 1
exchanger configurations in heating/cooling modes R et
« Develop multistage compressors for low-GWP 0 R i A Do sl
i 95 10 105 11 115 12 125 13 135
refrigerants
+ Selected R-457A provided by Arkema for SEER2
prototyping eat exchanger optimization shows multi-row 5 mm tube

8 | EERE coil in cross-counterflow offers preferable performance



Progress Life Cycle Climate Performance Analysis

Total Dircet Emission [kg CO2¢]

s - Flowchart of the LCCP 9000
Original Equipment X
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emission by 13%—-33%, depending on choice of refrigerant and climate zone

LCCP evaluation results



.PI’OQI’QSS Laboratory Evaluation of Low-GWP Heat Pump

» Designed system configuration to maintain HX counterflow configurations in dual mode

* Fabricated 5 mm tube coils and assembled with the chasses, fans, and electric boxes of a
4.5 ton HP

» A bi-direction EXV with a suction line accumulator was used to control the superheat and
optimize charge

« For indoor coil options were tested T
n 2 f ﬂ)\ l R dt= e
\ [ \ | Ao ] j — 9
T e —— - 3 O] == TE
R

o ! - !
= :
. -
Fan K \ T
‘‘‘‘‘‘‘ 1 nee .
s L Tested Indoor coil:
i Option 1: microchannel heat exchange

10 Outdoor 5 mm tube coil Obti . -
tion 2: tube-fin heat exchanger
installed on 4.5 ton chassis t P J




= Progress AHRI 210/240 Two-Stage Heat Pump Test Matrix

Heating mode (70°F indoor return air)
» 62°F, compressor L, indoor blower H
» 47°F, compressor H and L, indoor blower H
» 35°F, compressor L+ blower H or L; compressor H blower H

« 17°F, compressor L + blower L; compressor H + blower L or H
* 5°F, compressor H + blower L

Cooling mode (80°F DB/67°F WB indoor return air)

» 95°F ambient, compressor L + indoor blower L; compressor H + indoor blower H
» 82°F ambient, compressor L + indoor blower L; compressor H + indoor blower H

L: compressor low stage operation
H: compressor high stage operation
DB: Dry-bulb temperature

WB: Wet-bulb temperature
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Progress Cooling Performance

4C52ooling capacity at different ambient conditions

‘ Rated capacity 3.4 ton (indoor-MCHX)
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Using microchannel HX indoor coil
» Rated cooling capacity @ 95°F is 3.4 ton
« EER @ 95°F is 12.4 (high stage), 12.6 (low stage)
e Qutdoor-TFHX-5mmOD, Indoor-MCHX
e Outdoor-ODTFHX-5mmOD, Indoor-TFHX-9mmOD
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Using tube-fin HX indoor coil
» Rated cooling capacity @ 95°F is 3.1 ton
. EER@ 95°F is 11.2 (high stage), 11.9 (low stage)
e Outdoor-TFHX-5mmOD, Indoor-MCHX
e Outdoor-TFHX-5mmOD, Indoor-TFHX-9mmOD
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Heating capacity at different ambient conditions

Progress Heating Performance

e Outdoor-TFHX-5mmOD, Indoor-MCHX
e Outdoor-TFHX-5mmOD, Indoor-TFHX-9mmOD

.
Rated capacity 3.2 ton .
L]
s
H
..
T
H
L] ’ L
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L

Using microchannel HX indoor coil
» Rated heating capacity @ 47°F is 3.2 ton
« COP @ 47°F is 4.0 (high), 4.3 (low)

0 10 20 30 40 50 60
Ambient Temperature [F]

70

Heating COP [-]
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COP at different ambient conditions

® Outdoor-TFHX-5mmOD, Indoor-MCHX
® Outdoor-TFHX-5mmOD, Indoor-TFHX-9mmOD

Rated COP 4.0 (MCHX-high)

. *®
.\
L]
Rated COP 3.5 (TFHX-high)

& Using tube-fin HX indoor caoil
« Rated heating capacity @ 47°F is 3.2
° ton
+ COP @ 47°F is 3.5 (high), 3.7 (low)

10 20 30 40 50 60

Ambient Temperature [F]

HSPF target is exceeded: 10.1 (MCHX), 9.16 (TFHX) vs. 9.0 (goal)

70



. Progress Compressor Efficiency and Discharge Temperature

Performance of a Copeland two-stage R-457A compressor achieves project goals

50% increase in displacement volume compared with R-410A compressor

Smaller motor torque than R-410A compressor owing to R-457A’s lower working pressures
Isentropic efficiency comparable to R-410A compressor

S 150
Compressor Efficiencies
11 _ 145 °
) Volumetric efficiency o
.'N 2 140 @
0 o ° o o © ° T\.\'N g_ °
g 135 °
o e o
g" 130 e
. . . ©
07 Isentropic efficiency 5 ° °
v
° a 125 .
06 ® | -
° 120
0.5 e 5 15 25 35 45 55 65

2 2.5 3 35 4 4.5 5 5.5 6 6.5

Pressure ratio [_] COETAS @0ETAY Ambient Temperature [F]

12 | eere Validated compressor efficiency in entire application range Compressor discharge temperature at different ambient conditions



@ 47 °F heating capacity > 40K Btu/hr, COP >4
SEER> 16.0, HSPF> 9.9

Annual water heating COP > 4.0.

Heat hot water up to 150°F with good efficiency
Propane charge < 2.5 Ibm

Measured Cooling EER
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W
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A (8 17
L

16

15

14

- uf 101
. N

95F/High  82F/High 95F/Low
1t 3ft Ambient Condition

w

Cooling EER [Btu/hr/W]

Prog I'eéSS Propane Hydronic Heat Pump
* @ 95°F cooling capacity > 38 k BTU/hr (3-ton), EER > 13. ( °° i | low stage for WH

Water Heating COP vs Water Supply T
6

No benefit running
— 5 s .
= L
= L2 .
o 4, .
O .
235 ;
g 3
25
2
Defrost@35F
1.5
100 110 120 130 140 150 160
Heat Up Water Temperature [F]
« /5F +675F_H +675F_L 47F « 35F < 17F
- Measured Heating COP
= 5 e Low Stage e High Stage °
2
S 45
o [ ]
g :
2 35 .
-
©
£ 3 e
[ ]
2.5
82F/Low 15 25 35 45 55

Ambient Temperature [F]

15 | EERE

65



Prog eSS Propane High Efficiency Window Air Conditioner

. 1
® Key MetrICS 3 —1___Condenser
« Propane charge < 260 g, inline with regulation e O :
recommended by EPA. F o aa U\T' olo
» Rated cooling capacity > 10,000 Btu/hr. § | leter | submerged g
E subcaoler o)[o)

» Rated EER >12.0 (Energy Star).
» Operated up to 131°F/55 °C ambient

|
Evaporator fan :i‘, " 1

_Evaporalor

temperature, capable of high ambient applications ¢ °°°°
o AChievements 7 Laboratory instrumentations -
» Developed rotary compressor optimized for | 5

propane
« Conducted model-based design optimization

» Achieved optimal performance metrics within the
charge constraint (safety)
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Laboratory Tested Propane Window AC



i¥) ' Accomplishments and Future Work

* For low-GWP refrigerant (GWP<100), achieved high-end efficiency level using R-457A
» Exceed the HSPF goal, i.e., 10.0 versus 9.5
» Reach the SEER goal within allowed tolerance, i.e., 15.7 vs 16.0

 For ultra low-GWP refrigerant (GWP<10), a hydronic propane residential heat pump was
developed

» cooling mode: SEER > 16.0; @ 35°C capacity > 3 tons, EER > 13.0
» Heating mode: HSPF >10.0; @ 47F, capacity > 3 tons, COP > 4.0
» Heat water 50-gallon from 14.4°C to 65.6°C in with a COP of 4.05 at 19.7°C ambient, and a COP of 2.1 at -8.3°C

» Starting from the current structure and working with the industry partners, we will develop low cost,
direct expansion heat pump using ultra low-GWP refrigerants (propane hydronic and CO, mixture)

Outcome:

1 Li, Zhenning, Samuel Yana Motta, Bo Shen, and Brian Fricke. "Optimization of Residential Air Source Heat Pump using Low—Global Warming Potential Refrigerants." Heat Pumping
Technologies Magazine 42, no. 1 (2022).

2 Li, Zhenning, Samuel Yana Motta, Bo Shen, and Hanlong Wan. "Optimization of Residential Air Source Heat Pumps using Refrigerants with GWP <150 for Improved Performance
and Reduced Emission.“14th IEA Heat Pump Conference, Chicago (2023)

3 Bo Shen, Zhenning Li, Hanlong Wan, Samuel Yana Motta, Kyle Gluesenkamp. “Direct Expansion Heat Pump Using High Glide Low GWP Refrigerant”, 26th International Congress
of Refrigeration, Paris (2023)

4 Bo Shen, Zhenning Li, Hanlong Wan, Kyle Gluesenkamp, Brian Fricke. “A Propane Hydronic Heat Pump with Energy Storage”, 26th International Congress of Refrigeration, Paris
(2023)

5 Hanlong Wan, Zhenning Li, Bo Shen, “A Hybrid Method To Evaluate The Life Cycle Climate Performance”, 26th International Congress of Refrigeration, Paris (2023)
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Thank you

Oak Ridge National Laboratory

Bo Shen, Sr. R&D staff
(865) 574-5745 / shenb@ornl.gov
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The Building Technologies Research and Integration Center (BTRIC)
at ORNL has supported DOE BTO since 1993. BTRIC is comprised of
more than 60,000 square feet of lab facilities conducting RD&D to
develop affordable, efficient, and resilient buildings while reducing
their greenhouse gas emissions 65% by 2035 and 90% by 2050.

Scientific and Economic Results
139 publications in FY24

140+ industry partners BTRICis a
60+ university partners D.OE-DeSIgnatec.i .
16 R&D 100 awards National User Facility

64 active CRADAs
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Project Execution

FY2022 FY2023 FY2024
Planned budget $400k $400k $600k
Spent budget $350k $380k $410K

FY22 Q1 Milestone: Perform LCCP analysis, select
candidate refrigerants

FY22 Q2 Milestone: Model-based design of system and
component to achieve the performance goals

FY22 Q3 Milestone: Development of a 2-stage scroll
compressor for selected refrigerant and smart four-way
valve

FY22 Q4 Milestone: Construct prototype system

FY23 Q1 Milestone: Verify component technologies

FY23 Q2 Milestone: Verify the >90% efficiency
performance goals via lab testing

FY23 Q3 Milestone: Prototype improvement and
verification (achieve 16.0 SEER/9.5 HSPF)

FY23 Q4 Milestone: Cost assessment
Current/Future Work

FY24 Q2 Design optimization of ultra-low-GWP
refrigerants heat pump with focus on propane

FY24 Q4 Construct low-cost, direct-expansion ultra-low-
GWP refrigerants ptototype
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