

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

BTO Peer Review: Cold Climate Heat Pump using Vapor **Compression Cycle** Cascaded with a Thermoelectric Heat Pump

B.E.N.E.F.I.T. 2020 Award DE-EE0009687

Project Summary

OBJECTIVE & OUTCOME

Develop, demonstrate, measure and verify the performance of a standard residential vapor compression system augmented with a solid-state thermoelectric (TE) heat pump (HP) to:

- Provide heating capacity at high efficiency throughout the heating season
- Greatly reduce or eliminate supplemental heating needs for both moderate and cold winters
- Provide superior dehumidification in summer \succ

TEAM & PARTNERS

2 1

EERE

Principal Investigator: Sreenidhi Krishnamoorthy

National Laboratory

Point of Contact: Bo Shen

refrigerant TE HP

refrigerant-to-air TE HP

Exchanger

STATS

TE 1 Subcooler

Main heat

Performance Period: October 2021 - September 2025 DOE budget: \$1,800k, Cost Share: \$450k Milestone 1: Successful modeling of cascaded heat pump Milestone 2: Successful laboratory validation of R-to-R TE cascaded heat pump Milestone 3: Successful laboratory validation of R-to-Air TE cascaded heat pump

Milestone 4: Successful field verification completion at three field sites

The Challenge of Low-Temperature Operation

- Conventional Air-Source Heat Pumps are unable to operate effectively at cold outside air temperatures
- More efficient heat pumps exist but have financial and installation challenges

A simpler, quieter and cheaper cold climate heat pump is required to address this gap

Alignment and Impact

Measure	Quantitative Outcomes
Energy/Efficiency	10% annual heating energy savings compared to conventional heat pumps
Occupant Comfort	Prevent overcooling / excessive cycling during cooling
Affordability	Payback: <5 years

The project improves the TRL of non-vapor compression TE technology and demonstrates potential for significant energy savings, affordability and occupant comfort in space heating

Current State of the Art for Advanced Heat Pumps

Multiple solutions have been explored to address the challenges of low temperature operation of heat pump

			Discharge pipe Accumulator
Strategy	Details	Limitations	
Variable Speed Heat Pumps	Certain models can overspeed the compressor to provide higher heating capacity in cold climates	Higher chances for compressor failure, and premium unit cost (+ \$1000 to 2000/ton)	Motor
Vapor Injection	Uses an internal heat exchanger (HX) or flash tank to conventional vapor compression cycle	These systems tend to be bulky and incur a significant cost premium	Crankshaft Cylinder
Tandem Compressors	Two compressors are used instead of one, and programmed to turn on and off as needed	•	Injection pipe Mid plate

Cutaway view of a vapor-injection compressor

5 | EERE A simpler, quieter and cheaper solution is being developed in the current research

Innovation in the Current Concept

Use of a compact thermoelectric (TE) heat pump device having microchannel tubes TE devices exhibit Peltier effect (DC current passed through a circuit of two semiconductors creates a temperature difference)

- TE devices are simple, cheap, and quiet
- In this innovation, TE modules are attached to microchannels for increased heat transfer
- Can tolerate high refrigerant pressure up to 500 psi.

Pressure

Plan for Delivering the Intended Outcomes

Budget Period 1: FY 2022 (Completed) Budget Period 2: FY 2023 (Completed) Budget Period 3: FY 2024 (In Progress, extended to FY 2025)

Simulation based modeling

 TE Heat Pump Performance Curves
 Building Energy Simulations

Laboratory Testing

Prototype Validation
 Heating Operation
 Cooling Operation

Field Demonstration and Market Evaluation

 Cold Climate
 Humid Climate
 Commercialization and Tech Transfer

××°

Configuration 1: Refrigerant-to-Refrigerant TE Subcooler Heat Pump

TE heat pump subcooler TE heat pump subcooler contains 98 TE modules in 4 subcooler bundles arranged in a parallel configuration

Integration of a R-to-R TE Subcooler Heat Pump into a Conventional Residential Heat Pump

TE

Back View

The unit consists of a)TE heat pump subcooler, b)Supplemental coil that augments heat transfer area

××°

Configuration 1: Results of R-to-R TE Subcooler Integration

Baseline: Single-speed, 4.5-ton, Nortek HP, 16 SEER/8.0 HSPF, R-410A

a)TE subcooler HP holds a near constant COP, b) At extremely low ambient temperatures, the TE integration augmented 14% capacity with negligible impact on heat pump COPs.

Configuration 2: Refrigerant-to-Air TE Subcooler Heat Pump

TE modules

Modular and retrofittable, add-on to any existing HPs, with installing a TE subcooler/HP to the liquid line.

Integration of a R-to-Air TE Subcooler into a Conventional Residential Heat Pump

Place at return side in heating mode

Place at supply in cooling mode

Air flow in heating

From/to

supply ducts

return air

closed

Field duct

assembly

Return air

Air flow in cooling

supply ducts

Damper

Damper/

From/to

supply ducts

supply air

return air

Liquid line

Return air

××°

Onfiguration 2: Impacts of TE

Baseline: Coleman, 2-ton outdoor unit (THE2B24T21S)+ 2-ton indoor air handler (JHETB24) (AHU) Lab prototype: Coleman, 2-ton outdoor unit + 3-ton AHU (JHETB36) + TE subcooler HP

Baseline performance from https://www.tfehrhart.com/media/docs/THE2_HP_Technical_Guide.pdf

13 | EERE

a) TE subcooler reheating supply air, leads to > 3% higher moisture removal than baseline; b) Enhanced dehumidification allows "oversize" AHU; c) TE integration benefits higher supply air temperature, i.e. cold climate HPs

Configuration 2: Heating System Performance

TE ON increased total capacity, 13% to 26% 14 | EERE Larger condenser surface area + TE subcooler augments HP COP 11% to 17% TE ON boosts the total COP, 7% to 14%, than HP + resistance heat, to deliver the same capacity

Factors Resulting in > 10% Annual Heating Saving

- TE subcooler reheating enhances dehumidification and facilitates use of larger indoor coil (<\$200 cost increment for AHU).
- Larger indoor coil + TE subcooler (no power input) leads to > 10% heat pump COP increments in the whole ambient temperature range
- TE HP ON (570 W power input), leads to > 10% higher total heating COPs, than HP + supplemental resistance heating, to deliver the same total capacity
- 10% annual heating saving resulted by TE integration and the related system optimization
- Subcooler reheating →better dehumidification; larger indoor coil →higher HP COPs; TE ON to replace supplemental resistance heating →higher total COPs

\odot

Field Demonstrations

COMPLETED WORK

- Two of three field sites have been finalized
- Constructed and lab tested the field prototype
- Submitted prototype details for UL safety standards review

Site 1: Nashville, TN

TO BE COMPLETED

- Identify HVAC Contractor to install HP
- Coordinate site visit for UL approval
- Install M&V and perform monitoring
- Remove prototype after field tests

Site 2: Long Island, NY

EPRI is working with member utilities to identify the third field site

Key Highlights from Market Potential Assessment

TE Heat Pump Electrification Potential in U.S. Buildings by 2050

Achievable Electrification Potential = 200 GWh by 2050 Associated reduction in CO_2 emissions = 35 MMT

COST ANALYSIS

Additional components that add to system cost

Item	Cost Estimate
TE modules	\$200-\$300 per ton
AC to DC converter	\$20-\$100 (standard single-phase 24V DC, 5A)
Larger indoor coil	<\$200 per ton

 20% upfront cost increment estimated than conventional single speed heat pump

> \$100-\$150 per kW << \$400-\$650/kW extra for CCHPs

Bottlenecks for Industry Adoption	Mitigation Plans
Lack of awareness about TE Acceptance by customers & distribution channels	 Collaborate with Utilities Educate Key Account Reps Develop Incentives Highlight Novelty
Cost parity between vendor/ contractor costs	 Highlight Energy and Non- Energy Benefits

Summary of Major Accomplishments Till Date

- Completed simulation-driven design and optimization of thermoelectric integrated heat pump with 4 operating stages
- Fabricated two TE subcooler heat pumps, refrigerant-to-refrigerant and refrigerant-to-air.
- Completed laboratory testing of two TE integrated heat pumps in heating and cooling operations with promising results → over 10% saving in heating season
- Finalized 2 out of 3 sites for field demonstration of the heat pump, and built the field prototype
- Four conference papers, 2 journal paper and 1 poster have been published / presented

\odot

Technology Transfer Activities

Conference Publications

- Shen, B., Gluesenkamp, K., Wan, H. "Integration of Thermoelectric Modules to Vapor Compression Systems", Purdue Conference 2022.
- Wan, H. Shen, B., Li, Z. "<u>The Potential of Thermoelectric Heat Pumps in Cold Climate Buildings</u>", ASHRAE Cold Climate Heat Pump Conference 2023.
- Krishnamoorthy, S., Shirey, D., Shen B. "<u>Development and Testing of an Advanced Cascaded Thermoelectric</u> <u>Residential Heat Pump</u>". ACEEE Summer Study, 2024.
- Hu, Y., Shen, B., Gluesenkamp, K.R., Yana Motta, S.F., Krishnamoorthy, S., Shirey, D., 2024. Experimental Investigation on Heating Performance of a Cold Climate Thermoelectric-Assisted Heat Pump. 20th Int. Refrig. Air Cond. Conf. at Purdue, Paper 2266, July 15-18, West Lafayette, IN, USA.

Journal Publications

- Wan, H., Gluesenkamp, K. R., Shen, B., Li, Z., Patel, V. K., & Kumar, N. (2023). A thermodynamic model of integrated liquid-to-liquid thermoelectric heat pump systems. Int. J. of Refrig., 150, 338-348.
- Hu, Y., Shen, B., Wan, H., Gluesenkamp, K. R., Krishnamoorthy, S., & Shirey, D. (2024). Heating performance of a vapor compression heat pump cascaded with a thermoelectric heat pump. App. Therm. Eng., 249, 123397.

Poster Presentations

• Krishnamoorthy, S., Shirey, D., Shen, B. "Advanced Cascaded Thermoelectric Residential Heat Pump". CEC Building Electrification Summit, Sacramento, Oct. 2023.

Thank you

Sreenidhi Krishnamoorthy Sr. Technical Leader, EPRI 650-680-7901 skrishnamoorthy@epri.com

DE-EE0009687

U.S. DEPARTMENT OF ENERGY BUILDING TECHNOLOGIES OFFICE

Project Execution

Planned Date of Completion

Actual Date of Completion

Go/No-Go Milestone

	FY2022			FY2023				FY2024				
Planned budget	\$ 523,000			\$ 813,000				\$ 913,000				
Spent budget	\$ 482,000			\$ 697,000			\$ 260,000					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Successfully identify list of design considerations												
Q2 Milestone: Successful modeling of cascaded TE heat pump												
Q3 Milestone: Fabricate TE heat pump system prototype				/								
Q4 Milestone: Test Plan finalized				♦								
Q5 Milestone: Successful lab validation of TE HP in heating							•					
Q6 Milestone: Fabrication of TE HP prototype for cooling								\bullet				
Q7 Milestone: Successful lab validation of TE HP in cooling							•					
Q9 Milestone: Commerlization and Market Potential Evaluation												•
Current/Future Work												
Q8 Milestone: Completion of 1st and 2nd prototype field installs												
Q9 Milestone: Completion of 3rd field prototype installation								In pro	gress			
Q11 Milestone: Successful field verification completed all 3sites								work				\diamond

Project has been extended till end of FY2025 due to challenges in obtaining field test sites and due 21 | EERE to additional time used for improving system design, control, etc.

Sreenidhi **Krishnamoorthy**

Sr. Technical Leader EPRI

Don Shirey

Principal Project Mgr. EPRI

Senior R&D Staff ORNL

R&D Associate Staff ORNL