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Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government, nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or any agency thereof. The views and opinions 
of authors expressed herein do not necessarily state or reflect those of the United States government or any 
agency thereof. 

 

 

 



Analysis 

ii Acknowledgements 
 

Acknowledgements 
We would like to thank all the principal investigators and their teams for contributing to this Annual Progress 
Report. Their hard work and ideas resulted in the success of the Vehicle Technologies Office Analysis 
Program and the office, enabling important improvements in fuel economy and the efficiency of the 
transportation system. 

We would also like to acknowledge Energetics for the support in preparing, publishing, and managing the 
compilation of this report. 

Michelle Avillanoza 
Operations Supervisor and  
     Analysis Program Manager 
Analysis Program  
Vehicles Technologies Office 

Raphael Isaac 
Technology Manager 
Analysis Program 
Vehicle Technologies Office 

Patrick Walsh 
Technology Manager 
Analysis Program 
Vehicle Technologies Office 

 



FY 2023 Annual Progress Report 

Acronyms and Abbreviations iii 
 

Acronyms and Abbreviations 
Symbols and Numbers 

ABM agent-based model 

ACT Advanced Clean Truck 

ADOPT  Automotive Deployment Options Projection Tool  

AEO  Annual Energy Outlook  

ANL or Argonne  Argonne National Laboratory  

ASTM American Society for Testing and Materials 

AWS Amazon Web Services 

B 

B20 20% biodiesel blend  

BatPaC Battery Performance and Cost  

BEV(s)  battery electric vehicle(s)  

BILP binary integer linear program 

BP budget period 

BREVO Battery Run-down under Electric Vehicle Operation (model name) 

BTMS battery thermal management system 

C 

C2G  cradle-to-grave  
CBSA core-based statistical area 

CO2 carbon dioxide 

CO2-eq carbon dioxide equivalent  

COVID-19 coronavirus disease of 2019 

CV(s) commercial vehicle(s) 

D 

DCFC  direct current fast charger (or charging)  

DER distributed energy resources 

DGE diesel gallon equivalent 

DOE  U.S. Department of Energy  

dsgrid demand-side grid 

dsgrid-flex demand-side grid flexibility 
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E 

e-axle electric (vehicle) axle 

e-bike electric bike 

e-drive electronic drive 

EERE  Energy Efficiency and Renewable Energy  

e.g. for example 

EIA  U.S. Energy Information Administration  

eMDHD electric medium-duty/heavy-duty (vehicle) 

EMF Energy Modeling Forum 

EOL end-of-life 

EOLR end-of-life recycling 

EPA  U.S. Environmental Protection Agency  

EPRI  Electric Power Research Institute  

EV(s)  electric vehicle(s)  

EVI-Pro  Electric Vehicle Infrastructure Projection tool  

EVI-X Electric Vehicle Infrastructure suite for X number of electric vehicle charging 
infrastructure analysis tools 

EVMC electric vehicle managed charging 

eVMT electric vehicle miles traveled Infrastructure 

EVSE  electric vehicle supply equipment  

F 

FCEV(s)  fuel cell electric vehicle(s)  
FCFS first-come-first-served 

FOTW  fact of the week  
FY  fiscal year  

G 

g grams (when referring to mass) 

GDP gross domestic product 

GHG  greenhouse gases  

GREET®  Greenhouse gases, Regulated Emissions, and Energy use in Transportation 

GTL FTD gas-to-liquid Fischer–Tropsch diesel 

GWh  gigawatt hour  
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H 

H2 hydrogen 

H2@Scale 
a U.S. Department of Energy initiative that brings together stakeholders to 
advance affordable hydrogen production, transport, storage, and utilization to 
enable decarbonization and revenue opportunities across multiple sectors 

HD heavy duty 

HDT heavy-duty truck 

HDV  heavy-duty vehicle  

HERE a consumer mapping application that works on smartphones or through a web 
browser formerly Nokia Maps and HERE Maps 

HEV(s)  hybrid electric vehicle(s)  

HEVII  Heavy-Duty Electric Vehicle Integration and Implementation  

HEVI-LOAD Heavy-Duty Electric Vehicle Infrastructure – Load Operations and Deployment 

I 

I-45 Interstate 45 

ICE/ICEV  internal combustion engine/vehicle  

i.e. that is 

IMPLAN 

a model utilizing an economic modeling technique called Input-Output analysis 
and a Social Accounting Matrix, which is a type of applied economic analysis 
that tracks the interdependence among various producing and consuming 
industries of an economy and the spending of households 

INRIX A provider of traffic information 

IRA Inflation Reduction Act 

ISATT  Integrated Systems Analysis Technical Team  

K 

kg  kilogram  

kW kilowatt 

kWh  kilowatt hour  

L 

lb. or lbs. pound or pounds 

LCA  life cycle analysis  

LCI life cycle inventory 

LD(V(s)) light duty (vehicle (s))  

Li lithium 

LiB lithium-ion battery 
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LMP locational marginal price 

M 

MA3T  Market Acceptance of Advanced Automotive Technologies 

MATLAB MATrix LABoratory, a multi-paradigm numerical computing environment and 
programming language 

MCP mobility carbon productivity 

MD  medium duty  
MDHD/MDHDV or 
MHDV medium- and heavy-duty vehicle  

MDT medium-duty truck 

MHDV(s) medium- and heavy-duty vehicle(s) 

MMTCe million metric tons of carbon equivalent 

MOVES Motor Vehicle Emission Simulator 

MRO Midwest Reliability Organization 

MS  Microsoft  

MSA  metropolitan statistical areas  

MW megawatt 

MWh  megawatt hour(s)  

N 

NEAT  Non-Light Duty Energy and Greenhouse Gs Emissions Accounting Tool  

NEVI National Electric Vehicle Infrastructure 

NG natural gas 

NREL  National Renewable Energy Laboratory  

O 

OEM original equipment manufacturer 

OMEGA Optimization Model for reducing Emissions of Greenhouse Gases from 
Automobiles  

OR-AGENT Optimal Regional Architecture Generation for Electrified National Transport 

ORNL  Oak Ridge National Laboratory  

OR-SAGE Oak Ridge Siting Analysis for Power Generation Expansion 

OSU Ohio State University 

P 

PCO perceived cost of ownership 

PDF portable document format 
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PEV(s)  plug-in electric vehicle(s)  

PHEV(s)  plug-in hybrid electric vehicle(s)  

PJM a regional transmission organization that coordinates the movement of wholesale 
electricity in all or parts of 13 states and the District of Columbia. 

PV photovoltaic 

R 

RC recycled content 

RD100 100% renewable diesel 

R&D  research and development  

ReEDS Regional Energy Deployment System 

reV Renewable Energy Potential (NREL siting tool) 

RIMS Regional Input-Output Modeling System 

S 

SAE  Society of Automotive Engineers  

SCOOT  Screening for City Opportunities Online Tool  

SMART  Systems and Modeling for Accelerated Research in Transportation  

SMR steam-methane reforming 

SP/RP stated preference/revealed preference 

ST  short term  

SUV  sport utility vehicle  

T 

TAC technical advisory committee 

TCO  total cost of ownership  

TDM travel demand management 

TDP  Transportation Data Program  

TechScape  technology landscape 

TEEM  Transportation Energy Evolution Modeling  

TEMPO Transportation Energy & Mobility Pathway Options 

TNC(s)  transportation network company(ies) 

TTW tank-to-wheel 

TWh terawatt-hour 
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U 

u utility (a factor in a probability calculation) 

UIUC University of Illinois Urbana-Champaign 

U.S. United States 

U.S. DRIVE  Driving Research and Innovation for Vehicle Efficiency and Energy 
Sustainability  

UVM Used Vehicle Model 

V 

VISION 
a model used to estimate the potential energy use, oil use and carbon emission 
impacts of advanced light- and heavy-duty vehicle technologies and alternative 
fuels through the year 2050 

VMT  vehicle miles traveled  

vs.  versus  

VTO Vehicles Technology Office 

W 

Wh watt hour 

Wh/kg  watt hours per kilogram  

WTT well-to-tank 

WTW wheel-to-wheel 

Z 

ZEV(s) zero emission vehicle(s) 
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Executive Summary 
During fiscal year 2023 (FY 2023), the U.S. Department of Energy Vehicle Technologies Office (VTO) 
funded analysis projects supportive of VTO’s goals to pursue research relevant to (i) decarbonization of 
transportation fuels and related infrastructure across modes and (ii) transportation mobility technologies that 
enable a reduction in system vehicle miles traveled (VMT). Topics included electric vehicles for passenger and 
freight applications, mobility system technologies and trends, impacts of electric vehicles on the grid, and 
other topics, with an emphasis on new, efficient, and clean motility options that are affordable for all 
Americans and that promote sustainable economic growth, equity, and increased energy security. 

VTO analysis projects result in a foundation of fundamental data, analytical models, and applied analyses that 
provide insights into critical transportation energy problems and assist in prioritization of research investments 
and portfolio planning.  

This document presents a brief overview of VTO analysis efforts and progress for projects funded in FY 2023. 
Each of the progress reports includes project objectives, approach, and highlights of the technical results that 
were accomplished during FY 2023. 
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Vehicle Technologies Office Overview  
Vehicles move our national economy. Each year in the United States, vehicles transport 18 billion tons of 
freight—about $55 billion worth of goods each day1—and move people more than 3 trillion vehicle-miles.2 
Growing our economy requires transportation, and transportation requires energy. The transportation sector 
accounts for approximately 27% of total U.S. energy needs3 and the average U.S. household spends over 15% 
of its total family expenditures on transportation,4 making it, as a percentage of spending, the costliest personal 
expenditure after housing. Transportation is critical to the overall economy, from the movement of goods to 
providing access to jobs, education, and healthcare. 

The transportation sector has historically relied heavily on petroleum, which supports over 90% of the sector’s 
energy needs today,5 and, as a result, surpassed electricity generation to become the largest source of CO2 
emissions in the country.6 The Vehicle Technologies Office (VTO) will play a leading role in decarbonizing 
the transportation sector and address the climate crisis by driving innovation and deploying clean 
transportation technologies, all while maintaining transportation service quality and safety. 

VTO funds research, development, demonstration, and deployment (RDD&D) of new, efficient, and clean mobility 
options that are affordable for all Americans. VTO leverages the unique capabilities and world-class expertise of the 
National Laboratory system to develop new innovations in vehicle technologies, including:  advanced battery 
technologies; advanced materials for lighter-weight vehicle structures and better powertrains; energy-efficient 
mobility technologies (including automated and connected vehicles as well as innovations in efficiency-enhancing 
connected infrastructure); innovative powertrains to reduce greenhouse gas (GHG) and criteria emissions from hard 
to decarbonize off-road, maritime, rail, and aviation sectors; and technology integration that helps demonstrate and 
deploy new technology at the community level. Across these technology areas and in partnership with industry, 
VTO has established aggressive technology targets to focus RDD&D efforts and ensure there are pathways for 
technology transfer of federally supported innovations into commercial applications.  

VTO is uniquely positioned to accelerate sustainable transportation technologies due to strategic public–
private research partnerships with industry (e.g., U.S. DRIVE, 21st Century Truck Partnership) that leverage 
relevant expertise. These partnerships prevent duplication of effort, focus DOE research on critical RDD&D 
barriers, and accelerate progress. Working closely and in collaboration with the Office of Energy Efficiency 
and Renewable Energy’s Bioenergy Technologies and Hydrogen and Fuel Cell Technologies Offices, VTO 
advances technologies that assure affordable, reliable mobility solutions for people and goods across all 
economic and social groups; enable and support competitiveness for industry and the economy/workforce; and 
address local air quality and use of water, land, and domestic resources. 

Annual Progress Report 
As shown in the organization chart (below), VTO is organized by technology area: Batteries R&D; 
Electrification R&D; Materials Technology R&D; Decarbonization of Off-Road, Rail, Marine, and Aviation; 
Energy Efficient Mobility Systems; Technology Integration; and Analysis. Each year, VTO’s technology areas 
prepare an Annual Progress Report (APR) that details progress and accomplishments during the fiscal year. 
VTO is pleased to submit this APR for Fiscal Year (FY) 2023. The APR presents descriptions of each active 
project in FY 2023, including funding, objectives, approach, results, and conclusions.   

 
1 Bureau of Transportation Statistics, DOT, Transportation Statistics Annual Report 2020, Table 4-1, https://www.bts.gov/tsar. 
2 Davis, Stacy C, and Robert G Boundy. Transportation Energy Data Book: Edition 40. Oak Ridge, TN: Oak Ridge National Laboratory 2022. 
https://doi.org/10.2172/1878695. . Table 3.09 Shares of Highway Vehicle-Miles Traveled by Vehicle Type, 1970-2019.  
3 Ibid. Table 2.02 U.S. Consumption of Total Energy by End-use Sector, 1950-2021. 
4 Ibid. Table 11.1 Average Annual Expenditures of Households by Income, 2020. 
5 Ibid. Table 2.03 Distribution of Energy Consumption by Source and Sector, 1973 and 2021. 
6 Environmental Protection Agency, Draft U.S. Inventory of Greenhouse Gas Emissions and Sinks, 1990-2019, Table 2-11. Electric Power-Related Greenhouse Gas 
Emissions and Table 2-13. Transportation-Related Greenhouse Gas Emissions.  

https://www.bts.gov/tsar
https://doi.org/10.2172/1878695
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Analysis Program Overview 

Introduction 
Achieving deep decarbonization in transportation will require vehicle efficiency improvements, 
decarbonization of fuels and related infrastructure, and overall system-wide improvements in the transportation 
system, particularly those that have the potential to reduce total annual vehicle miles traveled (VMT). VTO 
funds research, development, demonstration, and deployment of new, efficient, and clean mobility options that 
are affordable for all Americans and that promote sustainable economic growth, equity, and increased energy 
security. 

The impacts of VTO’s investments depend on the eventual commercialization of VTO-supported technologies. 
Therefore, maximizing the benefits achieved requires development of a portfolio based on a fundamental 
understanding of the complex system within which transportation technologies are manufactured, purchased, 
and used. This system is shaped by the actions and interactions of manufacturers, consumers, markets, 
infrastructure, and the built environment. 

The VTO Analysis Program supports mission-critical technological, economic, and interdisciplinary analyses 
to assist in prioritizing VTO technology investments and to inform research portfolio planning. These efforts 
provide essential vehicle and market data, modeling and simulation, and integrated and applied analyses, using 
the unique capabilities, analytical tools, and expertise resident in the DOE’s national laboratory system. VTO 
Analysis projects also demonstrate additional capabilities and expertise provided by research partnerships that 
may include academia, the private sector, and non-profit organizations. 

Program Organization Matrix  
As indicated above, the Analysis Program activities are organized within three areas: (1) Data, (2) Modeling 
and Simulation, and (3) Applied Analysis. The below graphic demonstrates the characteristics of each of these 
program areas: 

 

Key questions addressed by these data, modeling, and analysis efforts include: 

Which vehicle use domains—including vehicle design, powertrain technologies, increased automation and 
system connectivity, greater penetration of shared vehicles and micromobility, and a better understanding of 
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travel patterns—offer the potential to provide clean mobility benefits and at a reasonable cost to both 
businesses and the consumer? In which applications can specific new technologies make the greatest impact?  

• What trends in VMT, vehicle ownership, fuel and technology choice, infrastructure development, 
consumer behavior, and other factors are likely to impact the achievement of future benefits? 

• As sales of electric vehicles (EVs) grow, how will charging infrastructure needs evolve? How will use 
of these vehicles impact the electricity grid, and vice versa? How can this infrastructure be made 
available to consumers across the socioeconomic spectrum, and how might the infrastructure best 
address the needs of individuals living in a variety of different housing/neighborhood types? 

• As demand for freight transportation grows, how can we improve the efficiency of moving the goods 
we buy? How can a variety of medium- and heavy-duty vehicle technologies—including advanced 
lightweight materials, advanced engine designs, and electric powertrain technologies—and modes 
help the nation to achieve key energy and environmental goals despite this demand growth? 

• How will developments in vehicle connectivity and autonomy impact energy demand? How do we 
ensure that these developments lead to a safe, efficient, and clean transportation system? 

What will the future look like if we meet all of our subprogram targets? What if our subprograms fall short? 

Goals  
The goals of the VTO Analysis Program are to: 

• Assist VTO in prioritizing technology investments and inform research portfolio planning. 

• Support quantitative assessment of vehicle and mobility technology impacts. 

• Provide insights into transportation and energy use problems for a broad range of internal and external 
stakeholders. 

To achieve these goals, the Analysis Program supports activities with the following three broad objectives: 

• Create and maintain a solid foundation of data.  

• Build, maintain, and exercise relevant analytical models.  

• Execute insightful integrated analyses that provide greater understanding of critical transportation 
energy problems. 
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I Technology and Market Data 
I.1 Transportation Data Program (Oak Ridge National Laboratory) 

Stacy C. Davis, Principal Investigator 
Oak Ridge National Laboratory 
2360 Cherahala Blvd. 
Knoxville, TN 37932 
E-mail: DavisSC@ornl.gov   

Raphael Isaac, DOE Technology Development Manager 
U.S. Department of Energy 
E-mail: Raphael.Isaac@ee.doe.gov 

Patrick Walsh, DOE Technology Development Manager 
U.S. Department of Energy 
E-mail: Patrick.Walsh@ee.doe.gov 
 

Start Date: October 1, 2022 End Date: September 30, 2025  
Project Funding (FY23): $535,000 
Project Funding (FY24–FY25): $960,000 
Total Expected Project Funding: $1,495,000 

DOE share: $535,000 
DOE share: $960,000 
DOE share: $1,495,000 

Non-DOE share: $0 
Non-DOE share: $0 
Non-DOE share: $0 

 

Project Introduction 
The Transportation Energy Data Book (TEDB) and Vehicle Technologies Fact of the Week (FOTW) are 
created by Oak Ridge National Laboratory’s (ORNL’s) Transportation Data Program (TDP) and serve to 
inform stakeholders, transportation analysts, and Vehicle Technologies Office (VTO) staff, all of whom 
require quality current and historical data and related information on the transportation sector. The TDP 
provides a wealth of information that is used as a U.S. Department of Energy (DOE) resource to improve 
analyses of the transportation sector; these studies contribute to program planning, evaluation, and technology 
research in the public and private sectors. Meanwhile, stakeholders, academics, and others use these data to 
help move the United States toward reducing greenhouse gas emissions via shifts away from petroleum and 
other fossil fuels via increased mobility options, reduced single-occupancy vehicle travel, and increased 
electrification of the transportation sector. 

Objectives 
The objective of the TDP is to provide quality data and information for the VTO Analysis Program and 
stakeholders. Specifically, in Fiscal Year (FY) 2023,  the project (1) produced the text, graphics, and data for a 
FOTW every week, (2) created programs to automate the back-end data collection of the Transportation 
Energy Data Book, an online publication that is typically published once a year and updated periodically 
throughout the year, and (3) worked on a draft of Edition 41 of the Transportation Energy Data Book. 

Approach  
ORNL’s approach for the TDP can be categorized into four stages: discovery, due diligence, approval, and 
publication, as illustrated in Figure I.1.1. Data are discovered (i.e., obtained) from a myriad of public and private 
sources, and ORNL performs due diligence to ensure that the data are defined and notated correctly. In this stage 
of the approach, ORNL works with other laboratories (e.g., Argonne National Laboratory and the National 
Energy Renewable Laboratory [NREL]), government agencies (e.g., the Federal Highway Administration of the 
U.S. Department of Transportation), and private companies (e.g., Ward’s Automotive) to compile and understand 
the data that have been collected, being careful to ensure that data derived from differing sources are comparable. 
Explanatory text is written, and tabulations/graphics are generated in Microsoft (MS) Word and/or MS Excel. 

mailto:DavisSC@ornl.gov
mailto:Raphael.Isaac@ee.doe.gov
mailto:Patrick.Walsh@ee.doe.gov
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VTO reviews and approves each FOTW, as well as the tabulations and graphics in the Transportation Energy 
Data Book, before final publication. The FOTW is published on the VTO Transportation Fact of the Week 
webpage (https://energy.gov/eere/vehicles/transportation-fact-week), and an email with the FOTW is sent via the 
GovDelivery system to the subscription list every week, typically on Monday afternoons. The Transportation 
Energy Data Book, including PDF and MS Excel files, is posted on a website hosted by ORNL 
(https://tedb.ornl.gov/). The major topics for the TDP publications are provided in Table I.1.1. 

 
Figure I.1.1 Approach for the transportation data program at ORNL. Source: ORNL 

Table I.1.1 Major Topics for the Transportation Data Program at Oak Ridge National Laboratory 
Transportation Energy Data Book Topics Fact of the Week Topics 

Petroleum Sales 

Energy Petroleum 

Light Vehicles and Characteristics Fuel Economy 

Heavy Vehicles and Characteristics Travel Behavior 

Alternative Fuel and Advanced Technology Vehicles and Characteristics Gasoline 

Transit and Other Shared Mobility Electric Vehicles 

Fleet Vehicles and Characteristics Cost to Consumer 

Household Vehicles and Characteristics Diesel 

Nonhighway Modes Import/Export 

Transportation and the Economy Infrastructure 

Emissions Heavy-Duty Vehicles 

Energy Conversions Behavior/Ownership 

 And More… 

https://energy.gov/eere/vehicles/transportation-fact-week
https://tedb.ornl.gov/
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Results  
The weekly email for the FOTW began on July 27, 2015, with 50 email subscribers. As of the end of FY 2023, 
there were 23,245 subscribers to the newsletter. 

FOTW 1258 through 1309, shown in Table I.1.2, were posted on the VTO website during FY 2023. For 
FY 2023, FOTW content accounted for 592,926 pageviews, or 28% of all VTO website pageviews. Of the 
FOTW pageviews, 329,578 were unique visits, meaning that some visitors (263,348) to FOTW content were 
repeat visitors. Of all VTO website visits, 32% (335,774) entered the VTO website through a FOTW landing 
page. Fact 915, Average Historical Annual Gasoline Pump Price from 1929–2015, had the second-highest 
number of pageviews of any VTO website page—190,533, or 16% of all website pageviews during the fiscal 
year. Another FOTW on gasoline prices was the third-highest, with 100,750 pageviews (11%). 

Table I.1.2 Major Topics for the Transportation Data Program at Oak Ridge National Laboratory 
Date Posted Fact Title 

September 25, 2023 There Were Four Counties in California with Electric Vehicle (EV) Market Penetration 
Exceeding 30%  

September 18, 2023 67% of All Housing Units Have Vehicle Parking Within 20 Feet of an Electrical Outlet 

September 11, 2023 EV Charging Consumed Less Energy than Water Heating in a Typical U.S. Household 

September 4, 2023 Model Year 2022 Light-Duty Vehicles Sold in the U.S. Averaged 26.4 Miles Per Gallon 

August 28, 2023 Growth in Vehicles Outpaced Growth in Population and Licensed Drivers from 1960 to 
2021 

August 21, 2023 In 2023, Non-Fossil Fuel Sources Were 86% of New Electric Utility Generation Capacity 

August 14, 2023 From Cradle to Grave, EVs Have Fewer GHG Emissions Than Conventional Vehicles 

August 7, 2023  In 2021, 87% of U.S. Truck Freight Tonnage Was Shipped Less than 250 Miles 

July 31, 2023 Two-Thirds of Freight Tonnage and Three-Fourths of Freight Value in the U.S. Was Moved 
by Truck in 2021 

July 24, 2023 In the First Quarter of 2023, 21.5% of all Public EV Charge Ports Were for DC Fast 
Charging 

July 17, 2023 EV Charging Ports in the U.S. Nearly Doubled in the Past Three Years 

July 10, 2023 Highest EPA-Rated Fuel Economy for Model Year 2023 Was 140 MPGe, Achieved by 2 EV 
Models 

July 3, 2023 For the Past Six Months, Average Nationwide Monthly Gas Prices Were Below $4/Gallon 

July 26, 2023 Data from the Six Largest Bikeshare Systems Show that Trips Are on the Rise 

June 19, 2023 All-Electric Cars Offer Wide Selection of Ranges 

June 12, 2023 In 2021, Combination Trucks Were Driven More Than 62,000 Miles Annually on Average 

June 5, 2023 More Heavy Trucks Operated at 34,000–36,000 Pounds than Any Other Weight Category 

May 29, 2023 Light Trucks Dominated Sales of Light-Duty Vehicles with an MSRP over $30,000 

May 22, 2023 Net Generation of Electricity from Renewable Sources Exceeded Coal and Nuclear in 
2022 

May 15, 2023 In Model Year 2022, the Longest-Range EV Reached 520 Miles on a Single Charge 

May 8, 2023 New Vehicle Fuel Economy Improved by 33% 1980–2022 While Performance Increased 

May 1, 2023 U.S. Motor Fuel Taxes are Lower Than in Other Developed Countries 

https://www.energy.gov/eere/vehicles/articles/fotw-1309-september-25-2023-there-were-four-counties-california-electric
https://www.energy.gov/eere/vehicles/articles/fotw-1309-september-25-2023-there-were-four-counties-california-electric
https://www.energy.gov/eere/vehicles/articles/fotw-1308-september-18-2023-sixty-seven-percent-all-housing-units-united
https://www.energy.gov/eere/vehicles/articles/fotw-1307-september-11-2023-electric-vehicle-charging-consumed-less-energy
https://www.energy.gov/eere/vehicles/articles/fotw-1306-september-4-2023-model-year-2022-light-duty-vehicles-sold-us
https://www.energy.gov/eere/vehicles/articles/fotw-1305-august-28-2023-growth-number-vehicles-us-outpaced-growth
https://www.energy.gov/eere/vehicles/articles/fotw-1305-august-28-2023-growth-number-vehicles-us-outpaced-growth
https://www.energy.gov/eere/vehicles/articles/fotw-1304-august-21-2023-2023-non-fossil-fuel-sources-will-account-86-new
https://www.energy.gov/eere/vehicles/articles/fotw-1303-august-14-2023-cradle-grave-electric-vehicles-have-fewer
https://www.energy.gov/eere/vehicles/articles/fotw-1302-august-7-2023-2021-87-us-truck-freight-tonnage-was-shipped-less
https://www.energy.gov/eere/vehicles/articles/fotw-1302-august-7-2023-2021-87-us-truck-freight-tonnage-was-shipped-less
https://www.energy.gov/eere/vehicles/articles/fotw-1301-july-31-2023-two-thirds-freight-tonnage-and-three-fourths-freight
https://www.energy.gov/eere/vehicles/articles/fotw-1301-july-31-2023-two-thirds-freight-tonnage-and-three-fourths-freight
https://www.energy.gov/eere/vehicles/articles/fotw-1300-july-24-2023-first-quarter-2023-215-all-public-electric-vehicle
https://www.energy.gov/eere/vehicles/articles/fotw-1300-july-24-2023-first-quarter-2023-215-all-public-electric-vehicle
https://www.energy.gov/eere/vehicles/articles/fotw-1299-july-17-2023-number-electric-vehicle-charging-ports-us-nearly
https://www.energy.gov/eere/vehicles/articles/fotw-1298-july-10-2023-highest-epa-rated-fuel-economy-model-year-2023-was
https://www.energy.gov/eere/vehicles/articles/fotw-1298-july-10-2023-highest-epa-rated-fuel-economy-model-year-2023-was
https://www.energy.gov/eere/vehicles/articles/fotw-1297-july-3-2023-past-six-months-average-nationwide-monthly-gasoline
https://www.energy.gov/eere/vehicles/articles/fotw-1296-june-26-2023-data-six-largest-bikeshare-systems-show-trips-are
https://www.energy.gov/eere/vehicles/articles/fotw-1295-june-19-2023-all-electric-cars-offer-wide-selection-ranges
https://www.energy.gov/eere/vehicles/articles/fotw-1294-june-12-2023-2021-combination-trucks-were-driven-more-62000-miles
https://www.energy.gov/eere/vehicles/articles/fotw-1293-june-5-2023-2019-more-heavy-trucks-operated-34000-36000-pounds-any
https://www.energy.gov/eere/vehicles/articles/fotw-1292-may-29-2023-light-trucks-dominated-sales-light-duty-vehicles-msrp
https://www.energy.gov/eere/vehicles/articles/fotw-1291-may-22-2023-net-generation-electricity-renewable-sources-exceeded
https://www.energy.gov/eere/vehicles/articles/fotw-1291-may-22-2023-net-generation-electricity-renewable-sources-exceeded
https://www.energy.gov/eere/vehicles/articles/fotw-1290-may-15-2023-model-year-2022-longest-range-ev-reached-520-miles
https://www.energy.gov/eere/vehicles/articles/fotw-1289-may-8-2023-new-vehicle-fuel-economy-improved-33-1980-2022-while
https://www.energy.gov/eere/vehicles/articles/fotw-1288-may-1-2023-us-motor-fuel-taxes-are-lower-other-developed-countries
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Date Posted Fact Title 

April 24, 2023 Wyoming has the Highest Per Capita Number of Registered Light-Duty Vehicles 

April 17, 2023 Top 10 New EV Registrations in 2022 Were Models with Long Ranges 

April 10, 2023 Vehicle Miles Traveled in 2021 and 2022 Followed a Monthly Pattern Similar to Those 
Preceding the Pandemic 

April 4, 2023 Average Travel Time to Work Was About 27 Minutes in 2021 

March 27, 2023 The Share of At-Home Workers Doubled From 2018 to 2021 

March 20, 2023 The Number of Light-Duty All-EV Models Nearly Doubled from Model Year 2021 to 2022 

March 13, 2023 Over 14% of Light Vehicles Produced in 2022 had a Fuel Economy of 35 mpg or Higher 

March 6, 2023 More than 99% of All Light-Duty Vehicles Produced in 2022 Had Automatic 
Transmissions 

February 27, 2023 Seven States and DC Had More Than 10 Plug-In Vehicle Registrations per 1,000 People  

February 20, 2023 Most Battery Cells and Packs in Plug-in Electric Vehicles (PEVs) Sold From 2010 to 2021 
Were Domestically Produced 

February 13, 2023 Nearly 60% of Light-Duty Vehicles Produced in 2022 had All-Wheel or Four-Wheel Drive 

February 6, 2023 U.S. New Light-Duty Vehicle Sales Totaled 13.8 Million in 2022 

January 30, 2023 Monthly PEV Sales Exceeded 7% of New Light Vehicle Sales for the First Time in 
September 2022 

January 23, 2023 20% of Electricity in the U.S. Was Generated from Renewable Sources 

January 16, 2023 FuelEconomy.gov Releases Top Ten Lists for Model Year 2023 

January 9, 2023 EV Battery Pack Costs in 2022 Are Nearly 90% Lower Than in 2008 

January 2, 2023 EV Battery Production Capacity in 2030 is Projected to be 20 Times Greater than 2021 

December 26, 2022 Premium Gasoline Refiner Sales Have Grown More Than 30% Since 2008 

December 19, 2022 Average Annual Price Difference Between Regular and Premium Gas was 68 
Cents/Gallon, 2021 

December 12, 2022 As of 2021, Two-Thirds of U.S. Housing Units Had a Garage or Carport 

December 5, 2022 Plug-In EVs Reduced CO2 Emissions by 5.5 Million Metric Tons in 2021 

November 28, 2022 Light-Duty PEVs in the United States Traveled 19 Billion Miles on Electricity in 2021 

November 21, 2022 In 2021, over 70% of All Plug-In Vehicles in the U.S. Were Assembled in North America 

November 14, 2022 Fuel Economy Improvements in Low-Miles-Per-Gallon (MPG) Vehicles have Greatest 
Impact Reducing CO2 

November 7, 2022 Fuel Economy Improvements in Low-MPG Vehicles Yield the Greatest Savings  

October 31, 2022 The United States Has Designated 75,820 Miles of EV Charging Corridors as of July 
2022  

October 24, 2022 Truck Travel Between States Was Highest from New York to New Jersey 

October 17, 2022 Chicago Census Tracts with High-Income Households Used Ride Hailing More Often 

October 10, 2022 Transportation Sector Responsible for 50% of Energy-Related CO2 Emissions for 11 
States  

October 3, 2022 40% of the Electricity Produced in U.S. Was Derived from Non-Fossil Fuel Sources 

https://www.energy.gov/eere/vehicles/articles/fotw-1287-april-24-2023-wyoming-has-highest-capita-number-registered-light
https://www.energy.gov/eere/vehicles/articles/fotw-1286-april-17-2023-top-10-new-electric-vehicle-registrations-2022-were
https://www.energy.gov/eere/vehicles/articles/fotw-1285-april-10-2023-vehicle-miles-traveled-2021-and-2022-followed
https://www.energy.gov/eere/vehicles/articles/fotw-1285-april-10-2023-vehicle-miles-traveled-2021-and-2022-followed
https://www.energy.gov/eere/vehicles/articles/fotw-1284-april-3-2023-average-travel-time-work-was-about-27-minutes-2021
https://www.energy.gov/eere/vehicles/articles/fotw-1283-march-27-2023-share-home-workers-doubled-2018-2021
https://www.energy.gov/eere/vehicles/articles/fotw-1282-march-20-2023-number-light-duty-all-electric-vehicle-models-nearly
https://www.energy.gov/eere/vehicles/articles/fotw-1281-march-13-2023-over-14-light-duty-vehicles-produced-2022-had-fuel
https://www.energy.gov/eere/vehicles/articles/fotw-1280-march-6-2023-more-99-all-light-duty-vehicles-produced-2022-came
https://www.energy.gov/eere/vehicles/articles/fotw-1280-march-6-2023-more-99-all-light-duty-vehicles-produced-2022-came
https://www.energy.gov/eere/vehicles/articles/fotw-1279-february-27-2023-seven-states-and-district-columbia-had-more-10
https://www.energy.gov/eere/vehicles/articles/fotw-1278-february-20-2023-most-battery-cells-and-battery-packs-plug
https://www.energy.gov/eere/vehicles/articles/fotw-1278-february-20-2023-most-battery-cells-and-battery-packs-plug
https://www.energy.gov/eere/vehicles/articles/fotw-1277-february-13-2023-nearly-60-light-duty-vehicles-produced-2022-had
https://www.energy.gov/eere/vehicles/articles/fotw-1276-february-6-2023-us-new-light-duty-vehicle-sales-totaled-138
https://www.energy.gov/eere/vehicles/articles/fotw-1275-january-30-2023-monthly-plug-electric-vehicle-sales-united-states
https://www.energy.gov/eere/vehicles/articles/fotw-1275-january-30-2023-monthly-plug-electric-vehicle-sales-united-states
https://www.energy.gov/eere/vehicles/articles/fotw-1274-january-23-2023-2021-twenty-percent-electricity-us-was-generated
https://www.energy.gov/eere/vehicles/articles/fotw-1273-january-16-2023-fueleconomygov-releases-top-ten-lists-model-year
https://www.energy.gov/eere/vehicles/articles/fotw-1272-january-9-2023-electric-vehicle-battery-pack-costs-2022-are-nearly
https://www.energy.gov/eere/vehicles/articles/fotw-1271-january-2-2023-electric-vehicle-battery-manufacturing-capacity
https://www.energy.gov/eere/vehicles/articles/fotw-1270-december-26-2023-premium-gasoline-refiner-sales-have-grown-more-30
https://www.energy.gov/eere/vehicles/articles/fotw-1269-december-19-2022-average-annual-price-difference-between-regular
https://www.energy.gov/eere/vehicles/articles/fotw-1269-december-19-2022-average-annual-price-difference-between-regular
https://www.energy.gov/eere/vehicles/articles/fotw-1268-december-12-2022-2021-two-thirds-us-housing-units-had-garage-or
https://www.energy.gov/eere/vehicles/articles/fotw-1268-december-12-2022-2021-two-thirds-us-housing-units-had-garage-or
https://www.energy.gov/eere/vehicles/articles/fotw-1267-december-5-2022-plug-electric-vehicles-reduced-carbon-dioxide
https://www.energy.gov/eere/vehicles/articles/fotw-1266-november-28-2022-light-duty-plug-electric-vehicles-united-states
https://www.energy.gov/eere/vehicles/articles/fotw-1265-november-21-2022-2021-over-70-all-plug-vehicles-road-united-states
https://www.energy.gov/eere/vehicles/articles/fotw-1264-november-14-2022-fuel-economy-improvements-low-mpg-vehicles-have
https://www.energy.gov/eere/vehicles/articles/fotw-1264-november-14-2022-fuel-economy-improvements-low-mpg-vehicles-have
https://www.energy.gov/eere/vehicles/articles/fotw-1263-november-7-2022-fuel-economy-improvements-low-mpg-vehicles-yield
https://www.energy.gov/eere/vehicles/articles/fotw-1262-october-31-2022-united-states-has-designated-75820-miles-electric
https://www.energy.gov/eere/vehicles/articles/fotw-1262-october-31-2022-united-states-has-designated-75820-miles-electric
https://www.energy.gov/eere/vehicles/articles/fotw-1261-october-24-2022-truck-travel-between-states-was-highest-new-york
https://www.energy.gov/eere/vehicles/articles/october-17-2022-chicago-census-tracts-high-income-households-and-fewer
https://www.energy.gov/eere/vehicles/articles/fotw-1259-october-10-2022-transportation-sector-was-responsible-over-50
https://www.energy.gov/eere/vehicles/articles/fotw-1259-october-10-2022-transportation-sector-was-responsible-over-50
https://www.energy.gov/eere/vehicles/articles/fotw-1258-october-3-2022-2021-40-electricity-produced-united-states-was
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This year, significant work was performed on back-end data collection for the Transportation Energy Data 
Book. ORNL utilized application programming interfaces (APIs) from various data sources to efficiently 
acquire, process, and merge relevant datasets and explored multiple output formats—including LaTeX, Excel 
(.xlsx), and CSV (comma-separated values) files—to determine the most effective method for data 
representation. It was determined that a singular, up-to-date Excel file that serves as a central source for future 
table updates was needed to enhance the consistency and accuracy of the data. A comprehensive Excel file was 
established as the optimal approach for combining data from automated acquisitions, and an automated process 
was developed to streamline data updates from the latest specified sources, generating an updated file. 

The Transportation Energy Data Book website has a keyword search feature to help users find the data that 
they need, quickly and efficiently, in both PDF and MS Excel formats. In addition to enabling data access, the 
website has five rotating data highlights (changed several times a year), links to the Transportation FOTW and 
Argonne National Laboratory’s E-Drive Monthly Sales, and a contact link so that users can easily contact the 
project principal investigator, Stacy Davis. Other pages on the website provide access to an archive of older 
reports, citation information, and project contact information. The Transportation Energy Data Book website 
had 42,800 pageviews in FY 2023. Google Scholar reports a total of about 4,250 citations for the 
Transportation Energy Data Book. 

Data collected in the TDP have also provided input to other VTO programs and other agency models, such as 
ORNL’s Market Acceptance of Advanced Automotive Technologies (MA3T) model, Argonne National 
Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET®) model, 
NREL’s Automotive Deployment Options Projection Tool (ADOPT), the Transportation Decarbonization 
Analysis, the U.S. Energy Information Administration’s National Energy Modeling System, and the U.S. 
Environmental Protection Agency’s Motor Vehicle Emission Simulator (MOVES) model. 

In November 2022, the DOE Clean Cities Program asked ORNL to create a poster about the Transportation 
Energy Data Book for the 2022 Clean Cities Training Workshop in Lakeland, Colorado. 

As part of the TDP, NREL began a medium/heavy truck data analysis in FY 2023 that will be completed in 
FY2024. A literature review and data availability assessment were completed. 

Conclusions 
The TDP has facilitated successful publication in the form of weekly, monthly, and annual milestones 
delivered on time and within budget, with improvements over time. Having such accessible information leads 
to analyses that support program planning, evaluation, and technology research to address transportation and 
mobility goals, including reducing petroleum dependence, single-occupancy vehicle travel, and greenhouse gas 
emissions. 

Key Publications 
1. ORNL. “Transportation Energy Data Book.” Poster for the Clean Cities Training Workshop. 
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Project Introduction  
The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) invests in quality data and 
information, both current and historical, regarding all levels of transportation technologies to inform analysis, 
analysis-supported activities, and relevant stakeholders. VTO has supported the analysis of light-duty market 
trends, intending to assess the potential benefits of VTO-supported technologies and to evaluate program 
activities. Major challenges have included the lack of readily available historical data in the United States and 
other markets, along with a limited geospatial understanding of advanced vehicle sales trends, mobility trends, 
and consumer choice within the United States. A systematic examination of regional electric drive vehicle 
purchase trends and mobility usage patterns enables high-quality support and guidance for national impact 
analyses (e.g., potential energy and emissions reductions) and infrastructure deployment. At the same time, 
understanding the aggregate impact of electric vehicles (EVs) is important when exploring electricity use and 
petroleum consumption. Electric utilities are working to understand the resulting changes in electricity 
generation, demand, and required infrastructure. Meanwhile, growing EV use can offset petroleum 
consumption associated with conventional internal combustion engine vehicles, affecting oil prices and 
resource extraction. 

Advanced vehicle technologies covered in this study include electric drive vehicles, mobility (i.e., 
transportation network companies [TNCs], bikeshare, scooter share, private e-bikes, etc.), and connected and 
automated vehicles. Electric drive vehicle technologies include hybrid electric vehicles, plug-in hybrid electric 
vehicles (PHEVs), and battery electric vehicles (BEVs). 

Objectives  
The main objective of this project is to synthesize and improve upon the available data on electrification and 
mobility technologies in order to evaluate the impacts of these new technologies. The project includes the 
following tasks: 

• Electric drive vehicle sales tracking: Collect monthly plug-in electric vehicle (PEV), hybrid electric 
vehicles, and fuel cell electric vehicle sales data, by make and model, and summarize the market and 
technology trends.  

• PEV national and regional impact assessment: Quantify the national impact of PEV adoption on an 
annual basis.  

• EV lithium-ion battery (LiB) supply chain tracking: Summarize historical and future LiB cell and 
pack production by manufacturer and by vehicle make and model. 

mailto:YZhou@anl.gov
mailto:Raphael.Isaac@ee.doe.gov
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• New mobility technologies tracking: Summarize shared mobility data availability and trip trends by 
region and mobility type.  

This project provided quality data and information on electrification and new mobility technologies to the 
VTO Analysis Program and external researchers. Deliverables included monthly and annual public-facing 
reports, with selected data published on the Argonne National Laboratory (Argonne) website.  

Approach  
There were four tasks under this project, in FY23. Below are descriptions of the methods for individual tasks. 

Electric Drive Vehicle Sales and Registration Tracking 
This task involves collecting monthly electric drive vehicle sales data by manufacturer and model from various 
resources and at different points in time. The research team summarized the observed market trends and 
technology evolution of electric drive vehicles in a monthly report that was distributed to DOE and national 
laboratory researchers. Because the data source is proprietary, aggregated information was distributed to the 
public subscribers. Argonne also published selected data on the following webpage to improve public 
awareness: https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates. This task also 
involved collecting and summarizing vehicle registration data for detailed spatial analysis for light-duty 
vehicles of all powertrains. For electric drive vehicles, registration information was summarized quarterly at 
the state level for use by DOE staff. The zip-code-level registration data enables analysis based on 
demographic profiles for equity analysis, considering zip codes with lower incomes, low access to 
transportation options, or other socioeconomic indicators of interest. 

PEV National and Regional Impact Assessment 
In this task, the project team conducted a national-scale evaluation of PEVs on an annual basis and 
summarized the evaluation in a public-facing report. The report that was produced includes both national-scale 
metrics, such as aggregate electricity consumption and gasoline consumption reduction, and vehicle-level 
metrics, such as average vehicle performance. This report also demonstrates the evolution of PEV 
characteristics such as sales-weighted electric range and energy consumption per mile. Such information was 
additionally used to inform numerous analyses inside and outside of DOE; for example, these data were used 
to estimate the number of batteries available for recycling in the United States. 

This task also informed evaluations of regional similarities and differences within the homogeneous PEV 
market, specifically regionally-variable PEV energy consumption profiles.  

Electric Drive Vehicle LiB Supply Chain Tracking 
Using the PEV sales data collected, this task summarized the historical battery cell and pack production, by 
manufacturer and production location, of the PEVs sold in the United States. This task tracked original 
equipment manufacturer announcements about LiB investment and expected annual production in the United 
States and other regions. This information was then used to provide responses to internal and external queries 
about LiB investment needs (e.g., production capabilities and raw materials needed) to support transportation 
decarbonization. 

New Mobility Technologies Tracking 
This task summarized recent data availability of shared mobility (TNC, bikeshare, scooter share) and 
ownership mobility (personal bikes and e-bikes) technologies. Based on the data collected, this task assessed 
general usage and/or adoption trends by mobility type and analyzed usage characteristics across different 
mobility technologies and urban profiles. This task also summarized the energy and emissions impacts of 
micromobility technologies and synthesized the findings to date of micromobility impacts, anticipating future 
directions for research. 

https://www.anl.gov/es/light-duty-electric-drive-vehicles-monthly-sales-updates
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Results  
Through December 2022, over 3.2 million PEVs had been sold in the United States, with 2.3 million of these 
BEVs and 996,000 PHEVs that can use gasoline. The PEV market is predominantly BEVs (around 80%) as of 
2023. Cars used to be the most common EV category, but recently, sport utility vehicles/vans have overtaken 
cars as the lead category. Currently, there are almost no PHEV cars. This research team estimates that EVs 
have driven 95.7 billion miles on electricity since 2010, reducing gasoline consumption by 3.5 billion gallons 
cumulatively through 2022. In 2022, PEVs used 9 TWh of electricity to drive 28 billion miles, offsetting 690 
million gallons of gasoline. The sales-weighted average BEV range reached 295 miles in 2022, before 
dropping slightly in 2023. The sales-weighted average BEV efficiency reached 300 Wh/mile, while overall 
PEV average efficiency was 335 Wh/mile (sales-weighted) in 2022. The 3.2 million PEVs in the United States 
combined to reduce consumer fuel costs by $2.5 billion (or almost $800 per vehicle relative to a comparable 
vehicle). 

In 2022, higher gasoline prices led to savings of 9 cents per mile for BEVs and 5 cents per mile for PHEVs. 
Since 2010, 69% of PEVs sold in the United States have been assembled domestically, and over 180 GWh of 
LiBs have been installed in vehicles to date. Table I.2.1 summarizes the high-level national impacts of these 
PEVs, including PEV sales, electric vehicle miles traveled (eVMT), gasoline displacement, electricity 
consumption, and reductions in carbon dioxide emissions in each year from 2011 to 2022. California is the 
state with the most registered EVs, both in total number (Figure I.2.1) and in percentage share of all vehicles 
(Figure I.2.2). 

Table I.2.1 Annual Sales of New PEVs, Total Annual eVMT, Gasoline Reduction, Electricity Consumption, 
and CO2 Emissions Reduction Due to On-Road PEVs 

YEAR PEV Sales 
(thousands) 

eVMT 
(billion miles) 

Gasoline 
Reduction 

(million gallons) 

Electricity 
Consumption 

(gigawatt-hours) 

CO2 Emissions 
Reduction(million 

metric tons) 
2011 18 0.1 3 30 0.02 

2012 53 0.3 13 100 0.08 

2013 97 0.9 40 330 0.27 

2014 119 1.8 73 610 0.50 

2015 114 2.9 120 990 0.81 

2016 160 4.0 160 1,400 1.10 

2017 196 5.6 220 1,900 1.60 

2018 331 8.3 310 2,800 2.30 

2019 320 11.7 430 3,800 3.30 

2020 308 13.0 480 4,200 3.70 

2021 634 19.1 690 6,100 5.40 

2022 931 28 935 9000 7.0 

Total 3,281 95.7 3474 31260 26.08 
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Figure I.2.1 PEV registration by state, September 2023. Source: Argonne 

 
Figure I.2.2 PEV registration share by state, September 2023. Source: Argonne 
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Announcements of private-sector investments in U.S.-manufactured battery technologies have been increasing 
over the last few years, with 208 as of September 2023. There have also been 27 federal investment 
announcements. Figure I.2.3 shows locations of new announcements of minerals extraction and processing, 
battery component manufacturing, battery cell manufacturing, and battery pack manufacturing [1]. This 
includes formally announced mines for lithium, cobalt, and other battery minerals; processing facilities for 
battery minerals; facilities to produce battery components; and commercial and pilot-scale battery cell and 
pack manufacturing. It has been anticipated that the more than $100 billion in investments (private and federal) 
will create over 75,000 jobs [2]. 

 
Figure I.2.3 Announced U.S.-manufactured battery investments as of September 2023 [1] 

Conclusions  
Between 2010 and 2022, over 3.2 million PEVs have been sold in the United States. These vehicles have been 
driven nearly 95.7 billion miles, displacing more than 3.5 billion gallons of gasoline, preventing about 
26 million metric tons of greenhouse gases, and consuming 31 TWh of electricity nationally. 

Most of the PEVs on the road were assembled in the United States, 40% of the total content is domestically 
sourced, and many of the battery packs and cells were built domestically as well. Over 180 GWh of battery 
capacity has been installed in PEVs since 2010. Automakers and battery companies have announced 
construction of battery factories across the world, including in North America, aiming to satisfy projected 
growth in PEV sales. More than $100 billion in investments (private and federal) in EV and the EV supply 
chain were announced between January 2021 and September 2023, and these investments will create over 
75,000 jobs. 
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Project Introduction 
This project will analyze heavy-duty freight movement and will estimate the transmission and distribution 
impacts of electrification of heavy-duty freight vehicles. Currently Class 7 and 8 electric tractor trucks are 
available in early production form, with larger quantities expected to be available in the near future. These 
tractors can be connected to existing trailers and could quickly become part of the freight transportation 
system. A key question is the potential difficulty and cost of installing infrastructure to recharge these vehicles, 
which may require “slow” charging (up to 20–100 kW per plug) to charge overnight or “fast” charging 
solutions, potentially 1+ MW per plug for en route extreme fast charging. Clusters of truck chargers at 
warehouses or truck stops may require tens or hundreds of megawatts per site, which will require significant 
service expansion and upgrades to electricity distribution systems. 

Objectives 
The goal of this project is to help developers, utilities, and stakeholders better understand the key factors, 
opportunities, and challenges associated with aligning heavy-duty electrification needs with optimized least-
cost grid solutions that benefit all parties, from developers to utilities to society overall. The project will 
accomplish this goal by leveraging cutting-edge electrification and grid analytics to demonstrate new 
techniques to characterize electrification needs, align the needs with existing grid capacity, assess various 
electrification solution options where capacity is not available, and optimize for least-cost and reliability. This 
project will identify dominant cost factors and sensitivities associated with the electrical system reinforcement 
costs needed to serve these demands. Understanding these factors is a critical first step toward determining 
least-cost solutions to supply the energy needs of an electrified heavy-duty transportation sector while 
optimizing the benefits through lower utility rates and decreased carbon emissions. 

The task in this budget period is Task 6, Results Dissemination, which consists of two subtasks: (1) organizing 
a technology transfer workshop and (2) preparing the final report. The objective for Subtask 6.1 is to organize 
a workshop that targeted key stakeholders, providing an overview of the project process and presenting key 
findings. This workshop was intended to take place either online or at an appropriate Electric Power Research 
Institute (EPRI) conference. 

The objective of Subtask 6.2 is to create a final report on the impacts of freight electrification within a region. 
The report will document the methodology, results, and key findings, along with general characteristics for 
each site, descriptions of the identified system expansion needs, and study assumptions. Additionally, the 
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report will highlight key considerations and future needs to realize optimal least-cost integration solutions to 
support electrification of this component of the transportation sector.  

Approach  
Task 6.1: Organize Technology Transfer Workshop 
Organizing the workshop consists of identifying the appropriate audience, scheduling the meeting, and 
presenting the results of this work. 

Task 6.2: Write Project Report 
Drafting the final report consists of outlining the report, collecting sections from each project participant, and 
writing a cohesive narrative.  

Results  
Task 6.1: Organize Technology Transfer Workshop 
The workshop was successfully held at the EPRI Bus and Truck Working Council meeting on October 24, 
2023.  

Task 6.2: Write Project Report 
The report writing was initiated in Fiscal Year (FY) 2023 but is continuing into FY 2024. Below is an excerpt 
that shows a summary of one part of the modeling. 

Hosting Capacity Analysis 
Prior to analyzing the integration of electric vehicles (EVs), it is insightful to understand the system’s current 
capability. A hosting capacity analysis will investigate the amount of new load that each node can 
accommodate across a distribution feeder without experiencing undesirable system conditions. Based on the 
feeder model, the analysis will determine how much additional demand could be hosted at each location across 
the feeder, considering the very specific characteristics and topology of the feeder. A heatmap of the results 
from the analysis onto the feeder shown in Figure II.1.1 can help distribution planners to visualize the 
capability of the system to host additional load. Note that location (1) on the feeder has a hosting capacity of 
~5.5 MW, location (2) has a capacity of ~3 MW, and location (3) has less than 1 MW of available capacity. 
These differences demonstrate that the available capacity on a distribution feeder to host new demand will vary 
not only from one feeder to another but also from one location to another within a feeder. The results also 
show that the analysis considers the feeder’s specific characteristics when assessing the capability on the 
feeder. 
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Figure II.1.1 Hosting capacity results for one of the distribution feeders. Source: EPRI analysis 

This analysis can be performed across multiple feeders to do a wide-area distribution assessment, as shown in 
Figure II.1.2. This enables distribution planners to holistically assess the capability of a system instead of 
focusing on a single feeder at a time. Such an assessment enables planners to identify feeders that are more 
limited in capacity to prioritize infrastructure investments or feeders with available capacity to potentially 
incentivize early electrification transition adopters. For instance, feeders 3 and 4 would be good candidates for 
hosting large depots of EVs, whereas feeders 1 and 7 would not, as they have limited capacity. 
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Figure II.1.2 Wide-area distribution assessment – hosting capacity. Source: EPRI analysis 

Time-Series Hosting Capacity Analysis 
Hosting capacity, by definition, estimates the maximum amount of new load that a location can accommodate 
without experiencing any constraints under the worst-case conditions (i.e., peak load flow). However, peak 
load condition may occur only a few times a year, and there may be more capacity available during those 
times. With traditional load growth (e.g., new building construction), distribution planners would always plan 
with the peak load condition because of the assumption that load growth would exacerbate the peak demand on 
the feeder. However, the demand from EVs may not manifest itself exactly during peak demand, especially 
when vehicles could be charged overnight. Hence, there is a growing need to assess grid capability at other 
time instances to nuance the hosting capacity during peak load condition.  

Using grid data, a time-series hosting capacity analysis can be performed to evaluate the available capacity 
throughout the year at each location on the feeder. Figure II.1.3 shows the hosting capacity map for the same 
distribution feeders with the time-series hosting capacity at three locations. Note that the lowest value in the 
time-series plots represents the worst-case condition (peak load) where the hosting capacity is most limiting, 
which corresponds to the color in the heat map. Furthermore, note how the hosting capacity varies throughout 
the year; significant capacity may be available at other times during the year. 
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Figure II.1.3 Time-series hosting capacity highlighting three locations on a feeder. Source: EPRI analysis 

Conclusions  
The technology transfer workshop was successfully held. The report is written and expected to be complete in 
FY 2024. 
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Project Introduction 
In urban areas, parking management emerges as a critical issue, raising concerns related to environmental and 
congestion externalities. Increased bottlenecks, vehicle emissions, fuel consumption, and pedestrian safety 
concerns are associated with spending more time searching for parking in city centers. At the same time, a 
sparse network of parking spaces equipped with electric vehicle (EV) charging infrastructure poses a challenge 
to EV owners [1]. Urban parking facilities often fail to provide an adequate number of charging stations for 
EVs. Limited chargers in urban parking facilities hinder the accessibility of convenient public charging 
options [2]. The absence of urban destination charging can discourage the widespread adoption of EVs, as 
prospective owners are deterred by the unavailability of reliable and easily accessible charging infrastructure. 

Shared parking and its management enable multiple users or businesses to share the same parking area, 
maximizing the utilization of available parking spaces [3]. This project’s research centers on the management 
of shared parking and EV charging infrastructure within multi-unit dwellings (MUDs). In our previous studies 
[4], [5], we uncovered that many private parking spaces and EV charging stations within MUD parking lots 
remain available during the daytime because their residents typically commute by car, resulting in low 
charging utilization rates. The average maximum utilization rate of charging infrastructure in MUDs is only 
about 29% [4]. Given that the installation and use of home chargers in MUDs can be hindered by capital and 
installation cost burdens [6], the implementation of shared parking and charging management within MUDs 
presents a potentially viable business model, in mixed land use, where businesses, workplaces, and residences 
coexist. Such a concept allows for increased utilization of parking spaces and chargers within MUDs, 
generating revenue that can help alleviate parking maintenance and charging installation cost burdens.  

We model a shared parking and EV charging reservation and allocation system for MUD charging hubs and 
public users/commuters to demonstrate opportunities to provide accessible parking and charging services to the 
public. Our framework models both parking and charging supply objectives and demand choices. To 
accommodate both electric and gasoline vehicles’ parking and/or charging requests, a binary integer linear 
programming model, incorporating a set of matching rules, is formulated. Counterfactual analysis is conducted 
to model EV charging behavior. The results of numerical experiments, conducted in a neighborhood of 
Chicago, Illinois, using real-world data, are presented to demonstrate the effectiveness of the proposed system. 
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Objectives 
Our objective is devising a shared parking and charging management system, aimed at increasing the 
utilization rate of MUD parking and EV charging and, to some extent, alleviating the difficulties drivers face in 
finding parking spaces and charging infrastructure in urban centers and mixed land use-built environments. On 
the supply side, we propose a binary integer linear program (BILP) to allocate parking and EV charging 
requests to available parking spaces in MUDs, including those equipped with chargers. The model incorporates 
matching rules to handle scenarios involving a mix of parking and EV charging requests. On the demand side, 
we conduct counterfactual analysis to derive a charging choice model using empirical data. The model is fitted 
leveraging variables such as charging duration, distance from a proxy destination, number of charging stations 
at a location, and total charging and parking cost. Our management model and its proposed heuristic 
algorithmic solution are applied to a neighborhood of Chicago, Illinois, and assess its performance compared 
to a first-come-first-served (FCFS) strategy and optimal results derived by commercial solvers. 

Approach 
Shared Parking and Charging Management Approach in MUD Parking Lots 
Our proposed framework, illustrated in  Figure II.2.1, models users’ demand and MUD parking and charging 
reservation and management practices. Each MUD parking/charging facility and EV driver are considered as 
utility maximizing entities, aiming to maximize revenue and minimize costs, respectively. Each MUD parking 
lot has two types of parking spaces: regular ones and spaces equipped with EV chargers. MUD parking 
management receives two types of requests: concurrent parking and charging requests or parking-only 
requests. The MUD manager solves a BILP model to maximize revenue, based on the available parking and 
charging supply and demand information, and allocates the requests to appropriate parking and charging 
spaces. To account for the mix of electric and gas vehicles requests, the BILP model incorporates a set of 
matching rules. For the drivers, the decision-making process involves selecting a suitable MUD parking lot 
based on a choice model that takes into consideration both supply and demand information. To obtain realistic 
results, we fit the user’s choice model by conducting a counterfactual analysis and observing charging choices. 
To capture the dynamic nature of the system and address inherent uncertainties, we have designed the system 
as a dynamic one, implementing a rolling horizon strategy to replicate the entire process. 
 

 
 
 
 

 

 

 

 

 

 

 

Figure II.2.1 A schematic of our shared parking and charging management approach in MUD parking lots. 
Source: University of Illinois Urbana-Champaign (UIUC) 
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Numerical Experiments 
To illustrate our findings, we focus on the Englewood community of Chicago, Illinois. Englewood consists of 
10 commercial cluster centroids shown in Figure II.2.2(a) and 20 MUD cluster centroids shown in Figure 
II.2.2(b). Drivers visiting the commercial cluster centroids for work or leisure purposes can utilize nearby 
MUDs to find parking spaces or charging infrastructure. The sharing period for these facilities is from 9:00 
AM to 5:00 PM, with the system reassigning parking requests every ten minutes. In our analysis, we consider 
Level 2 charging stations with a power rating of 6.6 kW. To ensure adequate supply and demand, we set the 
ratio of parking spaces with chargers to the total supply and the ratio of charging requests to the total demand 
to 0.5. Reservation requests follow a Poisson distribution, while the duration of parking follows a negative 
exponential distribution with an average of 120 minutes [3]. 

 
(a) (b) 

Figure II.2.2 Clustering results of (a) commercial and (b) MUD-family residential land uses in Englewood of 
Chicago, Illinois. The number of trips attracted and the number of MUD units are indicated by the size of the 

marker in (a) and (b), respectively. Source: UIUC 

Results 
Choice Model 
We fit a charging choice model from a sample of 63,411 charging events. Table II.2.1 depicts the outcomes 
obtained from the choice model for a subset of commercial destinations. We observe that drivers typically opt 
for multi-unit residential area parking and charging facilities that are either closer to their destinations or offer 
lower overall fees. For example, the third row of Table II.2.1 shows drivers whose destination is commercial 
centroid 1. The drivers’ initial choices include MUDs 2, 9, 16, and 18. Notably, MUD 9 emerges as the closest 
option to commercial centroid 1, and MUDs 2, 16, and 18 offer the lowest combined sum of reservation, 
parking, and charging fees. A significant portion of drivers opt for MUD 2, which offers the lowest fee among 
the available options. By the 36th optimization time, there is a significant decrease in the share of drivers 
selecting MUD 2. To illustrate this, consider drivers whose destination is location 0 (see the second row of 
Table II.2.1). The share of drivers choosing MUD 2 decreases from 91% to 33%. This decline can be attributed 
to increased parking utilization of MUD 2 that leads to an increased reservation fee, since the fee is a function 
of parking utilization. Consequently, the fee in MUD 2 is no longer the lowest compared to other available 
MUDs. As a result, at this point in the modeling horizon, drivers opt for alternative MUD parking and EV 
charging facilities.  
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Table II.2.1 Results of The Charging Choice Model for a Subset of Commercial Destinations  

Commericial 
Destination 

Optimization Time 
1~35 

Optimization Time 
36 

Optimization Time 
37 

Optimization Time 
38~53 

MUD 
Residential 

Area # 

Share 
(%) 

MUD 
Residential 

Area # 

Share 
(%) 

MUD 
Residential 

Area # 

Share 
(%) 

MUD 
Residential 

Area # 

Shar
e (%) 

0 2 
11 

91 
9 

2 
11 
16 

33 
16 
51 

2 
11 
16 

15 
23 
6 

2 
11 
16 

15 
23 
62 

1 

2 
9 

16 
18 

32 
35 
31 
2 

2 
9 

16 
18 

5 
35 
48 
11 

2 
9 

16 
18 

5 
35 
48, 
11 

2 
9 

16 
18 

5 
35 
48 
11 

7 2 100 2 
16 

64 
36 

0 
2 

11 
16 

21 
23 
1 

55 

0 
2 

11 
15 
16 

24 
17 
1 
3 

55 

9 
2 

16 
17 

27 
62 
11 

2 
16 
17 

5 
83 
11 

2 
16 
17 

5 
83 
11 

2 
16 
17 

5 
83 
11 

Parking and Charging Allocation Results for Each Multi-Unit Dwelling 
Figure II.2.3 illustrates the number of matchings as a system performance metric. We consider four additional 
metrics: the number of matched charging requests, parking utilization, charging utilization, and revenue for 
five selected MUDs: MUD 0, MUD 1, MUD 2, MUD 9, and MUD 16. These five MUDs are chosen as 
representatives of our analysis. MUD 0 represents MUDs that initially do not receive any visits but start to be 
utilized once the occupancy rates of other MUDs become high. MUD 1 represents MUDs that are not visited 
throughout the simulation period. MUD 2 emerges as the most popular choice due to its lower fees, resulting in 
an influx of requests at the beginning, quickly reaching its saturation point. The saturation point occurs when 
parking utilization rates reach a threshold where the dynamic fee will significantly increase. MUDs 9 and 16 
are compared to MUD 2. MUD 9 receives fewer requests than MUD 2, while MUD 16 receives a similar 
number of requests to MUD 2, but the values of each metric change in a distinct manner, as discussed below. 

 

 

 

 

 

 

Figure II.2.3 Overview of the number of matchings per time of day, one of the MUD parking and charging 
management system metrics, for a subset of representative MUDs. Source: UIUC 

The rate of increase of the number of matchings varies across different MUDs, occurring at different times. For 
instance, MUD 0 and MUD 9 number-of-matchings slope is steepest around 14:00, while MUD 2 exhibits its 
fastest growth at approximately 8:30 (at the initial stage). MUD 2, being the preferred choice for most drivers, 
attracts a high volume of requests right from the beginning, leading to a swift increase in all five metrics’ 
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values. Once the occupancy rate of MUD 2 reaches a threshold, drivers begin selecting an alternative MUD lot 
(e.g., MUD 0 and MUD 9), resulting in a subsequent increase in these MUDs’ metrics. 

We compare the results for MUD 2 with MUD 16: even though the latter accepts more requests in the last 
iteration (621 requests for MUD 2 and 1,158 requests for MUD 16), it generates less revenue. This can be 
attributed to two primary factors. First, MUD 2 exhibits a higher charging utilization rate compared to MUD 16. 
As more charging stations are occupied, a greater amount of charging fees can be collected, contributing to a 
higher revenue. Second, there is a distinction between MUD 2 and MUD 16 in the parking duration of the 
accepted requests. On average, MUD 2 drivers are parked for longer periods than MUD 16 ones. Drivers with 
longer parking durations are more sensitive to fees, as indicated by the choice model. Therefore, users with longer 
parking duration choose MUD 2 over MUD 16. This phenomenon also explains why MUD 2 generates more 
revenue than MUD 16. The aforementioned factors contribute to the observed difference in revenue between 
MUD 2 and MUD 16, despite MUD 16’s accepting a greater number of requests. 

Comparison between First-Come-First-Served and Optimal Results 
We conducted a comparison between our proposed framework, an FCFS strategy, and the optimal results to assess 
the effectiveness of our approach. We focused on evaluating the performance of MUD 2 in terms of four key 
metrics: number of matchings, parking utilization, charging utilization, and revenue. The metrics for MUD 2 are 
shown in Figure II.2.4(a-d). The FCFS strategy entails accepting a request at a MUD if it can be accommodated and 
rejecting it otherwise. This process is repeated throughout the simulation until its conclusion. The optimal results are 
obtained by solving a BILP model, assuming complete knowledge of all requests in advance. 

   
 

 

 

 

 

 

 

                                              (a)                                                                                     (b) 

 

 

 

 

   
 

 

 

                                                 (c)                                                                              (d) 

Figure II.2.4 Comparison on four management performance metrics [(a) number of matchings, (b) parking 
utilization, (c) charging utilization, and (d) revenue] of the proposed framework with a FCFS scheme and the 

optimal solution (assuming all demand is known in advance). Source: UIUC 
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The FCFS strategy yields a higher number of matched requests compared to our proposed method. In fact, the 
number of matches achieved through FCFS even surpasses the optimal results. Note that the optimal results are 
obtained when maximizing the MUD’s revenue, similar to our method. Our method has a consistently higher 
parking utilization rate, outperforming the FCFS strategy until the time of day at approximately 13:00. Beyond 
this point, the parking utilization rate of our method remains unchanged, while it increases for the FCFS 
strategy. This shift in this performance metric can be attributed to the implementation of our dynamic 
reservation fees. When the parking utilization rate reaches a certain point, the reservation fee has a significant 
increase. When this threshold is reached, users are deterred from selecting MUD 2 as their preferred choice. 
This explains why, after a certain time, the parking utilization rate for our method remains stagnant, while the 
FCFS strategy gains an advantage. Furthermore, it is noteworthy that both the FCFS strategy and our method 
exhibit results that are closer to the optimal results in terms of parking utilization rate. 

Our method demonstrates significantly higher charging utilization compared to the FCFS strategy, closer to the 
optimal results. Accepting a greater number of charging requests leads to higher revenue generation, which is 
our objective. As a result, our method prioritizes accommodating charging requests, contributing to a higher 
charging utilization rate. At the same time, the BILP model incorporates matching rules that give priority to 
charging requests over parking requests. These matching rules are designed to improve the utilization of 
charging stations. Consequently, our method results in a higher charging utilization rate compared to the FCFS 
strategy. The combination of revenue maximization and the integration of charging-specific matching rules in 
our BILP model and management approach contributes to achieving the management’s goals for revenue 
maximization but also increasing the charging utilization rate.  

Conclusions  
During the daytime, the availability of vacant parking spaces and EV charging infrastructure in MUDs can 
address the limited network of public parking and charging options in urban, mixed-land-use areas. Our 
research evaluates the feasibility of a shared parking and charging system in MUDs, catering to the public, 
given that our prior work addressed modeling of evening/overnight MUD residential charging 
management [4]. The effectiveness of our management system is demonstrated through its application in a 
neighborhood of Chicago, Illinois. We assess its performance using various metrics, comparing it to an FCFS 
strategy and optimal results derived from a commercial solver.  

Through our research, we devise both parking management and EV charging behavior models, thereby 
offering holistic insights derived from commercial shared parking and charging in MUDs. By evaluating 
various performance metrics, our approach proves to be more effective, in terms of revenue and charging 
utilization, than the FCFS unmanaged strategy. Our method achieves results that are also close to optimal 
outcomes. Although our numerical experiment is limited to a neighborhood of Chicago, other neighborhoods 
and cities can readily adopt our model since it is transferable. The sensitivity analysis investigates the system’s 
performance in terms of revenue maximization, request rejection, and supply and demand balance. Our 
findings can guide MUD managers and residents in selecting the most appropriate parameter values based on 
their specific objectives and priorities. 
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Project Introduction 
Micromobility (personal mobility modes based on very small vehicles, typified by bike-sharing and scooter-
sharing) boomed following the introduction of dockless services in 2017–2018, as companies flooded U.S. 
cities with scooters and bikes. The industry then entered a phase of rationalization in search of profitability, 
even as many cities scrambled to manage the impacts of these vehicles and ensure that their benefits are 
available to all. Industry, local governments, researchers, and the U.S. Department of Energy (DOE) need a 
tool that can screen cities and neighborhoods to identify areas with a high opportunity for micromobility to 
gain market share, improve accessibility, and/or increase mobility energy productivity relative to incumbent 
modes. Such a tool allows for the deployment of micromobility resources in numbers and locations that deliver 
benefits to residents and cities while maintaining high utilization of industry assets. 

Objectives 
The objective of this project was to develop a new analytical tool that uses real-world data to estimate energy 
use and the associated impacts of micromobility services. The micromobility Screening for City Opportunities 
Online Tool (SCOOT) is an extensible framework for assessing census-tract-level demand for, and benefits 
from, micromobility services in all metropolitan statistical areas (MSAs) across the United States. SCOOT 
integrates new and previously collected data to evaluate and display the market potential, accessibility, energy 
productivity, and emissions savings associated with micromobility services. The framework is readily 
adaptable to alternative models of trip generation and mode choice, diverse levels of geographic aggregation, 
and user-specified assumptions about the cost and availability of micromobility vehicles. The modeling system 
has been implemented in an online tool accessible to the public, and the underlying code is open source to 
facilitate further development. 

Approach 
The overall structure of the SCOOT modeling framework is illustrated in Figure II.3.1. The work to develop 
SCOOT involved the following activities: 
 

• Gathering necessary background information, including a review of prior research on the determinants 
of micromobility ridership and an inventory of publicly available data sources to support model 
development and calibration. 

• Designing, programming, and administering a web survey, which included a stated preference / 
revealed preference (SP/RP) choice experiment designed to elicit preferences for features such as 
walking access time, waiting time, travel time, and the effects of bike lanes on willingness to use 

mailto:dwhm@uw.edu
mailto:Raphael.Isaac@ee.doe.gov
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micromobility. Usable responses from 1,774 individuals across the United States were used to 
estimate models of mode choice. 

• Generating a synthetic population sample for each census tract in the United States using data from 
the American Community Survey (ACS). The samples were generated such that they matched the real 
tracts in their distributions of age, gender, income level, and education level. 

• Modeling tours and destination choices using National Household Travel Survey (NHTS) data to 
generate daily travel activities for individuals in the synthetic population sample. 

• Integrating the tour generation and mode choice models into the SCOOT framework; applying them to 
each individual in the synthetic sample to predict the utility of each mode and the number of 
micromobility trips. 

• Calculating the accessibility, greenhouse gas (GHG) emissions, and mobility carbon productivity 
(MCP) effects of the micromobility modes at the census tract level. 

• Calibrating model outputs against micromobility demand observed in the real world. 

• Deploying SCOOT as an online, publicly available web tool. 

 
Figure II.3.1 Overview of SCOOT analytical framework. Green = data sources; blue = key modeling tasks; 

purple = key outputs. Source: University of Washington 

Results 
The SCOOT online mapping tool ties the SCOOT analytical framework to a web-based interface that allows 
users to specify assumptions about implementation location, price, vehicle density, and bike lane availability. 
The results from the analytical tool are fed to a reporting interface that maps key measures of micromobility 
performance—including daily total number of trips, accessibility, MCP, and GHG emissions—at tract level for 
all MSAs in the United States. 
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The mapping tool is implemented in R Shiny and hosted on a Shiny server.1 The SCOOT Shiny application 
has three main components: (1) a user interface object that sets up the layout of the webpage, (2) a server 
function that contains a series of reactive functions that retrieve data, calculate and aggregate for reporting 
metrics, and create maps and plots for the final results based on the input and output of the mapping tool, and 
(3) a call to the Shiny application function. Because applying the SCOOT framework to an MSA can take 
more than ten minutes to run, the project team pre-simulated each MSA’s population and daily trips, estimated 
each simulated individual’s mode choices, and stored all data in an Amazon Web Services (AWS) database. 
We then established a connection between R Shiny and AWS to retrieve data needed to calculate 
micromobility performance metrics to enable real-time visualization.  

A demonstration of the tool can be accessed through https://stlab.shinyapps.io/scoot_shiny/.  

Figure II.3.2 shows a screenshot of the dashboard. On the side panel, users can choose the MSA of interest; 
specify four population density levels where micromobility is to be implemented (i.e. everywhere, only in 
tracts with population density above 5,000 per square mile, above 10,000 per square mile, or above 20,000 per 
square mile); vary the price of micromobility services2 (i.e., $0.15/min,$0.25/min,$0.35/min); adjust access 
and drop off walking time (i.e., 1 min, 3min, 5 min); and toggle bike lane availability (i.e., less than 80% of the 
whole trip, more than or equal to 80% of the whole trip). Then users can choose which micromobility services 
to simulate and which performance metric to display, including trip count3, net accessibility4, net MCP5, and 
net GHG emissions6, to be shown on the map on the main panel. Below the map on the main panel, two bar 
charts show the distribution of net accessibility and net MCP across different income groups. 

 
Figure II.3.2 Screenshot of SCOOT web tool interface showing net effects of micromobility services on 

accessibility. University of Washington 

 

1 Shiny (website). Accessed 2023. https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html. 
2 Total cost of a trip consists of a $1 unlocking fee and price per minute x trip time. If a trip is integrated with transit, there will be a $2 additional transit 
fee. 
3 Total number of daily trips. 
4 Change in average accessibility per trip after introducing micromobility services. 
5 Change in average MCP per trip after introducing micromobility services. 
6 Change in GHG emissions across all trips after introducing micromobility services. 

https://stlab.shinyapps.io/scoot_shiny/
https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html
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Conclusions 
The SCOOT web tool provides a means to evaluate the effects of micromobility availability and pricing at the 
census tract level for any MSA in the United States. The underlying code is available for further development 
by others. 
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Project Introduction 
For emerging electrified heavy-duty (HD) commercial vehicles (CVs), the energy storage characteristics and 
refueling infrastructure are a significant departure from today’s mature liquid fuel and internal combustion 
engine systems, presenting a new opportunity and need to co-optimize the development of vehicles, their 
usage, recharging infrastructure, and the supporting electric grid. Unlike their diesel counterparts, the 
electrified powertrains present a wide disparity of emerging solutions, requiring that the end user specify the 
battery and charging infrastructure needed. Energy service providers may not be included in this process. 
Because of this disconnected effort, CV end users may specify and/or own “behind-the-fence” energy 
solutions, which drives up asset cost, potential down time, overhead, and net carbon emissions. As charging 
asset deployment plans progress, organizations are faced with the challenging task of determining the most 
effective phase-in of this super system. In addition, the grid faces simultaneous challenges of decarbonization, 
added power capacity requirements from electrification, and the need to reduce the delivered price of 
electricity. 

To address these challenges, this project is developing an optimization tool that brings the battery electric 
vehicle (BEV) powertrain architecture, charging infrastructure, and grid architecture into a common 
framework. The goal is to develop deployment roadmaps for HD BEV, charging, and grid infrastructure 
architectures, with lifetimes spanning 0–10 years. The infrastructure is centered on the intermodal freight 
transfer points of major U.S. ports, with freight movement radii up to approximately 250 miles. 

Roughly 72.5% of the nation’s freight is moved by trucks [1], [2]. Shorter-range and/or lower-load cycles for 
HD CV applications may be well represented by port/terminal drayage missions for intermodal freight transfer 
and selected hub-spoke missions for general freight movement. Up to 95% of all globally manufactured goods 
travel in a container at some point [3]. Drayage plays a critical role in moving containers in and out of 
intermodal hubs, such as shipping ports, harbors, rail terminals, trucking terminals, and warehouses. 
Altogether, short-haul delivery operations (less than 250 miles per day) constitute about 67% of the trucking 
freight in the United States [1]. Further, more than 60 million drayage loads are hauled annually [4].  

For this research, the analysis and algorithms developed will focus on freight transport by trucks at shipping 
ports and rail terminals. However, these use cases will be generalized and applicable for all regional hubs/truck 
transport networks. This is a multi-performer project led by Oak Ridge National Laboratory (ORNL), in 
partnership with SLAC National Accelerator Laboratory and Ohio State University (OSU), with non-financial 
support through industry partners Cummins Inc., Walmart Inc., and Tennessee Valley Authority.   

mailto:SujanVA@ornl.gov
mailto:Patrick.Walsh@ee.doe.gov
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Objectives 
This project introduces an innovative analytical framework and solutions that harmonize the often-competing 
requirements of HD BEVs and the necessary infrastructure. The project formulates a co-optimized scenario-
based deployment plan that will serve as a valuable resource for guiding key decision-makers within a fleet, as 
well as electric grid utilities within this ecosystem, enabling them to proactively address evolving needs and 
make informed choices. The purpose of this project is to expedite the adoption of HD BEVs, contributing 
significantly to the decarbonization and sustainable energy practices in the CV freight transportation sector. 

• Goal 1: Develop an optimization instrument that brings the CV BEV powertrain architecture, 
charging infrastructure (both behind-the-fence and public-access), and grid architecture (energy 
sourcing and carbon management) into a common analytical framework. 

• Goal 2: Develop technology deployment roadmaps for HD battery electric CVs (at various adoption 
rates), charging, and grid infrastructure architectures, for freight movement within radii of 50–250 
miles, centered on intermodal freight transfer points of all major U.S. shipping ports. 

Approach 
Figure II.4.1(a) shows a simplified diagram of a conventional shipping port or rail terminal freight trucking 
network. This constitutes the port/terminal operations, the truck transport vehicles, and the distribution 
centers/hub. This freight flow system is supported with a diesel fueling infrastructure where vehicle refueling 
may occur at the ports, on public access roadways, and behind the fence at specific distribution centers. While 
the operations and coordination of these services is a complex orchestration of several factors, the focus of our 
research is on the energy pathway and needs for the trucking system. 
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(b) 

Figure II.4.1 Freight transport network: (a) current and (b) future/emerging highly electrified. Source: ORNL 

Figure II.4.1(b) shows a similar, simplified diagram of an emerging highly electrified freight trucking network. 
In this system, the freight movement and key stakeholders expect few (if any) changes to the freight flow. 
However, the supporting three architecture layers—vehicle powertrains, charging infrastructure, and the 
energy sourcing backbone—will experience significant technology change. A complex array of charging 
options (including dynamic wireless power transfer), along with temporary energy storage to provide grid 
resilience, will form the bridge between the vehicle powertrain/energy storage technologies and the electric 
grid. Local distributed energy resources (DERs) for electricity generation and storage are expected to 
complement the architecture and support intermitted loads, especially on modern grids that are increasingly 
reliant on renewable power. The traditional approach to optimizing these three architectural layers typically 
involves separate assessments, with limited interaction and cross-influence. Moreover, regional and temporal 
variations are often overlooked when developing architecture and technology roadmaps. This approach can 
result in suboptimal roadmaps for vehicle-specific battery requirements, charging power levels and 
availability, and overall grid power generation, all while striving to minimize product proliferation.  

Through this research project, ORNL has developed an advanced CV road freight network, energy systems 
architecture, and system-of-systems analytics termed the Optimal Regional Architecture Generation for 
Electrified National Transport (OR-AGENT) modeling framework. OR-AGENT was introduced at the 14th 
International Green Energy Conference [5]. The workflow is shown in Figure II.4.2. Within this framework, 
we conduct a parametric study that utilizes integrated sub-system data and models encompassing various 
aspects of electrified vehicle powertrain architecture and dynamics, freight logistics (including vehicle origin 
destination [OD] data, schedules, and weights), traffic patterns, roadway conditions, weather factors, and 
energy flow pathways (including grid capabilities, energy storage, dispensing facilities, and DERs). This 
unique methodology for interconnected systems analysis combines insights from vehicles, operational 
logistics, and energy pathways. It yields a region-specific, seasonally adapted, and constrained-optimal 
solution for the architecture of vehicles and infrastructure. This optimization process is guided by 
technoeconomic metrics aligned with the needs of stakeholders in the system, such as fleet operators, 
electrified equipment suppliers, energy service providers, utilities, and planning agencies. By employing a 
defined cost function (e.g., total cost of ownership [TCO]) that reflects the interests of these stakeholders, this 
approach equips local government bodies, industry end users, energy suppliers, and equipment providers with 
a versatile planning tool. This tool facilitates the strategic deployment of electrified freight transportation 
systems, accommodating regional variations and constraints arising from diverse stakeholder motivations 
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within this ecosystem. While conventional analytical methods often consider infrastructure in a piecemeal 
fashion without accounting for regional nuances, our approach systematically integrates the evaluation, 
resulting in a coherent and comprehensive roadmap for vehicle and energy infrastructure development. Details 
of this approach may be found in “Assessing Powertrain Technology Performance and Cost Signposts for 
Electrified Heavy Duty Commercial Freight Vehicles” [6]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR-AGENT – An interconnected systems analysis (micro/meso) bottom-up  
approach to sustainable blueprints for commercial vehicle fleet decarbonization 

Figure II.4.2 OR-AGENT workflow construct and key elements overview. Source: ORNL 

Results 
The focus of Budget Period 1 (BP1) has been to develop and assimilate the models and the OR-AGENT 
modeling framework. This begins by developing the specific customer use case. Given the large option space 
of shipping ports, the key ports have been characterized by the value/quantity of freight moving through these 
ports, as well as the weather variations seen at these ports. Three ports (Savannah, GA; Houston, TX; and 
Seattle–Tacoma, WA) were selected to represent the median cases. They are a starting point for this research, 
with other ports being included in future BPs. The Port of Savannah has been used to develop, establish, and 
calibrate the models and modeling framework.  
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Route and Environment Modeling 
As shown in Figure II.4.3, the first step is to create a vehicle and port operating domain specification (ODS). 
This includes establishing the vehicle ODs, the routes taken (including grade, road speed, etc.), vehicle weight 
and dynamic characteristics (drag, rolling resistance, frontal area), the weather conditions (temperature, air 
density, wind speed/direction, etc.), vehicle counts (to/from the port along each route), and vehicle schedules 
(departure/arrival times). Data from several different sources are combined to establish this ODS: StreetLight/
Bureau of Transportation Statistics data (for OD, vehicle count, and schedule) [8], Google maps and Nokia 
HERE databases (for truck route development) [9], [10] data from the U.S. Department of Transportation’s 
Freight Analysis Framework, Highway Performance Monitoring System, and Travel Monitoring and Analysis 
System (for vehicle weight distributions) [11], and National Oceanic and Atmospheric Administration data (for 
weather conditions) [12]. To support both this and future research, the broader data has been combined into an 
automated process such that a rapid ODS may be established for a given port/fleet domicile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.4.3 Steps involved in the route and environment modeling. Source: ORNL 

Figure II.4.4 gives an example of the identification and development of vehicle routing at the Port of Savannah 
that was used in developing the ODS. Of the vehicle miles traveled for drayage, 90% are accounted for in 20 
outbound and 21 inbound routes. These 41 routes are modeled over 3 days in each of the 12 months 
(representing the minimum, maximum, and median temperatures for that month) for a total of 1,476 routes. 
Additional details on this have been published [5], [6], [13]. 
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                                                 (c)                                                                                               (d) 

Figure II.4.4 Identification and development of vehicle ODS at the Port of Savannah: (a) Truck trip origin and 
destination distribution, (b) origin/destination arcs with trip volume, and (c) key corridors and trip volume 

based on routing assignments. [7] 

Vehicle Modeling 
Utilizing road load dynamics, the project has constructed one-dimensional models for the HD diesel 
powertrain shown in Figure II.4.5(a) and BEV powertrain shown in Figure II.4.5(b). The OSU team worked on 
developing an advanced vehicle simulator platform on MATLAB/ Simulink to virtually simulate and analyze 
the energy requirements of electric HD trucks, Classes 9–13 (Federal Highway Administration classification), 
for real-world routes traveled by drayage trucks. The BEV powertrain architecture is a tandem e-axle 
configuration with 250 kW electric motors on both axles providing the tractive power to the wheels, as 
illustrated in Figure II.4.5(b). Each e-axle has an electric motor integrated to a three-speed gearbox, along with 
gear reductions happening at the axle differential and the wheel ends. This architecture reflects current state-
of-the art technology for HD battery electric trucks. 
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(b) 

Figure II.4.5 Enhanced powertrain embodiments from (a) diesel powertrain to (b) BEV powertrain for this 
research project. Source: ORNL 

The powertrain is modeled using a forward-looking, quasi-static approach. In a technical paper published in 
the Society of Automotive Engineers (SAE) International journal [14], Shiledar et al. describe development of 
a modified enhanced driver model, which is integrated with the simulator to generate a reference speed profile 
based on the route features (e.g., speed limits and road grade), moving away from fixed drive cycles for greater 
realism. Shiledar et al. developed a detailed road load model for modeling the resistive forces (aerodynamic 
and tire rolling resistance) that the truck experiences while in motion. Aerodynamic load modeling accounts 
for the variation in drag coefficient, based on the truck’s configuration (with or without a trailer or container) 
and the yaw angle relative to the wind direction [15]. The tire rolling resistance model used in the study 
captures the dependence of rolling resistance coefficient on longitudinal vehicle speed and tire temperature, 
where the tire thermal dynamics are modeled using a first-order transfer function approximation [16]. The 
simulator goes beyond the powertrain modeling to include auxiliary components such as the cabin heating, 
ventilation, and air conditioning compressor, battery thermal management system (BTMS), pneumatic brake 
pumps, etc. The power consumption modeling of these incorporates a duty cycle-based approach and accounts 
for the influence of ambient conditions on power usage within the models [17], [18]. The battery and charger 
models (described below) have been integrated in the vehicle simulator. The integrated model provides the 
energy consumption of trucks going through the annual seasonal cycle, defined by variations in elevation, 
grade, ambient temperature, and air density on multiple drayage routes identified at a single freight port. Figure 
II.4.6(a) illustrates the energy consumption variability over specific routes due to seasonal variations for diesel 
powertrains and Figure II.4.6(b) for BEV powertrains. The route-based seasonality variations are quantified 
and show significant changes. These will be validated against real-world data in BP 2. To accommodate the 
ongoing large scale of this study, a high-performance computing framework that allows multiple parallel 
simulations on the OSU Ohio Supercomputer is being developed. 
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Battery Capability and Thermal Management System Modeling 
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(b) 

Figure II.4.6 Energy consumption variation due to route and seasonality changes (gross combined vehicle 
weight of 60,000 lbs.): (a) Conventional  minimum: 7.07%, maximum: 13.91%, average: 10.79% ± 1.73% 

and (b) BEV  minimum: 10.78%, maximum: 17.37%, average: 13.44%± 1.54%. Source: ORNL 

Battery Capability and Thermal Management System Modeling 
In our work, we aim to capture the capacity and power capabilities of multiple different lithium (Li)-ion 
battery chemistries at the pack level. To do this, we first calibrate a Li-ion battery cell model that integrates the 
electrical (using a first-order equivalent-circuit model), temperature (using a first order lumped-parameter 
thermal model), and aging (using a semi-empirical severity factor-based model) dynamics. Models are 
calibrated using experimentally collected data (the calibration procedure is detailed in “Electrochemical 
Techniques and Diagnostics for Lithium-ion Batteries” [19]). The aging dynamics are calibrated using publicly 
accessible cycle aging datasets, when available; otherwise, we draw from models reported in the literature. To 
obtain a pack model, the cell model is upscaled by assuming cell-to-cell variations are negligible. In so doing, 
we reduce the dynamics of a battery pack to those of a single battery cell with scaled inputs and outputs. In BP 
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1, the project team calibrated models for three different chemistries: lithium nickel manganese cobalt oxide 
(NMC-811), lithium nickel cobalt aluminium oxide, and lithium-ion manganese oxide.  

To understand the effect of cell-to-cell variations in a battery pack, we constructed a model of the battery pack 
that allows us to track the dynamics of every cell in the pack. Cell-to-cell variations generally can arise from 
differences in the process manufacturing. The team validated this battery pack model using pack-level 
experimental data shared with us by Idaho National Laboratory [20]. We find that the effects of cell-to-cell 
variations can be reduced by having modules with parallel-connected cells. Intuitively, having parallel-
connected cells means that the cells within a parallel branch can compensate for any deficiencies of other cells 
in the branch. This comes at the cost of increased aging for the pack overall; however, this increased aging is 
lessened when the pack has many parallel-connected cells. Thus, in battery packs that are as large as those 
found in electrified HD vehicles, neglecting cell-to-cell variations is a reasonable approximation. A manuscript 
detailing these findings has been submitted for review [21].  

One system that consumes a sizable share of energy during vehicle operation is the BTMS. This system is 
essential to ensuring that the battery pack stays within an acceptable range during its operation, regardless of 
the environmental conditions. Thus, to get a comprehensive estimate of the vehicle’s true energy demand in a 
wide variety of environmental conditions, the project team created a model of a BTMS and implemented a 
simple control strategy. The heat rejection capabilities of the BTMS model are based on currently available 
BTMS systems. 

Charger Modeling 
To better capture the dynamics of the plug-in charging process, the project team created models for single- and 
dual-plug chargers that have been integrated with the battery models discussed earlier. The plug-in charger 
models take two inputs that determine the maximum power that can be transferred from the charger to the 
battery: (1) an efficiency curve and (2) a charge acceptance curve. Additionally, the project team has created a 
model for an on-board dynamic wireless transfer charger. This charger model allows the vehicle model to 
accept power directly from a designated electrified segment of the vehicle’s current route.  

Vehicle Powertrain Options Analysis 
Preliminary results using the above modeling (not accounting for the influence of weather) are seen for a fuel 
cell electric vehicle (FCEV) in Figure II.4.7, which presents a multi-factor assessment of the comparative 
architecture in relation to the reference architecture. Each setting or combination of factor values displayed 
here yields a TCO for the comparative architecture that outperforms the TCO of the reference architecture. 
This visual representation effectively illustrates the scenarios in which the comparative architecture exhibits 
cost advantages over the reference architecture, providing a comprehensive overview of the favorable 
configurations and conditions for decision-makers to consider. The factor values for the reference architecture 
are depicted as constants (seen as yellow points). For example, the price of diesel fuel is set at a fixed rate of 
$5 per gallon. 

To achieve this view, the project team conducted a complex study that involves systematically varying critical 
parameter values and establishing the TCO/levelized cost of ownership of the different powertrain 
architectures. In all, the team studied over 47,000 configurations while considering a Monte Carlo space of 
1,000 vehicles (varying missions and weights) for each configuration, i.e., 47,000,000 vehicle simulations. 
Using these data, the team generated a piecewise linear model to interpolate the TCO/levelized cost of 
ownership for other parameter settings. This has been done not only for the Drayage application but also for 
Line Haul, Regional Haul, and Short Haul in support of other U.S. Department of Energy (DOE) projects that 
need to understand these trade-offs. The outcomes from these critical signposts are incorporated into 
comprehensive route- and site-level analyses to evaluate the projected migration path of the architecture and 
the expected grid loading. In developing these roadmaps, anticipated cost and performance curves over time 
are employed, drawing from baseline scenarios [22] and exploring optimistic and pessimistic variations to 
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establish the boundaries of the migration trajectories. Through constraint-based optimization, considering both 
TCO and Advanced Clean Fleet requirements, a migration trajectory for drayage routes is delineated.  
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(c) 

Figure II.4.7 Multi-parameter TCO comparison of four systems: (a) diesel, (b) FCEV, and (c) BEV with depot and 
dynamic wireless power transfer (DWPT) charging. Source: ORNL 

Future efforts will involve integrating this trajectory with a site-level evaluation of vehicles domiciled at the 
port, providing a more comprehensive characterization of the overall fleet migration pathway. However, 
because of factors such as fleet mission flexibility, uncertainty in the total vehicle count supporting drayage 
flow in a region, and constraints related to battery size (implications for weight), the results will offer guidance 
rather than specific targets for vehicle conversions. 

To build out the above analysis into a site-level study, the project team has been developing an assessment of 
the anticipated vehicle count and weights that will be experienced by the Port of Savannah over the course of a 
typical year. For this study, we are focusing on 2021 data. In these studies, we develop a comprehensive 
perspective spanning 365 days, considering all trips to/from a single port. The objective is to assess the electric 
energy requirements based on a specific vehicle powertrain architecture. Using Monte Carlo statistical 
methods, vehicle counts originating from or destinating to the port, schedules of departure and arrival at the 
port, and weights for the Port of Savannah have been incorporated into vehicle missions. (These data are 
described above.) Missions are modeled as round trips that essentially emulate freight being transported from 
the port to a given destination, followed by an unloaded trip to a new origin point, where freight is reloaded 
and transferred back to the port. In this first pass, it is assumed that all mission energy for the trucks is 
obtained at the port. Truck battery sizes are limited to 1,000 kWh. These constraints limit the number of trucks 
that may be electrified without further charging opportunities, larger batteries, or alternate zero-emission 
powertrains. These options will be further evaluated in future BPs. Multiple charging scenarios have been 
considered using charger power levels of 150 kW, 350 kW, 440 kW, 1,250 kW, and 3,750 kW (covering both 
combined charging system direct current [DC] fast charging and megawatt charging system standards). In 
addition, four charging options have been considered: full recharge within the port dwell/service interval at or 
below the charger power limits, and full recharge within the port overnight dwell period at or below the charge 
power limits. Based on these possible charging solutions, the number of chargers needed, and the grid demand 
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load may be calculated. Grid load demand for overnight charging of both at, and below, the charge power 
limits are shown in Figure II.4.8. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.4.8 Site-level truck throughput and grid power assessment. Source: ORNL 

Like the assessment of vehicle architecture options, the team performed a similar assessment at the domicile 
level. This entails configuring the architecture for each energy solution, such as diesel and electricity (and 
hydrogen, natural gas, etc. in future projects), in a parametric manner. Key variations and associated range 
values are established, creating a study space for the infrastructure corresponding to a particular domicile. In 
addition to configuring the infrastructure, we can apply constraints—such as the availability of electricity or 
carbon emission limits—to determine the viability of a given infrastructure configuration. As with previous 
phases, the decision-making process predominantly centers around TCO. However, it may also incorporate 
other decision drivers aligned with the specific requirements and priorities of end-user stakeholders. The 
development of domicile-level studies will continue into the next two BPs, allowing us to delve deeper into the 
complexities of energy needs and infrastructure considerations at each major port in the United States. 

Grid Capacity and DER Modeling 
In parallel to the site-level energy demand, the team is conducting a study to assess the grid capabilities to 
support this demand. In a previous report, we have presented a direct assessment of capacity for substations 
within 250 miles of the Port of Savannah shown in Figure II.4.9(a)). These data reflect the limits that are 
experienced when a single electric bus at each substation experiences an increase in load till a failure mode is 
reached. Once we have the electric demand signal for the port, we will also explore the impact of multiple bus 
power increases to assess the ensuing failure modes. 
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(a) 

 
(b) 

Figure II.4.9 (a) Assessing grid capacity near key roadways within 250 miles of the Port of Savannah, and (b) 
2022 grid carbon intensity estimation for additional load. Source: ORNL 

In addition to the grid capacity, it is critical to understand the grid carbon intensity associated with the 
additional load. Shifting the energy demand from traditional diesel or other fossil fuels to the electric grid does 
not eradicate the vehicle’s carbon footprint; instead, it contributes to the overall carbon footprint originating 
from the grid. This stems from the reality that the grid is presently not carbon-neutral; it draws energy from 
various sources that generate carbon, including coal, natural gas, and oil. Even seemingly cleaner sources like 
nuclear, solar, wind, and hydroelectric power possess non-zero carbon intensities.  

The team has introduced a novel tool that leverages historical data on the carbon intensity of the grid, specific 
to each electric zone, along with an estimate of the load demand in those zones. This tool forecasts the likely 
carbon intensity resulting from a new load within each region. The tool’s purpose is to estimate the carbon 
intensity of an added load within any county in the United States, utilizing pertinent historical data and 
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extrapolations derived from that data. The tool projects future carbon dioxide intensity by incorporating a grid 
decarbonization rate (user input to evaluate different hypotheses shown in Figure II.4.9(b). 

Next, with knowledge of both the grid capacity and carbon intensity, the option of introducing DERs based on 
clean electricity (such as solar, wind, hydro, or nuclear) is explored. In future work, we will combine this asset 
class against the available electricity to identify the site-level options and their technoeconomic trade-offs.  

To that end, we have modeled the DER siting challenges through previously developed laboratory tools funded 
by DOE, including both the National Renewable Energy Laboratory’s (NREL) Renewable Energy Potential 
(reV) model and the ORNL Oak Ridge Siting Analysis for Power Generation Expansion (OR-SAGE) tool. 
Both are fundamentally DER siting tools but bring complementary functions to bear. OR-SAGE is specifically 
built for site selection and has the resolution to generate siting maps alongside regional data. OR-SAGE’s 
unique approach to its exclusion layers allows in-depth analysis of the reasons behind a region’s exclusion. 
NREL’s rEV model is intended for regional and continental analysis rather than site selection. Both also bring 
into focus the needs for exclusion layers of the land.  

Using the combination of both these tools, we have completed the analysis for solar siting requirements/
potential capabilities near the Port of Savannah, Houston, and Seattle–Tacoma shown in Figure II.4.10. 
Expanding the DER siting and TCO implication with wind, hydro, and nuclear will be considered going 
forward. 

 
(a) (b) (c) 

Figure II.4.10 Solar panel siting near Port of Savannah: (a) 10 MW sites, (b) 5 MW sites, and (c) 1 MW sites. 
Source: ORNL 

Conclusions  
The integration of BEVs into HD commercial freight transportation encounters substantial technoeconomic 
obstacles. To achieve widespread deployment of electrified powertrains in this sector, it is crucial to ensure 
high uptime and cost parity with diesel systems, all while adhering to safety regulations. However, challenges 
such as high powerplant and energy storage costs, elevated energy expenses, increased weight, extended 
refueling or recharging times, and limited supporting infrastructure have impeded the broad acceptance of 
BEV powertrains in HD freight transport.  

In this research project, ORNL has developed an advanced CV road freight network, energy systems 
architecture, and a system-of-systems analytics framework called the OR-AGENT modeling framework. 
During BP 1, the primary focus has been developing and integrating the models and the OR-AGENT 
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framework. This has been applied to the initial analysis of freight movement through the Port of Savannah 
using HD drayage trucks to co-assess the vehicle powertrain, the impact on the required charging infrastructure 
(at the ports), and the grid impact. BP 2 and BP 3 will expand on this by not only assessing a broader range of 
critical U.S. freight ports (including charging at the freight warehouses and along the roadways) but also 
developing a more in-depth assessment of the port infrastructure, coupled with the grid carbon impact, grid 
capacity gaps, and supporting DER asset deployment using deployment-critical TCO metrics. 
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Project Introduction 
The global transportation sector plays a pivotal role in shaping the world’s economy, with freight 
transportation serving as a vital component. Nevertheless, the environmental ramifications of traditional freight 
transportation fueled by fossil fuels have become increasingly alarming, prompting a collective effort to reduce 
greenhouse gas emissions and transition to more sustainable transportation modes. In this context, the 
electrification of freight transport has emerged as a critical strategy for achieving zero-emission freight 
transportation. The electrification of medium- and heavy-duty (MHD) vehicles presents a promising solution 
to address the environmental challenges. Replacing diesel-powered trucks with battery electric vehicles 
(BEVs) and fuel cell electric vehicles has substantial potential to significantly reduce carbon dioxide 
emissions, air pollution, and noise levels. Notably, advancements in powertrain technologies have enhanced 
the range and payload capacity of MHD zero-emission vehicles (ZEVs), rendering them viable options for 
long-haul and high-load transportation [1], [2]. 

While global initiatives and research endeavors have sought to promote freight electrification and zero-
emission initiatives, challenges persist in achieving widespread adoption. Governments, private companies, 
and research institutions have recognized the urgency of zero-emission freight transportation and have 
implemented various policies and programs to support this shift, as discussed in [3] and [4]. Investigations into 
the influence of financial incentives and socioeconomic factors on electric vehicle (EV) adoption, underscore 
the need for coordinated efforts to facilitate the widespread adoption of MHD ZEVs. Despite the progress that 
has been made, challenges remain, including high upfront costs, limited charging infrastructure, range 
limitations, and concerns over battery life and performance [5], [6]. 

Objectives 
This work aims to augment the ongoing research and development efforts in heavy-duty vehicle electrification 
by explicitly addressing the challenges of load deployment and charger assignment. In response, this project 
has developed the Medium and Heavy-Duty Electric Vehicle Infrastructure Load Operations and Deployment 
(HEVI-LOAD) tool. This tool serves as a comprehensive solution to project infrastructure needs for 
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decarbonizing the MHD vehicle segments, offering valuable insights into optimizing charger assignments and 
ensuring the efficient operation of zero-emission MHD vehicles. In light of the existing challenges, this 
research aims to contribute to this evolving discourse by introducing an agent-based simulation method that 
resolves the intraday vehicle activities—driving, parking, and charging behaviors, etc.—with unprecedented 
temporal and geospatial granularities. This methodology addresses the existing gaps in modeling capabilities. 
It offers a tangible means to illustrate and demonstrate potential scenarios to key stakeholders and 
policymakers, facilitating more informed decision-making for a zero-emission future of freight transportation. 

Specifically, in Fiscal Year 2023, the project team sought to forecast nationwide freight demand, leveraging 
existing datasets/models and identifying strategic locations (ports, truck stops, rest areas, etc.) for battery 
charging and hydrogen refueling infrastructure deployments along major highways. The subsequent objective 
was to process MHD trip volumes, freight road networks, and regional adoption scenarios as inputs to HEVI-
LOAD. In addition, researchers planned to validate and calibrate the agent-based bottom-up simulations within 
HEVI-LOAD to provide comprehensive infrastructure analysis for MHD ZEVs at the national scale. 

Approach 
The HEVI-LOAD framework employs an agent-based simulation methodology. This approach models the 
trips and duty cycles of MHD ZEVs and generates charging load profiles and infrastructure assessment with 
varied resolutions: at the site (location), county, state, freight corridor, and national scales. The framework 
projects infrastructure deployment and operational needs, including charging/refueling station type, quantity, 
and strategic locations for future ZEVs weighing over 10,000 lbs. The HEVI-LOAD workflow is visually 
summarized in Figure II.5.1. The HEVI-LOAD analysis workflow consists of three major steps: 

1. Data pre-process and scenario generation. The tool takes input data for travel demand, charger 
candidate locations, and road networks to create simulation scenarios. 

2. Agent-based simulation. A detailed simulation is executed using pre-processed input data, accounting 
for adopted MHD ZEV trips, charging location details, and road network information, thus emulating 
real-world MHD ZEV driving, parking, and charging behaviors for a specified analysis region. 

3. Results post-analysis. The tool summarizes event-based output data and provides energy demand 
analysis and infrastructure assessment.  

Recently, smart charging management capacity was added, with heuristics and optimization methods to reduce 
peak load and flatten the load profile. 

In particular, the freight road network utilized in HEVI-LOAD was extracted from the Freight Analysis 
Framework, and about 1,900 candidate truck stop locations were extracted from the Jason’s Law Database [7] 
to be selected by the simulated trips as the public en route charging locations. The example national MHD 
travel demand model is illustrated in Figure II.5.2. Detailed assumptions and simulation methodologies will be 
discussed in a future report/paper. Because of space limitation in this report, the methodology focuses more on 
the overall analysis workflow and the preliminary results for BEVs. 
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Figure II.5.1 HEVI-LOAD tool flow chart. Gray boxes are data inputs, green and blue boxes are methodology 
modules, and yellow boxes are output data from HEVI-LOAD. Source: Lawrence Berkeley National Laboratory 

(LBNL) 

 

   
(a) (b) 

Figure II.5.2 (a) Road network for MHD ZEVs extracted from the Freight Analysis Framework in yellow and the 
truck stop data from Jason’s Law Database in green; (b) example travel demand model of MHD ZEVs at the 

national scale. Source: LBNL 
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Results 
National Charging Demand and Load Analysis 
Based on the agent-based results, the HEVI-LOAD tool can aggregate the charging power and energy by each 
timestamp to different geospatial scales, such as site/location, county, and state levels. These energy demand 
results can be used to perform further charging infrastructure planning and circuit capacity analysis. Figure 
II.5.3(a) shows the overall EV daily load increment as the MHD ZEV population increases by years and Figure 
II.5.3(b) shows the increase in chargers over the same time frame. One can observe that the daily electricity 
usage by MHD EVs and the number of chargers will increase about ten times from 2028 to 2055. 

  
                                            (a)                                                                                      (b) 

Figure II.5.3 (a) Daily energy demand by MHD ZEVs; (b) charging infrastructure needs at the national level. 
Source: LBNL 

Figure II.5.4 and Figure II.5.5 show the hourly MHD EV load profiles for the states of New York and Illinois, 
respectively. In both cases, Figure II.5.4(a) and Figure II.5.5(a) show the unmitigated load, in which each 
vehicle follows the naturalistic charging behaviors, i.e., come-and-charge mode. Figure II.5.4(b) and Figure 
II.5.5(b) show the mitigated load, in which we assume the depot charging sessions can be managed, thereby 
reducing the energy used during peak energy demand hours. The peak EV charging load is reduced by 15%–
16% for each state. 

    
                                           (a)                                                                                         (b) 

Figure II.5.4 2030 New York State MHD EV hourly load profile, unmitigated (a) and mitigated (b). Source: 
LBNL 
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(a) (b) 

Figure II.5.5 2030 Illinois State MHD EV hourly load profile, unmitigated (a) and mitigated (b). Source: LBNL 

Charging Infrastructure Planning 
Based on the energy demand results and the charging sessions obtained from the agent-based simulation, the 
HEVI-LOAD tool is able to provide a charging/refueling infrastructure assessment by determining the optimal 
type, quantity, and locations of charging/refueling stations. The project team projected the depot charger 
quantity/type by defining a fixed utilization rate for the charging sessions of different power levels at each 
analysis zone. An optimization siting/sizing algorithm was developed to determine the optimal public charger 
placement among all candidate locations that complete the charging requirements at a minimum combined cost 
of infrastructure installation and vehicle wait time. As shown above in Figure II.5.3(b), the charging 
infrastructure needs increase over the years; They are projected to increase nearly tenfold from 2028 to 2055. 
However, compared with the ZEV load increment in Figure II.5.3(a), the increment of charger counts trends 
toward saturation as 2055 draws near, due to the increase in potential infrastructure-sharing and utilization rate 
of each charger.  

Figure II.5.6(a) shows the aggregated county-level charger needs for depot charging. Several U.S. metropolitan 
areas (e.g., Los Angeles, the San Francisco Bay Area, Chicago, and New York) represent highlighted depot 
charger demand, and one can observe in Figure II.5.6(b) that the public en route charger needs align well with 
the major freight corridors or port locations. This correlation is due to the assumption that these locations will 
have a high chance to be selected for MHD trips as en route charging locations. 

 
(a) 
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(b) 

Figure II.5.6 Geospatial distribution of charging infrastructure needs. (a) Depot charger needs aggregated at 
the county level and (b) public en route charger needs aggregated at the county level. Source: LBNL 

Figure II.5.7(a) provides the state-level charger count for New York and Figure II.5.7(b) for Illinois, which 
show that the public direct current 150 kW (DC0150) depot chargers account for the maximum depot charger 
needs because of charger choice and the economy of scale assumptions. The charger needs for public en route 
chargers are expected to be significantly lower in quantity than depot chargers, as it is characteristic for public 
chargers to serve more “just-in-time” charging needs with higher charging power levels. 

              
(a) (b) 

Figure II.5.7 State-level charger counts for (a) New York state and (b) Illinois. Source: LBNL 

Conclusions 
By leveraging agent-based simulation methodologies, the project team has augmented the capability of a 
valuable planning and operation tool for researchers, policymakers, and many other stakeholders, enabling 

informed decision-making in the pursuit of a sustainable and electrified future for freight transportation. Based 
on simulation results, the researchers could analyze the charging load and charger need increment trend for 
future years, specifically for MHD BEVs. The team further analyzed the influence of different charging 
behaviors on peak load and provided results for the hydrogen refueling infrastructure needs of MHD ZEVs. 
Moving forward, the integration of agent-based simulations in the discourse surrounding heavy-duty vehicle 
electrification holds promise for shaping effective policies and practices, propelling the freight industry toward 
a greener and more sustainable future. 
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Project Introduction 
The accelerating shift toward plug-in electric vehicles (EVs) will have marked implications for the architecture 
and operation of future U.S. power systems [1]. Transportation electrification will be a key driver of electric 
grid expansion in the coming decades, and the specific patterns of EV charging (i.e., when and where EVs 
charge) will determine, in part, how this unfolds [2], [3]. At the bulk power level, EVs require additional 
electricity supply, which may necessitate the expansion of generation and transmission capacity. Planning for 
these shifts prompts the following questions: Will the demand patterns from EV charging complement the 
availability of low-marginal-cost renewable generation? Will they contribute to peak load pressures, 
necessitating additional generation capacity? To what extent can EV demands be scheduled or modulated, 
while preserving travel requirements, to enhance grid operations? 

This project leverages and extends the National Renewable Energy Laboratory’s (NREL’s) transportation and 
power sector modeling capabilities to address multiple barriers associated with integrating high levels of plug-
in EV charging into a decarbonizing bulk power system. Specifically, the analysis framework developed for 
this study simulates the evolution of the U.S. bulk power system through 2050 to accommodate large-scale EV 
charging across all on-road vehicle segments. The framework assesses the opportunities and value of demand-
side flexibility (i.e., EV managed charging [EVMC], or “smart” charging) for reducing energy costs, 
increasing renewable penetration, and managing future EV loads on the bulk power system. The study also 
explores how the buildout of EV infrastructure can impact demand-side flexibility. This project will provide an 
improved understanding of anticipated challenges and least-cost solutions for managing load growth from EVs 
on the bulk power system. Additionally, EV load data sets for both unmanaged and managed charging 
scenarios will be made publicly available, with key findings summarized in a series of reports and 
publications.  

Objectives 
The objectives of this project are as follows: 
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1. Create and publish high-resolution data sets describing EV adoption and use, charging infrastructure, 
EV load profiles, and demand flexibility. 

2. Publish high-impact analysis describing possible EV-grid futures and their costs and benefits with and 
without EVMC. 

3. Extend modeling capabilities to be leveraged in future work and made available via open-sourcing 
and/or interface development as time, funding, and U.S. Department of Energy (DOE) priorities 
allow. 

4. Ensure that the three objectives above are enriched by diverse input from the project’s technical 
advisory committee (TAC), project team, and explicit outreach to various stakeholders through TAC 
connections and complementary DOE programs. 

In the first year of this study (November 2022–September 2023), the focus was to convene a TAC, establish a 
scenario-based project framework, enhance existing transportation modeling capabilities, and initiate scoping 
of new grid modeling capabilities for development in Year 2 of the study. 

Approach 
An integrated framework connects NREL’s transportation demand models (Transportation Energy & Mobility 
Pathway Options [TEMPO] [4] and Electric Vehicle Infrastructure [EVI]-X [5]) to its Regional Energy 
Deployment System (ReEDS) capacity expansion model [6], turning transportation data into EV charging 
demand inputs for grid planning and analysis. This approach is depicted in Figure II.6.1 and detailed in 
subsequent subsections. 

 
Figure II.6.1 Integrated analysis and valuation pipeline that models EV demands (TEMPO, EVI-Pro), 

parameterizes flexibility (design-side grid flexibility [dsgrid-flex]), and performs capacity expansion modeling 
(ReEDS) to estimate the costs and impacts of EVs as well as the value of EVMC for the bulk power system. 

Source: NREL 

Transportation Modeling 
This study leverages the TEMPO and the Electric Vehicle Infrastructure – Projection (EVI-Pro) models to 
perform high-resolution modeling of EV adoption, vehicle activity, charging demand, EV supply equipment 
(EVSE) access, and EV load profiles. TEMPO is a validated macro-model that generates long-term scenarios 
to meet strategic transportation–energy–environment objectives. It models the entire U.S. passenger and freight 
transportation sectors, simulating travel mode and technology adoption choices and projecting transportation 
energy use over time. For this study, TEMPO is used to develop multiple region-specific EV adoption 
trajectories for personal light-duty vehicles, freight and vocational medium- and heavy-duty vehicles 
(MHDVs), and buses (school and transit). Additionally, TEMPO produces vehicle-level models of charging 
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flexibility, as described in Hale et al. [7], that can be aggregated into megawatt-scale, battery-like flexibility 
resources suitable for large-scale bulk power system models.  

EVI-Pro is a tool for modeling EV charging behaviors and consumer demand for charging infrastructure based 
on detailed travel data, EV attributes, consumer charging preferences, and the availability and characteristics of 
EVSE at different location types. EVI-Pro has been used to assess EV charging network requirements and 
develop aggregate load profiles for numerous local, state, and national infrastructure analyses, including 
examples given in [8] and [9]. In this project, EVI-Pro is used to develop the baseline EV load profiles 
based on observed and modeled consumer charging behaviors, as well as to characterize the EVSE costs 
for enabling the various charging scenarios simulated in this study. 

Grid Modeling 
This study uses NREL’s flagship ReEDS model to simulate the evolution of the U.S. bulk power system over 
time. ReEDS projects generator, transmission, and storage investments and retirements at a continental scale 
while capturing key operational characteristics of resources such as wind, solar, and storage. The model 
ensures reliability by co-optimizing planning reserves, operational reserves, and energy dispatch, outputting 
system costs, including capital costs for new resources, as well as fixed operations, maintenance, and operating 
costs for all resources, alongside emissions such as carbon dioxide and other greenhouse gases. ReEDS has 
been instrumental in numerous high-impact analyses for nearly two decades and has underpinned an annual 
Standard Scenarios report since 2015 [10].  

The demand-side grid (dsgrid) model serves as the link between the transportation sector and power sector 
modeling in this project. It enables the transfer of basic EV load profiles from TEMPO and EVI-Pro into the 
ReEDS model. This project enhances the existing representation of EVMC within ReEDS by employing and 
refining dsgrid flexibility (dsgrid-flex) techniques to convert bounding vehicle-level charging profiles into 
aggregated grid-model-ready flexibility representations while inheriting all underlying travel constraints. 

Project Scenario Framework 
The project developed seven scenario concepts, considering varying assumptions around EV adoption, EV 
charging network design (i.e., EVSE access), how and where EVMC is implemented, and how the bulk power 
system could evolve in response to decarbonization objectives, non-transportation load forecasts, and the costs 
of competing technologies. These scenarios were developed from combinations of the Decarbonization 
Futures and EV–Grid Integration Strategies cases shown in Table II.6.1. 

Table II.6.1 “Decarbonization Futures” and “EV-Grid Integration Strategies” Used to Construct Scenarios 
Decarbonization Futures Description 

Low Low (“business as usual”) EV adoption paired with limited grid decarbonization 

Mid Mid (“accelerated”) EV adoption paired with moderate grid decarbonization 

High High (“aggressive”) EV adoption paired with rapid grid decarbonization 

EV–Grid Integration Strategies ----- 

Baseline Projected future EVSE access given current observed and stated EV charging 
preferences 

Daytime Increased daytime and reduced nighttime EVSE access 

Flat Increased daytime EVSE access and low-power EVSE prioritization 

Flexible Increased EVSE access at all location types and high-power EVSE prioritization, 
enabling maximum flexibility for active EVMC strategies 

Stress Increased home and MHDV depot high-power EVSE access, leading to an 
extreme afternoon-peaking load scenario, absent EVMC 
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The three Decarbonization Futures cases shown in Table II.6.1 describe how Low-, Mid-, and High-EV 
adoption could manifest within different vehicle segments (e.g., light duty vehicle, MHDV freight, buses), 
across regions (i.e., counties), and over time. Qualitatively, the Low (“business as usual”) case corresponds 
roughly to currently enacted state and federal policies and continued government and industry investment in 
EVs and charging infrastructure. The Mid (“accelerated”) case reflects moderately increased government and 
industry investment, as well as achievement of announced long-term (including non-binding) decarbonization 
targets. Finally, the High (“aggressive”) case reflects aggressive investment in EVs and EVSE, achieving 
accelerated adoption in all vehicle segments and representing a scenario that meets or exceeds optimistic 
decarbonization targets. These EV adoption cases, developed with NREL’s TEMPO model, will be 
coordinated across multiple DOE-supported efforts and subject to DOE, national lab, and industry review. 

The five EV–Grid Integration Strategies cases shown in Table II.6.1 describe different charging network 
buildouts (i.e., varying EVSE access levels at different locations and port power capacities) and EVMC 
strategies (i.e., varying EVMC locations, dispatch mechanisms, and enablement costs). This project explores 
one Baseline strategy, three alternate management strategies (Daytime, Flat, and Flexible), and one “anti-
management” strategy (Stress). 

Results 
In the first year of the study, the primary objectives were to convene a TAC, establish a scenario-based project 
framework, and enhance existing transportation modeling capabilities in preparation for large-scale EV travel 
and charging simulations in Year 2. Each of these activities is described in the following subsections. 

Technical Advisory Committee 
The team established an initial TAC in the first quarter of the project and held our first meeting on January 27, 
2023. By the time of our second meeting, on September 29, 2023, the TAC had 20 members spanning Clean 
Cities participants (Dallas–Fort Worth Clean Cities, New Jersey Clean Cities, and Tennessee Clean Fuels); 
original equipment manufacturers (Ford and Daimler); EVSE and managed charging network providers 
(ChargePoint and FlexCharging); various power-sector stakeholders and service providers (PJM, National 
Grid, Camus Energy, and Pacific Gas & Electric Company); a state regulator (California Public Utilities 
Commission); and multiple researchers and consultants (Johns Hopkins University, Karlsruhe Institute of 
Technology, Atlas Public Policy, North Carolina Agricultural and Technical State University, Boston 
University, and Carnegie Mellon University). In the first meeting, the team gathered input from the TAC 
regarding the impact of EVs on the grid, the potential for EVMC, and general research topics worth exploring. 
This feedback guided the team’s development of the project’s scenario framework in the subsequent months. 
Similarly, after the project team provided an overview and received feedback on our transportation modeling 
approach, much of the second TAC meeting focused on soliciting thoughts, potential data sources, and other 
information that could be used to define reasonable EVMC supply curves in Year 2. 

Project Scenario Framework 
The seven scenario concepts developed for this study reflect pairings of Decarbonization Futures and EV–Grid 
Integration Strategies as seen in Figure II.6.2. First, Low-, Mid-, and High-Baseline scenarios serve as central 
comparative cases. Mid-, and High-Baseline scenarios contain both unmanaged (informed from historical 
charging activity data and simulated by NREL’s EVI-Pro model) and managed charging scenarios; the Low-
Baseline scenario will be simulated as unmanaged only. For each of the alternative (non-Baseline) EV–Grid 
Integration Strategies, the High Decarbonization Futures case is retained (High-Daytime, High-Flat, High-
Flexible, High-Stress), as it is the most analytically interesting, and both unmanaged and managed scenarios 
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are simulated. These scenarios provide a framework for analyzing how factors such as EV adoption, EVSE 
network design, and EVMC could impact the bulk power system. 

 
Figure II.6.2 High-level scenario framework. Source: NREL 

Transportation Modeling Enhancements 
Enhancements to TEMPO and EVI-Pro were made in the first year of the project to enable MHDV charging 
simulations and represent location-specific variable EVSE access. EVI-Pro now supports week-long charging 
simulations to better capture within-week charging patterns and demand flexibility. These new features set the stage 
for developing the highly resolved EV load and flexibility profiles with national scope in Year 2 of the project.  

A key investigation in this study is to explore how the design and buildout of the EVSE network might 
passively shape EV charging demand even without EVMC controls. The team leveraged over 150,000 daily 
vehicle travel profiles from the 2017 National Household Travel Survey [11] to model charging under different 
levels of EVSE access. Scenarios ranged from drivers having extensive charging options (i.e., home, 
workplace, and frequent public destination EVSE) to “charging deserts” restricted to high-speed en route (i.e., 
trip-interrupting) and limited public destination options. Figure II.6.3 illustrates the impact of EVSE access on 
the shape and locational mix of unmanaged EV charging demands: those with home chargers do most of their 
charging at home and overnight, whereas while those without home chargers charge more during the day, 
relying on high-power direct current fast chargers to satisfy their daily travel requirements. The en route direct 
current fast charger option, modeled as trip-interrupting and less inconvenient, is not seen as a flexible source 
of demand compared to destination-based charging options. 
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Figure II.6.3 Modeled impact of EVSE access (home, work, public) on EV load shapes and charging mix. 
Source: NREL 

Conclusions 
The first year of the “Managing Increased Electric Vehicle Shares on Decarbonized Bulk Power Systems” 
project has laid the groundwork to deliver on the project’s ambition to develop unique, timely, and highly 
resolved data sets describing future EV charging loads for all on-road vehicle segments (i.e., light-, medium-, 
and heavy-duty), both unmanaged and managed. Additionally, an analysis was conducted that describes to 
what extent both passive (e.g., based on EVSE deployment options) and active management strategies could 
reduce the costs of integrating EVs into a simultaneously decarbonizing grid.  

Specifically, in Year 1, the team: 

• Established a TAC to guide the project and provide robust review of work products. 

• Produced a comprehensive scenario framework that provides the entire team, transportation and grid, 
with a roadmap for which data sets and modeling capabilities to develop. 

• Developed most of the transportation modeling methodology and input datasets. 

• Began gathering the data and insights needed to construct the EVMC supply curves that will guide our 
power sector capacity expansion model’s economically efficient selection of EVMC quantities 
(number of participating vehicles, informed by participation rates as a function of incentive level) and 
types (e.g., direct load control or price-responsive). 

For the next year, we look forward to having created and published all the transportation scenario data to be 
delivered as part of this project. We also anticipate having the grid modeling methods and near-complete data 
assembled and ready for conducting this project’s capstone analysis. 
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Project Introduction 
Achieving deep decarbonization of the transportation sector, currently the largest source of greenhouse gas 
(GHG) emissions, will require profound changes within multiple complex systems, including a transition away 
from petroleum fuels that today provide over 95% of transportation energy. Emissions can be reduced by 
limiting growth in mobility demand (i.e., traveling less), shifting to more energy efficient mobility modes 
where possible (e.g., taking public transit or walking, biking, or other mobility alternatives), including 
increased sharing of automobile trips where other modes aren’t viable, and reducing the emissions associated 
with mobility (i.e., adopting energy efficiency measures and clean fuels). While technology solutions targeting 
efficiency and fuel replacement are generally understood and central to current decarbonization strategies, 
additional opportunities to reduce transportation emissions through improved system design and demand 
management are less clear. There is significant potential to capitalize on the rapid technological advancements 
and shifting paradigms of mobility needs caused, in part, by pandemic-induced behavioral changes and other 
socioeconomic trends. Mobility is rapidly evolving, and emerging trends (e.g., micromobility, desire to limit 
unnecessary travel, and multi-modal travel) and business models (e.g., mobility as a service) are having 
significant impacts on travel demand—although the impacts vary for different consumers. To add to this 
complexity, COVID-19 disrupted expected norms of travel patterns, highlighting how mobility needs can 
fundamentally change, particularly through the displacement of physical travel (e.g., telework). With new and 
rapidly evolving technology options shaping mobility needs, it is not clear how new mobility and economic 
paradigms (e.g., widespread telework) could impact emissions pathways toward deep decarbonization. 

Recent studies highlight how travel demand management (TDM) strategies can lead to emissions reductions, 
but significant reductions to total travel demand will be difficult to realize, as travel has important economic 
and social benefits [1]. Additionally, different population segments will be non-uniformly affected by policies 
and mechanisms to manage travel demand, as their needs are heterogenous. As all pathways to deep 
decarbonization of mobility require major shifts to clean alternative fuels (mostly relying on clean electricity), 
taming future electricity demand by capitalizing on effective TDM solutions would help not only reduce 
emissions but also lessen pressure on power-sector expansion and manage grid-side demand [1], [2]. Despite 
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recent research pointing to the need for managing travel and energy demand as the economy grows and 
increasingly electrifies [3], there is great uncertainty around how travel demand could evolve in response to 
changing mobility needs and emerging technologies, and how TDM strategies would impact different 
consumers. Furthermore, no known research has explored what magnitude and mechanisms will be feasible for 
managing travel demand at a national level, especially in the context of decarbonization to quantify emissions 
reduction opportunities of different actions and their equity impacts (i.e., how strategies to manage demand 
could affect the quality of travel for different socioeconomic groups). 

A national-level perspective on the impact of demand-side management solutions to mitigate transportation 
emissions has been missing in the extended Vehicle Technologies Office portfolio of tools and analysis 
capabilities. Tools such as regionally calibrated agent-based models do not capture the entire nation, nor do 
they identify the tradeoffs between different regions and consumer types. Tools usually leveraged for long-
term projections of benefits focus on technology replacement (e.g., replacing conventional vehicles with 
electric vehicles) and do not capture either the key mobility aspects driving travel demand or the uncertainty in 
demand as it evolves over time.  

Objectives 
The objectives of this project are to: 

• Quantify the uncertainty around future travel demand, the key drivers of this uncertainty, and the 
impacts that these drivers could have on achieving deep decarbonization. 

• Evaluate various technology advancements and policies aimed at better managing the growth of travel 
demand, especially along key dimensions of uncertainty, and identify key strategies that maintain the 
benefits of travel across subpopulations to support deep decarbonization. There is also potential for 
some strategies to synergize with other identified goals for addressing transportation decarbonization, 
such as accelerated zero-emission vehicle adoption or modal shifts. 

• Quantify the benefits of different travel management solutions and their impacts on equity to inform 
policy and decisions around net-zero scenarios. 

A key goal of this project is to understand the potential impacts across different socioeconomic groups and to 
ensure that there are equitable strategies for managing travel demand (including understanding any potential 
unintended consequences). Previous literature has identified household budgets as a key factor that can impact 
equitable mobility options. Relatedly, car ownership can make up a sizable portion of a household’s budget, 
yet owning a personal car is often seen as necessary to compete for access to a wide variety of jobs and gain 
access to a higher number of activities that define a higher quality of life [4]. The project will focus on how 
different solutions to managing travel demand could adversely impact those with lower household incomes 
(and thus lower travel budgets), as well as households with few or no drivers. Additionally, trip purpose by 
socioeconomic status is a principal factor in understanding essential vs. non-essential travel across groups. 

Approach 
We leverage National Renewable Energy Laboratory’s (NREL’s) Transportation Energy & Mobility Pathway 
Options™ (TEMPO) model [5] to explore travel management solutions—including associated impacts and 
opportunities—to reduce U.S. transportation GHG emissions. TEMPO is a validated macro-model that 
produces long-term scenarios to reach strategic transportation–energy–environment objectives and assess 
synergies with energy supply [6]. TEMPO models the entire passenger and freight U.S. domestic 
transportation sector, simulating travel mode and technology adoption choices, and ultimately projects 
transportation energy use over time. TEMPO characterizes opportunities for existing and future fuels, 
technologies, and travel business models across national transportation sub-sectors and segments capturing 
mobility needs for different consumers (e.g., different income levels, urbanity, and access to alternative travel 
modes) and applications. Using TEMPO’s unique household-based representation of personal travel, the 
project team will develop scenarios to: 
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• Capture uncertainty in the evolution of future travel demand, e.g., housing density shifts, changing 
availability and quality of transport modes (e.g., transit, micromobility), and demand for telework and 
virtual mobility. 

• Represent and assess TDM strategies to incentivize more efficient and easier-to-manage travel 
behavior (travel time shift, voluntary reductions, etc.) to support equitable decarbonization. 

The first task in this project focuses on conducting a comprehensive literature review on TDM strategies and 
developing a TDM inventory of data points to inform and validate future modeling in TEMPO. Next, 
preliminary scenarios will be designed to explore the TEMPO model’s ability to represent key dimensions and 
outcomes in the TDM space. Scenario results from TEMPO modeling will be evaluated against literature, and 
necessary enhancements and calibration will be conducted to prepare for the final task. The final task will 
focus on developing a set of carefully designed scenarios across multiple TDM strategies to reveal their 
impacts on key TDM metrics (e.g., number of trips, emissions), their synergies with each other, and their 
impacts on various household types relevant for equitable mobility (e.g., no-vehicle households, low-income 
households). Final results will be summarized to inform how various TDM strategies can contribute to 
national-level efforts to support decarbonization across the United States. 

Approach for Literature Review of Travel Demand Management Strategies 
A comprehensive literature review was designed to gather data and trends across existing research on the 
impacts of TDM strategies on travel demand and mobility. The literature review focused on research articles 
with quantitative analysis estimating impacts of various TDM solutions across different metrics/spatial scales, 
and the spatial scope included research in the United States, as TEMPO is currently focused and calibrated to 
assess U.S. mobility. A systematic scan of scientific literature was performed using Google Scholar and 
Scopus (via an application programming interface), supplemented by shared research from colleagues. 
Leveraging the Scopus database with an automatic script and filtering mechanisms makes it easy to refresh the 
search to retrieve the most up-to-date literature periodically.  

Preliminary Scenario Development 
The literature review and TDM inventory development revealed that one of the most discussed topics is 
changes to urban development and land use. As a result, the first set of preliminary scenarios developed 
focused on this topic by examining how shifting household urbanities (densities) within TEMPO impact travel 
demand. The spectrum of test scenarios included extreme urbanization (high shifts toward urban/secondary-
city households by 2050) to extreme decentralization (high shifts away from urban/secondary-city households 
by 2050), as well as a suburbanization scenario where housing shifts are concentrated more strongly in 
suburban housing densities. Figure II.7.1 shows the trajectory of housing shifts by TEMPO household 
classification for the two most extreme scenarios. In the Figure II.7.1(a), Extreme Urbanization, there is a large 
shift away from rural and small-town housing, with high growth in urban and secondary-city housing. In 
Figure II.7.1(b), Extreme Decentralization, the opposite occurs; there are large shifts toward rural and small-
town housing and away from urban areas. 
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Figure II.7.1 Projected changes to TEMPO household urbanity classification for the two most extreme 

scenarios: (a) extreme urbanization and (b) extreme decentralization. Source: NREL 

Results 
Inventory Results from Literature Review of TDM 
The project team analyzed the body of collected research, prioritizing more recent studies. Only studies that 
had quantitative results that could be extracted were inventoried into a data spreadsheet. This TDM inventory 
summarized the collected body of literature across key metrics (e.g., emissions, vehicle miles traveled [VMT]), 
outcomes, scope, methods, timescale, and other relevant aspects. Overall, 34 research studies conducted across 
numerous regions in North America were reviewed and inventoried. The project team recorded 159 data points 
in the TDM inventory, all related to the magnitude and relationships of various strategies to manage travel 
demand. The following are key findings from this TDM inventory:  

• No current research is national in scope and forward-looking. 

• Most research quantifying and discussing impacts of TDM were retrospective (i.e., historical analysis 
– 91%). 

• Only three studies (9%) focused on future modeling of TDM impacts on the transportation system. 

• Only a few studies (12%) assessed impacts at a national scope. 

• Most research quantifying and discussing impacts of TDM uses statistical analyses or statistical 
modeling on historical data.  

The first bullet is significant, as the TEMPO model is designed to be both national in scope and forward-
looking and thereby can address this research gap. Figure II.7.2 shows a summary of the TDM impacts from 
the collected body of literature across three key metrics: emissions, trips, and VMT. Across these three 
metrics, impacts as a percentage change to the baseline/control were concentrated between a few percent to 
around -25%. A few outliers showed impacts could be very large if the focus is only on specific modes (e.g., 
transit-oriented development caused large increases in transit and walking trips in the study area). 
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Figure II.7.2 Summary of TDM impacts across literature, as recorded in the TDM inventory. Specific outliers 
are called out by literature source with brief context. Source: NREL 

Preliminary Scenario Results 
The project team used TEMPO to model the preliminary scenarios that were developed to assess and examine 
the impacts of shifting household urbanities (densities). The “Baseline” (or “Base”) scenario assumes no shift 
in household urbanities over time. The “Baseline + Growth” scenario assumes a modest growth in urbanized 
housing (urban, secondary city, and suburban densities). Preliminary simulations found a ±4% variation in 
2050 VMT and ±3% variation in 2050 light-duty vehicle (LDV) stock across the spectrum of scenarios. Table 
II.7.1 summarizes the household shifts by 2050 vs. the Baseline scenario for the rural and urban housing 
densities which are at the end of the spectrum (see Figure II.7.1), alongside the changes in VMT and LDV 
stock by 2050 vs. the Baseline. Figure II.7.3 displays the VMT by year until 2050 for each of the modeled 
scenarios. Note that because these are preliminary scenarios, they are modeled at a lower sampling rate in 
TEMPO, which can create more year-over-year variation in simulations. Final scenario simulations will utilize 
high sampling rates to minimize noise in underlying mobility needs. 

Table II.7.1 Summary of Household Shifts, VMT Change, and LDV Stock Change by 2050 Relative to the 
Baseline from Preliminary TEMPO Urbanity Shift Scenarios 

Scenario Household Shifts by 2050 vs. Base 
(rural and urban only) 

VMT Change 
by 2050 vs. Base 

LDV Stock Change 
by 2050 vs. Base 

Baseline + Growth -9.8% rural; +5.5% urban -0.7% -0.8% 

Extreme Decentralization +5.2% rural; -25% urban +2.1% +1.2% 

Moderate Decentralization +2.6% rural; -12% urban +0.5% +0.6% 

Suburbanization -8.4% rural; -1.1% urban -0.7% -0.4% 

Moderate Urbanization -4.9% rural; +14% urban -0.9% -0.9% 

Extreme Urbanization -9.8% rural; +28% urban -2.2% -1.7% 
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Figure II.7.3 Summary of TDM impacts on VMT across literature, as recorded in the TDM inventory. Source: 

NREL 

Conclusions 
To date, this project has focused on a comprehensive literature review of TDM strategies in the United States, 
development of an inventory of data points from this literature review, and preliminary scenario design and 
modeling in TEMPO to explore impacts of changing household density patterns. The preliminary findings 
show only marginal impacts to total household VMT (±4%) and LDV stock (±3%) if the projected urbanity of 
households evolves differently toward more decentralized (less dense) or more urbanized (denser) 
development by 2050. Future work will utilize TEMPO to explore impacts of changing transit parameters 
(changing transit availability, cost, and service), diverse levels of future tele-travel (e.g., tele-work, tele-
health), and synergies with biking, walking, and micromobility adoption. 
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Project Introduction 
Modeling vehicle market dynamics is crucial for the U.S. Department of Energy’s (DOE) mission and its 
stakeholders. Modeling facilitates a better understanding and quantification of the future value of ongoing 
research and development (R&D) in energy transition issues. R&D investments in advanced vehicle 
technologies are often justified and prioritized because of the need to understand and address these 
technologies’ impacts, such as changes in energy consumption, consumer costs, and greenhouse gas emissions. 
Estimating these impacts requires an understanding of associated market trends (e.g., consumer adoption). 
However, there are divergent perspectives among consumers, engineers and scientists, and suppliers. 
Suppliers, in particular, must strike a balance between profit, risk mitigation, and public image. These varying 
viewpoints, both individually and collectively, pose challenges in modeling supplier behavior and consumer 
acceptance of advanced vehicle technologies. 

The Transportation Energy Evolution Modeling (TEEM) program (https://teem.ornl.gov/) developed the 
spreadsheet-based Market Acceptance of Advanced Automotive Technologies (MA3T) model and its 
derivatives to simulate market penetration and dynamics for advanced vehicle technologies in transitions 
toward energy-efficient vehicle and mobility technologies. The MA3T model analyzes how financial and non-
financial attributes regarding technology, infrastructure, consumers, and policies affect the market dynamics in 
terms of sales and stocks for advanced automotive technologies. The model also determines the resulting 
impacts on the environment (i.e., greenhouse gas and pollutant emissions), energy (i.e., annual energy demand 
by vehicle type and mode), economy (i.e., consumer surplus), and policy. 

The success of the Vehicle Technologies Office (VTO) Analysis investment in the MA3T model has been 
validated by its expanded application and adaptation, sponsored by entities such as the International Institute 
for Applied Systems Analysis and the DOE Office of Energy Efficiency and Renewable Energy (EERE). 
Supporting EERE entities include VTO Energy Efficient Mobility Systems, the Hydrogen and Fuel Cell 
Technologies Office, and the Bioenergy Technologies Office. The TEEM team has also contributed 
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significantly to academic literature, publishing more than 90 peer-reviewed articles, including five in Fiscal 
Year (FY) 2023 (see Key Publications section and others in [1]). 

Objectives  
The TEEM project’s primary objective is to offer a range of market dynamics models that support the 
technoeconomic evaluation of VTO technologies, aligning with VTO’s technological and research interests. It 
is crucial to comprehend how the market responds structurally to new technologies. Modeling the organic 
adoption of these technologies serves as a vital bridge between technology R&D and its real-world impacts. 
By applying decision science theories, these market dynamics models become indispensable tools for 
analyzing the impact of VTO technologies and generating insights for R&D activities. The development 
objectives of these models include the following:  

• Covering a broad technology scope of U.S. light-duty vehicles (LDVs), non-LDVs, private vehicles, 
and commercial vehicles; shared mobility; and connected and automated vehicles. 

• Providing a comprehensive view, considering consumer behavior, technology, policy, and 
infrastructure factors. 

• Ensuring user-friendliness for third-party users. 

• Establishing model credibility through systems dynamics validation and peer-reviewed publications. 

• Facilitating collaboration by utilizing existing models and engaging with academia and industry. 

Approach  
The core of the TEEM program is the MA3T model, which specializes in modeling market dynamics and 
paradigm shifts for advanced vehicle technologies. MA3T quantifies consumer preferences through a 
generalized cost framework that encompasses both monetary and non-monetary factors. What sets MA3T apart 
from other vehicle market models are its rich technological detail, detailed consumer segmentation, daily 
distance distribution, and comprehensive characterization of range–infrastructure dynamics.  

Built on a nested multinomial logit method, MA3T predicts purchase probabilities for 40 choices, including 20 
powertrain technologies for each of two vehicle size classes: passenger cars and light-duty trucks. MA3T 
considers U.S. household users, segmented into 9,180 customer groups based on factors such as state, 
residential areas, attitudes toward novel technologies, driving patterns, and recharging situations. The analysis 
is structured around five segments based on the adoption timelines: Innovators, Early Adopters, Early 
Majority, Late Majority, and Laggards. The model characterizes daily driving distance variations using the 
Gamma distribution [2], validated with real-world travel data, and models the impact of various charging 
options, range anxiety for electric vehicles, and infrastructure effects on the appeal of plug-in electric vehicles 
and alternative fuels. Furthermore, MA3T projects market dynamics up to 2050, capturing the temporal 
interplay between market penetration, product diversity, and associated risks. 

Additionally, the team has addressed knowledge gaps and developed methods for analyzing transportation 
energy, optimizing heterogeneous electric ranges of battery electric vehicles (BEVs) and plug-in hybrid 
electric vehicles, linking dynamic wireless charging’s value with diverse wired charging technologies, and 
quantifying the impacts of free charging on BEV purchase behaviors. Various quantitative tools and models 
were developed to enhance the capabilities of the MA3T model. With sponsorship from EERE programs and 
external organizations, the TEEM modeling scope has expanded from the U.S. LDV market to include 
medium- and heavy-duty vehicles (MHDVs), shared mobility, automated vehicles, and even global markets. 
With VTO Analysis program support, Oak Ridge National Laboratory (ORNL) and the University of 
Tennessee, Knoxville, are collaborating to represent the used vehicle market in MA3T. 
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In FY 2023, the team primarily focused on the following: 

• Optimizing BEV range with lightweight considerations, building a physics-based energy consumption 
model, and associating it with a statistics-based model based on travel surveys. 

• Analyzing the cost–benefit of charging technologies on BEVs, continuing to develop the Battery Run-
down under Electric Vehicle Operation (BREVO) model, which links the driver’s travel pattern model 
with the physics-based battery degradation and powertrain energy consumption model. 

• Developing the Truck Choice model through standalone fundamental studies; generating results on 
day cabs, transit buses, and sleepers for internal combustion engine vehicles and electric vehicles with 
binary total cost of ownership decisions; and planning to expand the model to fuel cell vehicles and 
more technologies by updating the algorithms to a multi-choice model. 

• Improving the representation of new and used vehicle market dynamics, continuing model development, 
and generating empirical insights based on work by the University of Tennessee, Knoxville. 

Results  
Determining Optimal Electric Range by Considering Impacts of Electric Vehicle Lightweighting on 
Perceived Ownership Cost  
The team developed a quantitative method that optimizes the electric range of BEVs by combining physics-
based energy consumption and statistics-based models. We introduced a perceived cost of ownership (PCO) 
model, assessing the cost-effectiveness of lightweighting for BEV range extension based on factors such as 
income-dependent daily range limitations, driving patterns, and technology costs. Results suggest that 
lightweighting is economically viable for consumers with higher daily range requirements and intensive 
driving habits, but more lightweighting or extended electric range may not always be required. Notably, 
simulation results for the top ten best-selling BEVs in the 2021 U.S. market, as shown in Table III.1.1, indicate 
that, from a PCO perspective, more lightweighting or extended electric range is not necessarily needed for all 
BEV models. For Vehicle Models #1 through #4 and #10, the optimized result is increased vehicle weight and 
reduced electric range compared to the current model features. This is because using less lightweighting 
technology in the BEV design can help reduce vehicle price (even if the increased weight compromises electric 
range), resulting in overall PCO savings. Conversely, it is suggested that Vehicle Models #5, #7, #8, and  #9 
would benefit from further lightweighting to reduce PCO relative to the current model design. However, 
Vehicle Model #6 is an exception; its slight weight reduction and range decrease result in minimal PCO 
savings, indicating that lightweighting isn't always advantageous for BEVs. For more detailed information, 
please refer to our published article [3]. 

Table III.1.1 Simulation Results for Top Ten Best-Selling BEVs in the 2021 U.S. Market 

No. Vehicle 
Maker Vehicle Model 

Current 
Electric Range 

(miles) 

Optimized 
Weight Changes 

(kg) 

Optimized 
Electric Range 

Changes (miles) 

Incremental 
PCO Saved ($) 

1 Tesla Model Y Long 
Range AWD 326 +34 -3 26 

2 Tesla Model 3 Long 
Range AWD 353 +107 -10 285 

3 Ford Mach-E 230 +163 -8 476 

4 Chevrolet Bolt EV 259 +145 -9 575 

5 Volkswagen ID.4 AWD Pro 260 -75 +4 129 

6 Nissan LEAF 149 -31 -1 26 
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No. Vehicle 
Maker Vehicle Model 

Current 
Electric Range 

(miles) 

Optimized 
Weight Changes 

(kg) 

Optimized 
Electric Range 

Changes (miles) 

Incremental 
PCO Saved ($) 

7 Audi 
Audi e-tron 

Quattro 
Sportback 

218 -123 +4 396 

8 Porsche Taycan 4S Perf 
Battery 200 -106 +4 466 

9 Tesla Model S Long 
Range 402 -45 +5 96 

10 Hyundai Kona Electric 258 +93 -4 243 

BREVO Model Development 
This task is to develop a model for estimating battery capacity degradation based on real-world end-use factors. 
The BREVO model provides crucial information for consumers and BEV manufacturers on range anxiety, BEV 
battery design, and decision support of the battery warranty. The model links the driver’s travel patterns to 
physics-based battery degradation and powertrain energy consumption models. It aims to quantify the impacts of 
charging and driver travel patterns on battery degradation and to provide insights to inform stakeholders involved 
in BEV battery design and the electric vehicle market. The open-source code is published in GitHub 
(https://github.com/ous-ornl/brevo), and a paper on estimating long-term impacts on battery degradation using the 
BREVO model was published in Journal of Power Sources in FY 2023 [4]. In this study, a comparison of the 
impacts of different charging levels on battery aging as shown in Figure III.1.1(a) revealed that, over a 10-year 
span, daily direct current fast charging (60 kW) could lead to up to 22% less battery capacity compared to daily 
Level 1 charging (1.8 kW). The project also used BREVO to examine the impact of temperature differences 
between New England area and Los Angeles area on vehicle battery lifetime for miles driven as shown in Figure 
III.1.1(b).  The battery thermal management system can delay battery degradation by approximately 0.5% in the 
New England area. The model controls simulations with the same BEV, the same random driver, and identical 
travel patterns; the only variation is in the areas with different temperature trend profiles (New England vs. Los 
Angeles). The model indicates that battery capacity in Los Angeles is 6% higher than in New England, 
demonstrating that warmer ambient temperatures enhance BEV battery usage.   

                                           (a)                                                                                             (b) 

Figure III.1.1 (a) Remaining battery capacity by year and (b) remaining battery capacity by area. Source: ORNL 

Truck Choice Model: An Agent-Based Model for the MHDV Market in the United States 
Building upon the foundations of the advanced vehicle market transition model for LDVs, the MA3T model, 
our team developed the MHDV version: the Truck Choice model. This model aims to provide valuable 
insights into the potential future adoption of advanced vehicle technologies in the MHDV sector. Employing a 

https://github.com/ous-ornl/brevo
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multinomial logit model at its core, as depicted in Figure III.1.2, the Truck Choice model simulates advanced 
vehicle choices across diverse MHDV fleet segments. These simulations are based on future projections of 
vehicle technology development, alternative fuel technology R&D (e.g., battery research), fleet segmentation 

properties, policies, and refueling infrastructure expansions. 

Figure III.1.2 Structure of the Truck Choice model. Source: ORNL 

The model’s versatility extends to evaluating market acceptance of alternative fuel technologies, including 
BEVs and fuel cell hydrogen electric vehicles, alongside conventional fuels such as diesel, gasoline, and 
natural gas. By utilizing a multinomial logit approach, the Truck Choice model captures the complex decision-
making processes of MHDV fleet operators and owners in adopting advanced vehicle technologies. It assesses 
a range of factors, such as vehicle costs, refueling efficiency, refueling costs, charging availability, and the 
influence of government incentives on technology adoption. This comprehensive modeling approach allows 
stakeholders to gauge the impact of cutting-edge technologies on the future of the MHDV sector. Figure III.1.2 
illustrates the structure of the Truck Choice model, highlighting its robust framework for capturing market 
dynamics and technology adoption in the MHDV market. 

MA3T–Used Vehicle Model Development 
During FY 2023, our team completed development of the Used Vehicle model (UVM), designed for 
integration into the MA3T model. This integration signifies a major advancement in forecasting capabilities, as 
the UVM utilizes baseline forecasts of new vehicle sales from the MA3T model to effectively project the 
evolution of used vehicle stock. The UVM’s methodology is reliant on the MA3T model’s projections, where 
it assesses vehicle survival rates and the impacts of new vehicle sales fluctuations on the used vehicle market, 
as shown in Figure III.1.3. This method ensures a comprehensive and interconnected analysis of both new and 
used vehicle markets. Operationally, the UVM necessitates user-defined parameters, including coefficients to 
project future vehicle scrappage rates [5]. It then utilizes these inputs alongside the MA3T baseline 
projections—categorized by calendar year, vehicle type, and technology—to calculate changes in vehicle 
stock. The UVM’s true strength lies in its ability to analyze various MA3T vehicle sales scenarios influenced 
by policy, technology, or economic changes. The UVM adeptly predicts shifts in used vehicle scrappage, 
thereby influencing the composition and utilization of the used vehicle fleet [6]. The model’s capacity to 
analyze the interplay between new and used vehicle markets is critical for informing policies aimed at 
expediting the retirement of legacy gasoline vehicles. 
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Figure III.1.3 Flowchart of the UVM. Source: University of Tennessee 

Conclusions   
In FY 2023, the TEEM team undertook a multifaceted research agenda, which included the refinement of BEV 
range optimization with a focus on lightweighting strategies, a comprehensive cost–benefit analysis of various 
charging technologies for BEVs, development of the innovative Truck Choice model tailored to the MHDV 
market, and a deep dive into the intricate dynamics of used vehicle markets. These studies supported the 
continual improvement of the MA3T model and its derivatives, such as the MA3T–UVM state-level analysis. 
The team published six articles on these subjects, providing a solid foundation for future research aimed at 
further advancing the MA3T model suite, ultimately contributing to a more integrated analysis of emerging 
energy-relevant technologies. 
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Project Introduction 
Medium-duty and heavy-duty (MDHD) vehicles account for more than a quarter of U.S. road transportation 
fuel use and carbon dioxide emissions, with a projected increase in energy consumption of 11% by 2050 [1]. 
Plug-in electric vehicle (PEV) technologies are a key decarbonization technology, but PEVs face technical 
challenges in satisfying operational requirements for some MDHD sectors. Such complications include limits 
to driving range, long recharging times, and the need for high-power charging infrastructure. 

In considering the future adoption of PEV MDHD vehicles, we must recognize that the decentralized decision-
making of fleet purchasers, electric vehicle (EV) supply equipment and vehicle manufacturers, energy system 
stakeholders, and local policymakers will continue to play key roles in defining electric MDHD (eMDHD) 
availability and uptake. The timelines under which PEVs will become suitable and cost-competitive in 
different MDHD applications will differ with different vocations, vehicle types, and U.S. regions. Recent 
analysis has suggested that electric long-haul freight trucks may soon be competitive with conventional trucks 
based on total cost of ownership (TCO) if fast-charging infrastructure is sufficiently deployed [2], [3], [4], but 
key MDHD stakeholders have incomplete access to information and resources to inform their decision-
making. Together, this disparate and decentralized nature of the MDHD marketplace has been identified as a 
critical obstacle to eMDHD market development [5]. 

Objectives 
The goals of this project are to develop and integrate two novel modeling capabilities to accomplish the goals 
of Funding Opportunity Announcement 2420 Area of Interest 8.1 The first modeling tool is a fleet-level 
technoeconomic analysis model capable of estimating energy use and associated environmental and cost 
impacts for electrified and conventional vehicles of any MDHD vocation. The tool uses real-world cost and 
operations data and includes approaches to optimizing schedules for charging and/or vehicle dispatch. The 
second modeling tool is a system-level, bottom-up, agent-based adoption model (ABM) capable of generating 

 

1 Vehicle Technologies Office Fiscal Year 2021 Research Funding Opportunity, Area of Interest 8, which focuses on 
electrification data analysis of road transportation vehicles. 
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geographically resolved estimates of market projections for MDHD vehicles and charging infrastructure. These 
tools have been developed together to serve dual purposes as analysis tools for researchers and decision-
support tools for decision-makers in the MDHD system. Illustrative applications of the integrated tool will 
serve to identify novel insights and opportunities to improve the sustainability, cost-effectiveness, and 
equitability of the MDHD transportation system. This paper presents the methods and approaches for the 
ABM, with details of MDHD PEV economics and operations available in previous work. 

Approach  
Agent-Based PEV Adoption Modeling 
ABM is an individual-level modeling technique in which “agents” are modeled to operate autonomously, 
influencing outcomes with their decision-making. Through representation of behavioral and social aspects of 
decisions, as well as how market phenomena emerge from individual choices, ABM enables addressing 
aspects of technology adoption that conventional top-down adoption modeling approaches cannot. Many such 
aspects are of interest, including the effects of targeted policies and incentives, the roles played by interaction 
and observation, and the geographic arrangement of agents and factors for decision-making. 

Adoption models often focus on either demand or supply, but the market will be driven by the interaction 
between supply and demand, either of which can serve as a constraining factor for different segments of a 
market. For example, there is potential for a “chicken-or-egg” predicament, in which vehicle uptake remains 
low because of a lack of vehicle and charging infrastructure availability, and, conversely, infrastructure and 
vehicle supply remain low in response to a lack of vehicle demand and utilization. Thus, eMDHD system 
growth is likely to involve a complex coevolution of supply and demand, driven by feedback loops between 
producers, purchasers, and energy and infrastructure suppliers [6], [7]. 

To address these dynamics, agents in our model are of three types: (1) fleet operators, (2) manufacturers of 
vehicles, and (3) utility and infrastructure managers. Policy decisions are treated as inputs to the adoption 
model. Each of these agent varieties makes decisions in pursuit of individualistic objectives, based on a subset 
of information available and according to individual preferences and risk characteristics. The decisions of 
agents exert mutual influence in a variety of ways. For example, an electric utility installing a set of public 
fast-charging stations improves the suitability and TCO of PEVs for ride-sharing fleets in the surrounding area, 
increasing their likelihood to adopt PEVs. The adoption of PEVs, in turn, increases the utilization and payback 
potential of the charging stations. Furthermore, fleets driving similar duty cycles elsewhere might observe the 
uptake, increasing their familiarity and confidence in PEVs and potentially provoking them to adopt PEVs. 
These and many other means of feedback and diffusion can be investigated via ABM. 

Decision-Making Models and Data Sources  
The mechanism of decision-making is essential in defining an ABM. Ours is defined using a combination of 
theory and empirical study. In contrast to the purchasing choices of individual consumers—which typically 
involve hard-to-quantify factors such as perceived norms, symbolism, and emotions—business decisions such 
as those for fleets are heavily influenced by well-understood economic factors like TCO. In some adoption 
models, business decision-makers are approximated to adhere strictly to utility theory, wherein they invariably 
make the purchase with the highest “utility” (e.g., always choose the option with the smallest TCO). However, 
this can lead to unrealistic dynamics if “utility” is defined too narrowly. Researchers have previously 
employed the theory of planned behavior to model decision-making in fleet settings [8]. This theory enables 
quantitative modeling of factors such as attitude, familiarity, and perceived operational ease associated with a 
technology, which have been shown to play a role in the decisions of fleets and other businesses. In our model, 
the theory of decision-making followed by agents incorporates aspects of both utility theory and theory of 
planned behavior. 

Empirical studies of the decision process followed in fleet settings have been conducted for decades, primarily 
through such means as surveys, interviews, and focus groups. For example, researchers as far back as 2001 
found that “bureaucratic” fleets typical to the public sector are unlikely to respond to incentive-based policies 
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but are responsive to mandates, whereas “hierarchic” fleets typical to larger companies in the private sector 
exhibit the opposite behavior [9]. Decision-making preferences are also found to differ significantly for 
strategic, non-routine decisions (such as electrification) and for urgent decisions such as might be spurred by 
policy mandates. 

Adoption Process Model 
Agents are organized in networks, one each for fleets, utilities, and original equipment manufacturers (OEMs). 
Fleet agents own and control vehicles and charging infrastructure, about which they form and share opinions. 
Utility agents control the costs of installing and operating electric infrastructure. OEM agents control the 
attributes and availability of vehicles, including costs. To this ABM population, we apply a conceptual 
framework for alternative-fuel vehicle adoption by commercial fleets based on interviews with heavy-duty 
(HD) vehicle fleet managers [10]. The theories underpinning the framework account for (1) how innovations 
spread across social networks (Diffusion of Innovations theory), (2) factors particular to organizational 
adoption (Technology–Organization–Environment framework), and (3) the roles played by individuals within 
the organization, including decision-makers and those directly operating the new technologies. The framework 
they present consists of an adoption process and, within that process, a characterization of the factors 
influencing the decision to adopt. The following sections describe how each step in the process is modeled. 

Awareness 
Agents’ state of awareness is binary, that is, they are either unaware or aware of each vehicle available to 
them. They can gain awareness either through the advertising and outreach efforts of OEMs and others, or 
through interactions with other fleets. Advertising is modeled as a stochastic process, where all agents that are 
unaware of a particular OEM have a probability of discovering them each year. Interactions between agents are 
modeled in detail.  

Consideration  
Fleets will consider adopting a vehicle if they perceive it to be capable of satisfying their operational 
requirements. These requirements are represented in terms of range and cargo/passenger capacity. A vehicle 
will not be considered for adoption if it has less range than the longest distance traveled in a day by existing 
vehicles, or if it has less cargo/passenger capacity than the greatest capacity used by existing vehicles. Vehicles 
perceived to be operationally suitable are also subjected to economic analysis. Finally, agents assess the 
relative utility of all the vehicles of which they are aware.  

Adoption Decision 
Having evaluated vehicles for suitability and subjectively assessed them, agents decide whether to replace each 
existing fleet vehicle and what the replacement vehicle should be. (Vehicles that were purchased within the 
previous eight years are never replaced.) Every existing vehicle is paired with the highest-utility option 
suitable for replacing it and entered into the equation below to find the replacement probability: 

 

where u0 is the utility of the existing option, u1 is the utility of the potential replacement, and k is a constant. 
Thus, if the potential replacement is perceived to be equal or superior to the existing vehicle, it is always 
adopted. Otherwise, it may still be adopted, but with a probability that decreases sharply with its perceived 
inferiority. This enables fleets to adopt vehicles as pilot projects, to gain information and evaluate feasibility. 
(Each vehicle option can only be “piloted” once.) 
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Implementation and Confirmation 
Finally, fleets procure and operate new vehicles and charging infrastructure. In the implementation step, fleets 
sell vehicles that are being replaced, procure new vehicles, and design a minimum-cost EV charging system, 
accounting for existing charging assets, to enable all BEVs to complete their drive cycles. It is assumed that all 
BEV charging is performed at the fleet’s home base. For the confirmation step, fleet agents record 
observations of all attributes of all vehicles they own, old and new.  

In summary, an ABM framework is defined by (1) the types of agents being modeled and (2) the decision theory 
followed by agents. To put a framework to use, it must be populated using real-world or synthetic data. This 
entails quantifying and distributing agent attributes, including decision-making preferences and fleet 
characteristics. Fleet characteristics, including fleet size and vocation, will be initialized from publicly available 
data and data provided by partners. Decision-making characteristics, such as the relative weights of key metrics 
(e.g., TCO and up-front cost) comprise a significant effort of supporting research and will be initialized based on 
results of studies in the literature correlating decision preference with fleet characteristics [11]. 

Results 
In Budget Period (BP) 1, the capital costs modeling and operating costs microsimulation tools were developed, 
validated, and demonstrated. These results were presented in the FY 2022 Vehicle Technologies Office Annual 
Progress Report [12]. In BP 2, these costs and modeling tools were integrated into the ABM software, and this 
software was demonstrated and validated for modeling of adoption of MDHD EVs.  

Framework-Level ABM Results 
When the tools developed in BP 1 are combined with models of learning and opinion formation, the result is 
an ABM framework that can model the perceptions, learning, and decision-making of agents, thereby meeting 
the requirements of the proposed ABM adoption framework. 

Figure III.2.1 provides a visualization of how agents form perceptions on the basis of observations, illustrating 
an example of the maintenance cost calculation that can be performed for all of the agents and trials that are in 
the ABM framework. The figure shows observations pertaining to maintenance cost for two vehicle options, 
an internal combustion engine vehicle and a BEV, where more heavily weighted observations are shown as 
larger points. Colors identify the means by which observations were made. The overall distribution of 
observations is shown as a box-and-whisker plot, with the median as a line and the mean as a circle in the box. 
The vertical axis shows how values map to subjective assessments, on a scale of 0 to 5, with lower 
maintenance costs mapping to higher subjective assessments. Figure III.2.1 exemplifies how ABM models can 
realize a distribution of perceptions, learning, and decision-making for a diverse set of agents in the simulation.  

 
Figure III.2.1. Visualization of how agents form perceptions on the basis of observations. Source: Colorado 

State University 



Analysis 

82 Agent-Based, Bottom-Up Medium- and Heavy-Duty Electric Vehicle Economics, Operation, Charging, and Adoption 
(Colorado State University) 

 

ABM Adoption Results 
The ABM is then utilized to test the effects of various heterogeneities on the adoption of PEVs in MDHD 
fleets. To exercise this model, three key experiments within the ABM framework are conducted to understand 
the influence of weight class heterogeneity, preference heterogeneity, and range option heterogeneity on EV 
adoption rates. Although these results consider only a small pool of 10 fleet agents, the results of this small 
problem provide examples of the types of insights that can be extracted only from ABM-based models (in 
contrast to other EV adoption models [13]). 

1. Vehicle Class Heterogeneity: The first experiment tested how the electrification of lower weight 
classes (more economically and operationally feasible) influences the electrification of higher weight 
classes. The hypothesis was that the adoption of HD vehicles would accelerate if HD vehicle fleet 
operators observed the adoption of PEVs within medium-duty (MD) vehicles. As illustrated in Figure 
III.2.2,  results show that interaction with and learnings from MD fleets accelerate PEV adoption 
among HD fleets, indicating the importance of social learning in the modeled PEV adoption 
processes. 

 
 

 

 

 

 

 

 

 

Figure III.2.2 Visualization of the incremental adoption rate for HD PEVs for each year in the period 2020–
2050 under two scenarios of MD fleet to HD fleet interaction. Under scenario (a), MD and HD fleets share no 
learnings. Under scenario (b), HD fleets learn from experiences of MD fleets and adopt PEVs at a higher rate 

than in scenario (a). Source: Colorado State University 

2. Preference Heterogeneity: This part of the study examined how variations in the range and variety of 
decision-making preferences within a population affect electrification outcomes. The results supported 
the hypothesis that a population with average decision preferences will adopt EVs more rapidly if it 
includes agents with a diversity of EV preferences, as EV-positive early adopters can normalize the 
technology and share their positive experiences for the rest of the population. Results are not 
illustrated here in the interest of brevity. 

3. Range Option Heterogeneity: The final experiment analyzed how the availability of different 
electric range options affects MD PEV adoption rate. This work hypothesized that a greater variety of 
electric range options would allow fleets to tailor their vehicles to the needs of their vocations, thereby 
leading to faster adoption. As illustrated in Figure III.2.3, relative to adoption scenarios where only a 
default short-range MD PEV with 50 miles of range is available, the addition of more options within 
the same vehicle platform led to accelerated adoption. Further increasing the number of options led to 
a diminishing effect on adoption rate. 
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Figure III.2.3 Illustration of the MD PEV adoption rate results for a variety of scenarios for the period 2020–
2050. At top is scenario (a) modeling adoption for a small-range vehicle. Accelerated adoption of PEVs in 

scenarios (b) through (e) is observable by the total difference in EV adoption being plotted at values greater 
than zero because of diminishing effects. Source: Colorado State University 

Overall, the ABM results demonstrate the dynamics of fleet electrification, influenced by a range of factors 
from social influences on technical specifications. The results underscore the complexity of EV adoption and 
the importance of considering a variety of factors beyond economic calculations in understanding and 
predicting fleet behaviors. 

Conclusions 
In this research, bottom-up modeling is employed to simulate EV adoption within MDHD fleets, considering 
the technoeconomic factors and operational constraints that influence electrification. The ABM demonstrates 
the ability to simulate complex adoption dynamics across diverse fleet networks. Despite the sophisticated 
nature of bottom-up models and their potential to inform policy and planning, the approach is tempered by the 
challenges of extensive data requirements, potential unavailability of proprietary information, and 
computational constraints that limit the complete representation of real-world systems. Nevertheless, the model 
promises to enrich our understanding of fleet electrification dynamics and supports the development of 
nuanced strategies for advancing electric transportation.  
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Project Introduction 
Widespread truck electrification requires strategically planned public and private charging infrastructure. 
Truck electrification offers high potential for climate, environmental, and equity benefits. The U.S. 
Environmental Protection Agency has reported that: 

• In 2020, medium- and heavy-duty trucks accounted for 26.3% of U.S. carbon dioxide emissions from 
fossil fuel combustion [1]. 

• About 72 million people live within 200 meters of a freight route [2]. 

• People of color and those with lower incomes are more likely to live near those routes [2]. 

Truck electrification will also present high, concentrated, and inflexible charging demand and, therefore, 
significant threat to the grid. According to Oncor, a Texas utility, a few customers simultaneously electrifying 
only a few vehicles each could overload substations, yet there are 21,600 fleets with two or more vehicles that 
operate in Oncor’s service area [3]. 

No solutions currently exist to forecast truck charging demand for grid planning. Traditional commercial travel 
models do not have energy components. Integrated urban models such as Polaris and the Behavior, Energy, 
Autonomy, and Mobility models are not for state- or national-level analysis, which is required for freight 
corridor planning. National-level models such as Transportation Energy and Mobility Pathway Options™ and 
the Freight Analysis Framework are spatially resolved at the county level, which is not detailed enough for 
grid planning. Fine-grained truck charging demand forecast is challenging because truck data are scarce. 
Scaling urban models to regional and state levels is also cost-prohibitive for data acquisition and technical 
development. 

This project overcomes the challenges of data scarcity and model scalability through a modular platform of 
generative models and large-scale co-simulation of transportation and grid systems. 

Objectives 
The overall objectives of the project are (1) to develop a truck charging demand model for large urban areas 
and along highway corridors and (2) demonstrate cost-optimization strategies for placing and sizing charging 
infrastructure that balance grid upgrade costs and greenhouse gas and air pollutant costs. 

mailto:Ann.Xu@ElectroTempo.com
mailto:Patrick.Walsh@ee.doe.gov
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In Budget Period 2 (January–December 2023), the objective was to analyze cost-optimization strategies by 
identifying key factors influencing infrastructure and environment costs and simulating the benefits of well-
designed rate structures. 

Approach 
This project’s modeling platform combines modular architecture, data science, and simulation to address the 
current lack of truck charging demand forecasts.  

There is currently a lack of mature models and real-world data at various stages and resolution levels in the 
modeling process. Therefore, the parallel modules of simulation and machine learning methods for each 
component of a transportation–energy modeling system are especially applicable to truck charging demand 
modeling. The project explores diverse truck data sources and develops algorithms to fuse these data sources 
and generate realistic synthetic data for system simulation. In this budget period, the project team automated 
and streamlined the transportation and grid models, independently and jointly, such that the time required to 
conduct a coupled infrastructure study is reduced to hours. We demonstrated an approach to reconcile the 
differences of spatial resolution and scale between the simulations of the two infrastructure systems. 

Specifically, the team assembled ninety-six 24-hour scenarios for charging and grid simulations. We analyzed 
the results to identify the impact of different charging configurations on capital, operating, and environmental 
costs of the grid. In addition, we tested three electricity pricing strategies to identify ways to reduce such costs. 

Results 
The project team modularized the urban and long-haul truck charging demand models developed under Task 1. 
We introduced five parameters that can be used to configure a 24-hour charging demand simulation for the 
megaregion that includes the Dallas and Houston metropolitan areas and the Interstate 45 (I-45) corridor: 

• Charge rate: The fixed rate (in kilowatts) at which trucks can charge at a depot  

• Season: The time of year, which affects air conditioning/heater usage and thus energy consumption 
per mile of truck travel 

• Truck market adoption rate: The percentage of all truck trips attributed to battery electric trucks 

• Charging logic: The time of day at which trucks are assumed to begin overnight charging 

• I-45 truck charging depot location: The location along I-45 where electric trucks have an 
opportunity to charge 

The season, market adoption rate, and I-45 depot location each affect total estimated charging demand: 

• Season: For each truck class, we estimate a unique energy consumption rate (kilowatt-hours per mile 
traveled) according to battery capacity (kilowatt-hours) and range (miles). We use this rate and the 
modeled truck trip length (miles) to estimate energy use and charging demand, accordingly. We 
assume energy use per mile is roughly 14% higher in the summer and winter than in the spring and 
fall. Therefore, a unitless consumption factor is applied to the total energy consumption rate, based on 
the season: the factor is 1.2 in the summer and winter months and 1.05 in the spring and fall months.  

• Truck market adoption rate: Total charging demand scales linearly with truck market adoption rate. 
We assume that under different adoption rate scenarios, the distribution of truck trips by origin and 
destination and time of day remains constant. We model adoption rates of 25%, 50%, 75%, and 100%. 

• I-45 depot location: The charging logic applied to long-haul truck trips depends on the trip’s origin 
and destination and the relative distance from one to the other, and we assume trucks will typically 
charge only if their state of charge is low. For instance, we assume that trucks that depart the Houston 
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region will not stop to charge at a depot located just outside the Houston region because they will still 
have a high state of charge. We model one depot near the midpoint between Houston and Dallas 
(about 130 miles from each city) and one relatively close to Dallas (less than 60 miles out of the city). 
The charging demand is estimated to be higher at the midpoint depot because the algorithm does not 
just factor in trips starting in Houston, but also trips that start up-stream of Houston and pass through 
on the way to Dallas. Trucks that were not fully charged when starting from Houston would run out of 
charge mid-way, which is why charging demand is estimated to be higher at the midpoint depot.  

The charge rate and charging logic parameters do not influence total estimated charging demand, but they do 
shape the time distribution of charging demand. Figure III.3.1 depicts the impact of charging logic on the 
shape of the demand. 

• Charge rate: Given a similar magnitude of demand, increasing the assumed truck charge rate at a 
depot concentrates demand in smaller time windows, which can increase the expected peak demand. 

• Charging logic: Given a similar magnitude of demand, charging upon evening arrival at the depot 
results in lower peak demand because it is spread over several evening hours. When all overnight 
charging is assumed to begin at midnight, a strong peak in demand is observed at midnight. 

 
 

 

 

 

 

 

 

Assumptions: 200 kW charge rate, winter/summer heat/air conditioner use, 100% market adoption, and depot at I-287 

Figure III.3.1 Hourly charging demand (in megawatt-hours) by charging logic 

Grid Cost Analysis 

Operating Costs 
We approximated the yearly change in operating cost due to the heavy-duty electric vehicle (EV) truck 
simulation scenarios. Since the simulation covers only a 24-hour load period, we chose a representative day 
that could be multiplied by 365 to get an approximate yearly operating cost increase or decrease. From the 
project’s synthetic distribution system load data, which is from 2018, the team chose May 3, which has a daily 
average load of 47.7 MW. This accounts for load growth from the Electric Reliability Council of Texas yearly 
average of 43 MW from 2018.  

Table III.3.1 presents a summary of the key findings in the operating cost analysis. The cost values were 
rounded to the nearest thousand dollars; cost increase (in red) is listed as positive, and cost decrease (in green) 
is negative. The charging scenario parameters that had the most impact on cost were charging logic, maximum 
charging rate, and market adoption.  

The key takeaway from Table III.3.1 is that market adoption rate is the primary driver of cost increase, which 
is to be expected, but this can be reduced by using the charging logic that begins at midnight and/or increasing 
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the maximum charging rate to 300 kW. However, as shown later in the capital cost analysis section, increasing 
the maximum charging rate increases the total overloads in the distribution system, increasing the capital cost 
of correcting these overloads.  

Table III.3.1 Summary Highlights of Operating Cost Analysis 

Charging Logic Baseline Scenario Parameter Comparison Parameter 
Average Cost 

Difference  
(24-hour) 

Average Cost 
Difference 

(yearly) 

Both averaged 0% market adoption rate 25% market adoption rate $607,000 $221,555,000 

Both averaged 25% adoption rate 50% adoption rate $715,000 $260,975,000 

Both averaged 50% adoption rate 75% adoption rate $775,000 $282,875,000 

Both averaged 75% adoption rate 100% adoption rate $815,000 $297,475,000 

N/A Charging upon depot arrival Charging beginning at 
midnight -$95,000 -$34,675,000 

Beginning at 
midnight 

100 kW max charging rate 200 kW max charging rate -$25,000 -$9,125,000 

200 kW max charging rate 300 kW max charging rate -$33,000 -$12,045,000 

Upon depot 
arrival 

100 kW max charging rate 200 kW max charging rate -$2,000 -$730,000 

200 kW max charging rate 300 kW max charging rate $300 $110,000 

Capital Costs 
To assign a dollar value to correct transmission and distribution overloads, the team used an upgrade cost of 
$1,250 per MW-mile for transmission lines and $2,500 for distribution lines. These numbers were derived 
from the average costs of around $2,500 per MW-mile of new construction for the Competitive Renewable 
Energy Zone projects in Texas [4] and an average line upgrade costing 30%–50% of new construction [5]. 

For distribution lines, the National Renewable Energy Laboratory lists the cost of new transmission 
construction projects as $1,200–$5,341 per MW-mile for long-distance and $2,400–$10,683 per MW-mile for 
lower-voltage transmission [6]. Thus, 50% of the $2,500 cost was used for transmission. 

For distribution system upgrades, the cost range for lower voltage levels was used. This range was refined by 
using the $42,000 to $79,000 per mile of new distribution lines from T. Farmer [7] and an average distribution 
limit of 12 MW from Burlington Electric [8] (600 amps nominal rating and typical 13.8 kV voltage rating, 
minus some safety margin). 

Figure III.3.2 depicts the overall capital cost trends as EV penetration increases. At low EV penetration levels, 
distribution costs are higher than transmission costs. As EVs approach full penetration, however, transmission 
costs overtake distribution costs. 

Within each penetration level where the total demand is fixed, factors such as charging logic and charging rate 
make a difference on capital costs, especially distribution costs. Generally, higher charging rates correspond to 
higher distribution costs, whereas charging at midnight corresponds to lower distribution costs. These 
observations form a basis for rate structure design. 
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Environmental Costs 
The project team analyzed fuel cycle (tailpipe + power plant) emissions for both greenhouse gases and criteria 
pollutants. Because of space constraints, readers are referred to our journal publication on this topic [9]. 

Rate Design 
To achieve the desired 20% or greater cost reduction, the project team designed three rate structures to modify 
the EV charging demand. We use a tiered approach, where we delay a given percentage of the EV load 
supplied by a transmission bus with locational marginal price (LMP) above one of the three thresholds shown 
in Table III.3.2 below. 

Table III.3.2 Rate Structures 
Bus LMP % EV load delayed by 1 hour 

>60 $/MWh 20% 

>100 $/MWh Additional 20% (40% total) 

>600 $/MWh Additional 20% (60% total) 

These rate structures are implemented by checking the optimal power flow results after each simulation hour 
and comparing each transmission bus LMP value to the thresholds above. For context, the LMP is the total 
increase in system operating cost of supplying an additional megawatt of load at the given bus. The LMP 
values are also the dual variables associated with the branch flow constraints in the optimal power flow 
formulation.  

In a grid with no transmission constraints, all bus LMPs are uniform and are set by the cost of the marginal 
generator. For example, in scenario 1, hour 2, there are no transmission lines operating at their limits, so the 
system LMP is a uniform $14.97/MWh. However, when a transmission line or transformer hits its limit, 
generators have to be dispatched in a less economical manner to keep the transmission line or transformer from 
becoming overloaded. This is called congestion and causes non-uniform LMPs at the system buses. 
Specifically, congestion can cause high LMP values at the bus(es) where an increase in load contributes most 
to increased flow on the transmission line, and the resulting generator redispatch causes more expensive 
generators to be used to supply the load.  

In the worst case, a transmission line overload cannot be fixed by changing the outputs of the generators, and 
this becomes an unenforceable constraint. In reality, this overload would be corrected by shedding load, but in 
a planning study (such as this project), the transmission line or transformer would need to be upgraded to 

Figure III.3.2 Capital cost vs. EV penetration rate 
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correct the overload. For example, in scenario 1, hour 1, there is an unenforceable constraint on the 138 kV 
transmission line between bus 270005 and 1200074, resulting in a 100 MW overload on the line. This overload 
is an example of the overloads that are calculated in the capital cost section above. 

The rate structures are implemented so that the total EV load over a 24-hour period remains the same. 
Additionally, charging will not be delayed beyond the 24th hour (11 PM). Finally, the threshold of $60/MWh 
was chosen to ensure that an EV load will not be delayed the entire 24 hours.  

The scenarios were analyzed, and it was determined that most of the transmission overloads for the charging-
beginning-at-midnight scheme occur during two time intervals: 12 AM–4 AM and 11 AM–7 PM. For the 
charging-beginning-at-station-arrival scheme, the overloads also take place mostly between 5 PM and 1 AM. 
Thus, there are several hours in all scenarios in which all bus LMP values are below $60/MWh, ensuring that 
the truck charging demand will be fully met. 

Conclusions 
During Fiscal Year 2023, the project implemented the transportation grid co-simulation of 96 scenarios of 
truck charging in the Dallas–Houston megaregion. The co-simulation capability allowed for multi-dimensional 
comparisons of factors that impact the operating, capital, and environmental costs of the electric grid. The 
results of the scenario runs and the automated simulation pipeline enabled us to design rate structures and 
examine the cost savings. We will report the results of the rate designs in Fiscal Year 2024. 
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Project Introduction 
U.S. climate goals for economy-wide net-zero greenhouse gas emissions by 2050 require rapid decarbonization 
of the light-duty vehicle fleet, and plug-in electric vehicles (PEVs) are poised to become the preferred 
technology for achieving this end [1]. The speed of this intended transition to PEVs is evident in actions taken 
by government and private industry, both in the United States and globally. New PEV sales have reached 7%–
10% of the U.S. light-duty market [2]. Globally, PEV sales accounted for 14% of the light-duty market in 
2022, with China and Europe at 29% and 21%, respectively [3]. A 2021 executive order targets 50% of U.S. 
passenger car and light truck sales as zero-emission vehicles (ZEVs) by 2030 [4], and California has 
established requirements for 100% light-duty ZEV sales by 2035 [5], with many states adopting or considering 
similar regulations [6]. These goals were set prior to passage of the landmark U.S. Bipartisan Infrastructure 
Law and Inflation Reduction Act, Public Law 117–169, August. 16, 2022, which provides substantial policy 
support through tax credits and investment grants (e.g., Electrification Coalition 2023 [7]). 

Companies in the automotive industry have committed to this transition, with most companies rapidly 
expanding offerings [8] and many pledging to become ZEV-only manufacturers. Tesla has been a ZEV-only 
company since its inception in 2003; Audi, Fiat, Volvo, and Mercedes-Benz are targeting ZEV-only sales by 
2030; and General Motors and Honda are targeting ZEV-only sales by 2035 and 2040, respectively [9]. The 
combination of policy action and industry goal-setting has led analysts to project that by 2030, PEVs could 
account for 48%–61% of the U.S. light-duty market [10]. This transition is unprecedented in the history of the 
automotive industry and will require support across multiple domains, including adequate supply chains, 
favorable public policy, broad consumer education, proactive grid integration, and a national charging 
network. 

While the speed and scale of these developments is exhilarating, the implementation of these initiatives is not 
without risk. The co-evolution of the electric vehicle (EV) and EV supply equipment markets needs to be 
closely coordinated to ensure that urgent transportation decarbonization goals are met. A future where EV 
sales outpace the rate of charging deployments could lead to poor user experiences in regions where the 
network is underbuilt or non-existent. Conversely, a charging deployment that exceeds the demand for 
charging puts infrastructure owners/operators at risk of financial hardship through poor asset utilization, 
potentially increasing the cost of charging and weakening a key competitive advantage for EVs. Careful 
attention must be paid to maintaining the appropriate balance of the supply and demand for EV charging that 
promotes accelerated EV adoption while avoiding unintended consequences. 

mailto:Eric.Wood@nrel.gov
mailto:Patrick.Walsh@ee.doe.gov
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The scale of charging infrastructure investments brings greater scrutiny to the questions of deployment speed 
and efficiency. Lead times for utility connection requests are currently measured in months or years, depending 
on the size of the request and the utility involved. These “soft costs” brought on by uncertain timelines are well 
known to place a great burden on deployment efforts and create uncertainty for all stakeholders. To enable 
electric utilities to be more proactive in their planning efforts, national modeling as part of the Electric Vehicle 
Infrastructure suite (EVI-X) is being scaled to provide increased spatial granularity. 

Ongoing federal investments in charging infrastructure bring a host of new questions to light. How aggressive 
should charging network companies be in attempting to future-proof new stations (e.g., station size and 
charging power)? With federal National Electric Vehicle Infrastructure (NEVI) formula funds targeting a 
national network of fast-charging stations to support consumer confidence in EVs, how many stations are 
likely to experience low levels of utilization, and for how long? What can be done to support these stations 
efficiently, with either technology or policy solutions? 

All these questions can be addressed using quantitative modeling as part of the EVI-X Suite. At the national 
level, the National Renewable Energy Laboratory (NREL) EVI-X Modeling Suite [11] shown below in Figure 
III.4.1 has been the Office of Energy Efficiency and Renewable Energy’s primary resource for insights on how 
this balance of supply and demand for charging may evolve over the next decade. Ultimately, today’s market 
and public policy conditions present opportunities for deployment-oriented analysis to guide sound public 
investments. 

 
Figure III.4.1 NREL’s EVI-X Modeling Suite informs the development of large-scale EV charging infrastructure 

deployments—from the regional, state, and national levels to site and facility operations. Source: NREL 

Objectives 
The goal of this project is to produce research that makes EV charging more convenient, affordable, reliable, 
and equitable. We aim to ensure the effective use of public funds, including sufficiently leveraging private 
capital. The project team is analyzing charging deployment approaches that achieve the goals of all 
stakeholders, as shown in Table III.4.1 below. 
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Table III.4.1 Charging Industry Stakeholders and Potential Incentives 
Charging Stakeholder Potential Incentives 

Current and future EV drivers Satisfy existing needs and anticipate future 
requirements. 

Automotive manufacturers Bolster consumer confidence in charging, making EV 
ownership more attractive. 

Charging network providers Balance supply and demand for charging to promote 
financially viable levels of utilization. 

Site hosts Make EV charging an attractive amenity for business 
owners and customers alike. 

Electric utilities Enable proactive planning to increase deployment 
efficiency and ensure grid integration. 

The team’s primary end-of-project goal includes enhancements to the EVI-X modeling suite that enable 
sophisticated financial analysis of public funding pathways, spatially granular scenario analysis that supports 
proactive utility planning, and large-scale network design studies inclusive of charging infrastructure 
supporting all vehicle weight classes. By the end of this project, modeling enhancements will have been used 
to produce technical reports and academic journal articles that make the financial analysis, grid planning, and 
network design insights available to the public. Modeling results will be shared with all relevant stakeholders, 
including the Joint Office of Energy and Transportation, other federal agencies, state-level officials, electric 
utilities, and private automotive and charging companies. These project goals are aligned with the Vehicle 
Technologies Office (VTO) programmatic goals aimed at enabling sector-wide transportation decarbonization. 

Approach 
Fiscal Year (FY) 2023 efforts under this project focus are two-pronged: (1) increase the spatial resolution of 
the national EVI-X framework and 2) conduct financial analysis of rural, corridor stations (potential NEVI-
funded locations). While these objectives are related, they take largely independent approaches. 

Increase the Spatial Resolution of the National EVI-X Framework 
This task will increase the spatial resolution of the national EVI-X framework developed with VTO funding in 
FY 2021–2022. The outcome is expected to become a resource for electric utilities in their distribution 
planning processes. This task is being coordinated with VTO’s EVs@Scale Consortium and the Electric Power 
Research Institute’s EVs2Scale Initiative. 

The team has developed a national origin–destination matrix for spatial disaggregation of simulated charging 
infrastructure and electrical load as illustrated in Figure III.4.2. This matrix is based on data licensed to NREL 
through the VTO Energy Efficient Mobility Systems program. INRIX is the commercial supplier of high-
resolution global positioning system data for this project. The data contains hundreds of millions of real-world 
trips. The team has leveraged a spatial disaggregation prototype developed for California and extended the 
methodology to provide national coverage with geographic precision at the census tract level. 

The team is scheduling a series of listening sessions with distribution planning engineers at a variety of electric 
utilities to better understand the load forecasting challenges at the local level. These conversations are expected 
to reinforce the need for high-resolution load modeling and guide the development through establishing spatial 
resolution guidelines that are independent of specific utility circuits. Based on industry feedback, the team will 
review available geographic units with national resolution and select a geography that balances the need to 
provide utilities with sufficient resolution while also keeping the methodology sound and defensible. 
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Figure III.4.2 Visual representation of increasing spatial resolution from core-based statistical area/county 

level to census tracts. Source: NREL 

Conduct Financial Analysis of Rural Corridor Stations 
This task focuses on site-level financial analysis with an emphasis on questions posed by federal investment 
programs. This task enhances the EVI-X national framework by coupling EVI-RoadTrip (demand estimation) 
and EVI-FAST (Financial Analysis Scenario Tool), as shown in Figure III.4.3, to evaluate the potential 
levelized cost of charging at rural, fast-charging corridor sites designed to support long-distance travel. 

 
Figure III.4.3 Data pipeline for integration of EVI-RoadTrip and EVI-FAST. Source: NREL 

One goal of the NEVI program is to establish the first-ever national public charging network open to all EVs. 
There will be sites that experience a prolonged period of low utilization as EV sales increase and drivers 
become more comfortable using EVs for long-distance travel. Quantitative analysis using a combination of 
EVI-RoadTrip and EVI-FAST is being conducted to support the federal understanding of how many sites are 
expected to experience a prolonged period of low utilization, where they will likely be located, and what can 
be done to mitigate federal subsidies for operating expenses. This subtask will produce guidance on sustainable 
support mechanisms for underutilized stations that are necessary for complete and equitable public charging 
access across the United States. 

Much attention has been paid to the need to “future-proof” sites—that is, constructing sites today that 
anticipate increased demands for charging over time and increased vehicle-level capabilities (e.g., increased 
direct current [DC] charging acceptance rates). However, there is limited analysis that objectively trades off 
the costs and benefits of intentionally over-designing sites in anticipation of future needs. The concept is 
intuitive in that it limits the frequency of new construction, but the push to future-proof tends to ignore the risk 
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posed by operating and maintaining charging equipment in advance of its actual use. This task is exploring 
case studies that leverage discounted cash flow analysis to identify conditions in which future-proofing 
ultimately provides net benefits, particularly to EV drivers, the station owner/operator, and applicable public 
funding agencies. 

Results 
Increase the Spatial Resolution of the National EVI-X Framework 
The EVI-X national framework provides infrastructure estimates at the resolution of core-based statistical 
areas (CBSAs) or counties. EVI-X is being enhanced using high-resolution telematics data to disaggregate 
infrastructure demand within each CBSA/county. A likely adopter model has been applied to each zone within 
the national framework to dissolve EV home locations at the tract level. This spatial disaggregation includes 
estimates of those with and without access to residential charging, a key variable for estimating charging 
demand away from home. Utilities can use these estimates to anticipate demand on distribution networks and 
make proactive investments to ensure reliable service to customers. 

A similar disaggregation was conducted for public DC fast charging (DCFC) in southern California, as shown 
in Figure III.4.4. NREL modeling indicates that 90% of the 2030-simulated DCFC demand nationally will be 
within urban areas. National telematics data from millions of devices (as licensed from INRIX) is being used 
to disaggregate public charging demand (including community-based fast charging). Figure III.4.4 shows a 
comparison of the public DCFC network in Los Angeles County by census tract as observed by the DOE 
Alternative Fuels Data Center (AFDC) Station Locator (as of early 2023) and a modeled disaggregation of the 
same area. Visually, a high degree of correlation can be observed between station locations. Similarly, 
charging while at work (public and private access) is expected to be the dominant non-residential use case for 
Level 2 charging. Longitudinal origin–destination data from the census is being used to disaggregate simulated 
demand to the tract level for all U.S. CBSAs. 

 
(a) (b) 

Figure III.4.4 (a) Actual public DCFC locations compared to (b) a modeled disaggregation of the 2023 network 
for Los Angeles County. Source NREL   
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Conduct Financial Analysis of Rural Corridor Stations 
EVI-X national simulation results suggest 18,000 DC ports could be necessary outside urban areas by 2030 
(about 10% of the simulated national fast-charging network). Of these, approximately half of rural corridor 
stations are estimated to experience low levels of utilization through 2030 (based specifically on results from 
EVI-RoadTrip; a map of simulated demand is included below in Figure III.4.5). Despite forecasts for low 
annual utilization, these rural corridor DCFC stations will be necessary to support national long-distance trips 
during peak travel seasons and around holidays. 

 
Figure III.4.5 Simulated 2030 DCFC demand from EVI-RoadTrip, contrasted with existing station locations. 

Source: NREL 

Conclusions 
Significant investments are being made in U.S. EV charging infrastructure. Third-party estimates suggest that 
more than $5 billion in private investment was committed domestically in the first quarter of 2023 alone. 
Efficient deployment of infrastructure is aided by sophisticated planning tools that are independently 
developed and vetted. 

This project makes contributions in two specific areas: (1) increasing spatial resolution of national modeling 
using large telematics datasets to support granular utility planning and (2) evaluating levelized cost of charging 
by integrating spatially explicit demand estimates with detailed financial analysis targeted at potential NEVI-
locations. These thrusts have laid the foundation for a national utility planning tool with distribution-level 
resolution and estimated that as many as half of rural fast-charge stations are likely to experience low 
utilization through 2030. Multiple stakeholder groups have contributed to the overall research scope, including 
automotive manufacturers, charging networks, and electric utilities. 

This work is scheduled to be refined in FY 2024 by updating key financial analysis parameters, increasing the 
spatial resolution of demand forecasting, and continuing to engage with industry stakeholders and adapt the 
project plan accordingly. 
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Project Introduction  
Vehicle simulation is a reliable way to predict the cost and energy consumption benefits of technology changes 
in automotive applications. This work relies on Autonomie [1], a simulation tool developed by Argonne 
National Laboratory (ANL) and funded by the U.S. Department of Energy (DOE) Vehicle Technologies Office 
(VTO), to quantify the energy consumption and cost of technologies. This work also uses the TechScape 
(Technology landScape) tool developed by ANL to quantify the technoeconomic benefits and emissions of 
advanced vehicle technologies [2]. The project integrates VTO-sourced data with component-level technology 
performance and cost to generate vehicle-level metadata based on U.S. standard driving cycles. Autonomie 
vehicle models and results are used to support several activities within VTO—life cycle analysis (LCA), 
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economic impact analysis, market penetration analysis, and development of individual component technology 
targets—as well as activities outside of VTO. 

Objectives 
The main goals of this project are to: 

• Quantify the benefits of vehicle technologies across multiple vehicle classes, powertrains, component 
technologies, and uncertainties (e.g., business as usual vs. VTO target-achieving cases) to represent 
current and potential future scenarios.  

• Develop a database that includes vehicle energy consumption and cost as well as detailed component 
information, including power, energy, cost, efficiency, and operating conditions, on the U.S. standard 
driving cycles. 

Approach 
To achieve the objectives outlined above, ANL identified the tasks shown in Table IV.1.1. 

Table IV.1.1 ANL Project Tasks 
# Tasks Status 

1 Quantify benefits of VTO-funded technologies for light-duty vehicles Complete 

2 Quantify benefits of VTO-funded technologies for medium- and heavy-duty vehicles Complete 

3 Make improvements to TechScape Complete 

Task 1 was to quantify the energy consumption and cost of several types of light-duty vehicles. The scope of 
this task extended from small passenger cars in light-duty segments to pickup trucks. Task 2 was to quantify 
the energy consumption and cost of several types of medium- and heavy-duty vehicles, spanning across large, 
long-haul trucks in heavy-duty segments. Several vehicles were identified to represent the large variety of 
vehicles in the light-, medium-, and heavy-duty segments. This study examined the differences in vehicle 
requirements and use cases in 10 types of light-duty vehicles and more than 20 types of medium- and heavy-
duty trucks. The assumptions used for defining these vehicles were based on inputs provided by transportation 
decarbonization analyses conducted by VTO and the DOE Hydrogen and Fuel Cell Technologies Office [3]. 
This work used updated powertrain and sizing assumptions based on these inputs. As noted above, the project 
used Autonomie for simulation and TechScape for technoeconomic analysis. TechScape provides a user 
interface that enables users to examine the sensitivity of the total cost of ownership (TCO) and LCA of a 
vehicle to its component efficiency and cost assumptions.  

Task 3 covers various development improvements in TechScape. This task included migrating TechScape 
from Excel to Python for the cost, energy, and LCA modules. Task 3 also includes development of a material 
analysis module (with linkages to the ANL BatPaC tool [4]), an LCA module (with linkages to GREET [5]), 
and a fleet analysis module that would enable users to compute the energy, emissions, materials, and costs for 
overall fleets and national impact.  

Results  
The results of the Fiscal Year (FY) 2023 analysis activities are covered in this section and, as in the Approach 
section, follow the task outline.  

The main output of Tasks 1 and 2 is a report that covers the assumptions, vehicle sizing, and simulation results 
of both light-duty and medium- to heavy-duty vehicles. The databases accompanying the report provide the 
details of all vehicle-level assumptions, fuel economy observed on regulatory cycles, and the estimated 
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manufacturing cost and operational cost of each vehicle [6]. The FY 2023 report and databases are accessible 
on the ANL website [7]. 

This dataset forms the basis of LCA and other DOE-funded market penetration predictions. The Annual 
Technology Baseline project by the National Renewable Energy Laboratory [8] also relies on vehicle 
simulation results from this work. 

The FY 2023 report presents a quick overview of the results available in the database. Vehicles and 
technologies for future timeframes were modeled in this work. Two potential scenarios for technology progress 
were examined: (1) a business-as-usual scenario (low) and (2) a scenario based on a more aggressive level of 
technology progress (high).  

The simulation results provide insights into how the different vehicle component requirements are likely to 
change in the years to come because of accompanying technological advances. In addition to the component 
requirements, the database also provides information on projected vehicle-level cost, weight, energy 
consumption, and cost of driving and ownership for various powertrains, as well as different emission metrics. 
This information helps in understanding when advanced powertrains might achieve functional and economic 
parity with competing choices.  

Task 1. Quantifying Vehicle Energy Consumption and Cost Estimation for Light-Duty Vehicles 
In 2023, the full combined report for the light-duty vehicle simulations was published as the final deliverable. 
The report provides different analytics on the key metrics across the different vehicle powertrains 
(conventional, hybrids, plug-in hybrids, battery electric vehicles [BEVs]). Figure IV.1.1 shows the cost parity 
of BEVs for passenger cars (small sport utility vehicle [SUV] class). The cost parity is against the conventional 
spark injection (SI) turbocharged vehicle of the corresponding analysis year. For small SUVs, if current 
technology progress trends (low-technology scenario) continue, BEVs with an all-electric range of 300 miles 
or less will become cost-competitive with conventional powertrains around 2035. In the high-technology 
scenario (VTO targets), BEVs become cost-competitive an average of ten years earlier, thus significantly 
accelerating their market adoption. 

 
Figure IV.1.1 TCO comparison across powertrains for small SUVs. Source: ANL 
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Task 2. Quantifying Vehicle Energy Consumption and Cost Estimation for Medium- and Heavy-Duty 
Vehicles 
Figure IV.1.2 shows the weight, cost, energy consumption, and TCO of hybrid, fuel cell hybrid electric 
vehicles (FCHEV), and electric vehicles as a function of the corresponding values of conventional diesel 
trucks. This analysis projects a gradual reduction of the cost and weight penalties for all powertrains. In fact, 
this study finds that electric and fuel cell trucks will be able to compete with diesel trucks, even in this 
segment, if the high level of technology progress assumed in this study is met. For Class 4 delivery trucks, 
considering current technology progress trends (low-technology scenario), BEVs will achieve TCO parity with 
conventional vehicles as soon as the 2028 model year; achieving high-technology progress would accelerate 
the timeframe by two to three years. Fuel cell vehicles are expected to achieve TCO parity by 2030, 10 years 
earlier than the low-technology scenario. 

 
Figure IV.1.2 Evolution of vehicle cost, weight, and energy consumption for long-haul trucks that use 

advanced powertrains. All percentages are computed based on the conventional truck parameters for that 
year. Source: ANL 

Figure IV.1.3 examines the impact of technological progress on vehicle weight, vehicle cost, and TCO for 
Class 6 box FCEV trucks over time. In both high- and low-technology scenarios, advanced powertrains 
initially incur cost and weight penalties compared to the conventional baseline in 2023 and 2025. However, 
several advanced powertrains achieve cost parity in terms of initial cost by 2035 and 2050 and surpass 
conventional vehicles in terms of reduced ownership cost, becoming more economical as early as 2030. In the 
low-technology scenario, some advanced powertrains can achieve cost parity in both initial and ownership 
costs by 2050. These results underscore the need for aggressive technological improvements for the successful 
introduction of advanced powertrains in the medium- and heavy-duty segments. 

 
Figure IV.1.3 Impact of technology progress on weight, cost, and TCO of Class 6 box trucks. Source: ANL 
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Figure IV.1.4 shows a more thorough examination of the Class 6 BEV truck trends observed in the preceding 
figure, providing an in-depth exploration of the evolution of battery energy requirements, electricity 
consumption, battery costs, and vehicle prices over time. Notably, under conditions of high technology 
progress, we estimate a ~26% reduction in battery requirements by 2050. This reduction in component sizes 
leads to a significant decrease in vehicle weight, resulting in a reduction in energy consumption of about 35%. 
Moreover, there is a considerable decrease in battery costs, subsequently translating into a lower vehicle 
manufacturer’s suggested retail price. In summary, the research funded by VTO plays a pivotal role in 
achieving significant reductions in both energy consumption and vehicle costs. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure IV.1.4 Evolution of battery energy, energy consumption, battery costs, and vehicle prices for Class 6 
BEV trucks over time. Source: ANL 

Task 3. TechScape Improvements  
In FY 2023, the TechScape task achieved several objectives. The project team focused on TechScape core 
development and involved migrating key modules from Excel to Python, establishing linkages for materials 
analysis, and updating LCA pathways. This effort also involved introducing a fleet analysis module for 
comprehensive fleet sales- and stock-level assessments. The team also worked on TechScape Web development, 
enhancing backend databases, creating interactive data visualization tools via Tableau, and launching the 
TechScape Web application on the ANL Vehicle and Mobility Systems website [9]. Figure IV.1.5 shows a 
sample analysis of TCO breakdown of Model Year 2023 vehicles across different powertrains through 
TechScape Web. [10] 
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Figure IV.1.5 Sample analysis presented through TechScape Web interface. Source: ANL 

Conclusions 
The team has completed all the tasks planned for FY 2023. This work has resulted in a detailed report and 
multiple conference and journal publications. The final report covers the energy consumption, performance, 
and cost of light-, medium-, and heavy-duty vehicles [5]. The simulation and data analysis support that was 
provided for cradle-to-grave analysis activities has helped various technical teams in determining the 
appropriate technology development goals. 
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Project Introduction  
As the transportation sector continues to evolve and new technologies and travel solutions emerge to enable 
decarbonization, there remains substantial uncertainty about the future of mobility and the pathways necessary 
to achieve equitable and sustainable transportation sector targets [1], [2]. Transportation sector models can 
help to address this uncertainty by projecting ranges of potential futures for consumer travel behavior, the 
movement of goods, technology adoption, and the impacts of these factors on the transportation energy system.  

This project supports and enhances the Transportation Energy and Mobility Pathway OptionsTM (TEMPO) 
model, a comprehensive model of the entire U.S. transportation sector [3]. TEMPO evaluates long-term 
scenarios of travel demand, energy consumption, and greenhouse gas emissions across all passenger and 
freight travel modes. TEMPO models passenger and freight travel demands, mode choice, and technology and 
fuel choices across an array of market segments encompassing different socioeconomic categories (for 
passenger modes) and use cases (for freight modes). TEMPO considers factors such as technology cost, 
infrastructure availability, and incentives. It also models the energy consumption and greenhouse gas 
emissions that result from these factors, allowing the user to evaluate the impact of different market conditions 
and policy levers on future transportation sector pathways. As part of this project, several key updates were 
made to TEMPO to improve its ability to model the current policy landscape and potential scenarios of 
transportation sector evolution.  

Objectives 
This project has two main objectives:  

mailto:Paige.Jadun@nrel.gov
mailto:Matteo.Muratori@nrel.gov
mailto:Patrick.Walsh@ee.doe.gov
mailto:Raphael.Isaac@ee.doe.gov


Analysis 

108 Holistic Modeling of Future Transportation Energy Use and Emissions: Transportation Energy and Mobility Pathway 
Options (TEMPO) Model (National Renewable Energy Laboratory) 

 

• Provide continued support and maintenance for the TEMPO model, enabling key model enhancements 
that support conducting timely and relevant transportation sector scenario analyses.  

• Provide support for the U.S. Department of Energy (DOE) to answer high-urgency requests to support 
decision-making. 

To reach these objectives, the following milestones were identified for Fiscal Year (FY) 2023:  

• Expand the TEMPO steering committee (a group of DOE and external experts informing and guiding 
model development and prioritizing applications) to include members with expertise on environmental 
justice and equity.  

• Identify key model enhancement needs and work toward implementing those in the model. 

• Report on model upkeep and development activities. 

• Identify key model enhancement milestones, in partnership with DOE, and document (paper or report) 
a key TEMPO model enhancement and its resulting insights. 

As of November 2023, the first three of the FY 2023 project objectives have been completed, while the fourth 
has been scoped (a publication on modeling the impacts of the 2022 Inflation Reduction Act [IRA] for the U.S. 
transportation sector), and the paper’s completion is expected by the end of 2023 (with DOE approval). In 
addition, the TEMPO model has been used to support several projects and efforts, including DECARB [4], 
EMF-37 [5], and several products and publications (listed below) include TEMPO results, in part thanks to the 
support of model development and maintenance made possible by this project: 

• The U.S. National Blueprint for Transportation Decarbonization [6] 

• “Highly Resolved Projections of Passenger Electric Vehicle Charging Loads for the Contiguous 
United States: Results From and Methods Behind Bottom-Up Simulations of County-Specific 
Household Electric Vehicle Charging Load (Hourly 8760) Profiles Projected Through 2050 for 
Differentiated Household and Vehicle Types” [7], which was used to benchmark the Electric Power 
Research Institute’s (EPRI’s) EVs2Scale2030 efforts 

• “Electric Vehicle Managed Charging: Forward-Looking Estimates of Bulk Power System Value” [8] 

• “Renewable Energy and Efficiency Technologies in Scenarios of U.S. Decarbonization in Two Types 
of Models: Comparison of GCAM [Global Change Assessment Model] Modeling and Sector-Specific 
Modeling” [9] 

• “Exploring decarbonization pathways for USA passenger and freight mobility,” published in 2023 
[10] 

Approach  
Regarding our first objective, expanding TEMPO’s steering committee, Dr. Benjamin Sovacool, an expert in 
environmental justice and climate change, accepted our invitation to join the TEMPO steering committee. A 
steering committee meeting was held to further discuss ways in which the TEMPO model can be leveraged 
toward environmental justice and equity questions.  

Priorities for TEMPO enhancements were determined in consultation with DOE. The following enhancements 
were identified as priorities in FY 2023:  

• Enhancing TEMPO’s capability to model exogenously specified light-duty vehicle (LDV) adoption 
scenarios (i.e., technology-specific adoption targets) by enabling the model to endogenously allocate 
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adoption across vehicle classes based on market heterogeneities and preferences. For example, when 
given a scenario with exogenously specified battery electric vehicle (EV) sales targets, this 
enhancement allows the model to choose the vehicle classes in which these EVs are adopted 
(compact, midsize, pickup, or sports utility vehicle [SUV]), based on consumer preferences for EVs 
within these classes.  

• Enhancing TEMPO’s ability to model the IRA’s impacts on the transportation sector, including the 
Clean Vehicle Tax Credit (30D), the Commercial Clean Vehicle Tax Credit (45W), and the Advanced 
Manufacturing Production Tax Credit (45X). These enhancements involved information-gathering; 
consulting with steering committee members; and estimating realized tax credits based on projected 
vehicle costs, battery costs, and other factors.  

• Implementing near-term constraints on medium- and heavy-duty vehicle (MHDV) adoption due to 
battery manufacturing capacity, charging infrastructure availability, and other potential supply chain 
issues.  

• Updating TEMPO’s charging profile module, which models LDVs’ hourly charging behavior, to 
consider hourly charging infrastructure availability (residential, workplace, or public), and expanding 
this module to consider MHDV charging behavior.  

• Expanding TEMPO’s representation of passenger modes of travel, including biking and walking, and 
updating TEMPO’s mode choice calibration to accurately represent these alternatives. 

Progress has been made on all model enhancements, with preliminary results available for the first and second 
enhancements. The second model enhancement, modeling the impacts of the IRA, is being developed as a 
National Renewable Energy Laboratory (NREL) report, with updated results expected at the end of the 2023.  

Results  
We first present preliminary results of the first model enhancement: Expanding TEMPO’s capabilities to 
model exogenously specified LDV adoption scenarios, based on consumer preferences. Previously, when 
modeling an LDV adoption scenario (such as one specifying 50% EV sales by 2030), the TEMPO model 
lacked the ability to endogenously choose the vehicle classes and consumer types/locations in which EV 
adoption was likely to occur (e.g., relative proportions of sales across compact cars, midsize cars, pickups, and 
SUVs). This gap limited the insights that could be provided. It was addressed by implementing an optimization 
algorithm, which uses TEMPO’s endogenously estimated utility of different vehicle classes and technologies 
(such as EVs) across different household bins (including household size, income level, and urbanicity) to 
determine priorities for EV adoption while complying with the sales target. Consumer adoption of different 
vehicle technologies and classes is estimated endogenously in TEMPO as a function of vehicle cost, 
infrastructure availability, and time intensity (which all vary for different household bins in TEMPO). 
Estimates are calibrated to historical data.  

Figure IV.2.1 shows the results of this model improvement and its impacts on scenario analysis. The left side 
of Figure IV.2.1 shows a scenario in which an exogenous EV sales target (50% sales by 2030 and 100% by 
2035) is met based on endogenous preferences for vehicle classes. The right side of Figure IV.2.1 shows a 
scenario in which EVs are adopted uniformly across all vehicle classes, in proportion to each class’s share of 
the market. The results show that with endogenous class-based adoption preferences, EVs are allocated 
disproportionately to smaller vehicles (compact and midsize) in the early years, gaining market share in SUVs 
and pickups only in the late 2020s. Consumer preference for compact EVs, in particular, is disproportionate to 
their market share. This is primarily due to their lower cost, as larger vehicles require larger batteries to 
achieve equivalent ranges. Preferences for smaller EVs in the left-hand scenario have implications for energy 
consumption, as smaller vehicles consume less energy (both electricity and gas). The relatively high 
percentage of small vehicles adopted results in approximately 10% reduced electricity demand in 2035 and 
25% reduced gasoline savings (vs. a scenario in which large EVs are adopted at a rate that reflects large 
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vehicle market share). This finding highlights the importance of considering vehicle technology characteristics 
when evaluating the impacts of sector-level policies. 

ZEV = zero-emission vehicle 

Figure IV.2.1 Results of expanded LDV exogenous adoption modeling capabilities [1] 

We next present preliminary results for the second model enhancement: Improving TEMPO’s ability to model 
the impacts of the IRA. The IRA provides a wide range of incentives targeted at decarbonizing the 
transportation sector, including tax credits toward the purchase of zero-emission vehicles (ZEVs) (both new 
and used), the production of low-carbon transportation fuels, buildout of ZEV refueling infrastructure, and 
manufacture of EV components and batteries, among others. Surveying literature and consulting with modelers 
and policy experts helped the TEMPO team identify key elements to capture in TEMPO and strategies for 
policy implementation in the model. In the current implementation, the TEMPO team has included tax credits 
for personal clean vehicles, commercial vehicles, clean electricity and hydrogen production, and battery 
manufacturing. This project offered an opportunity for multiple expert discussions and model intercomparison 
around IRA implementation in transportation and economy-wide models to help advance the understanding of 
key IRA modeling components and enable more coordination across analysis efforts within and outside DOE. 

We focused primarily on the update to consider domestic battery capacity constraints and their implications for 
EV adoption scenarios with and without the IRA. Domestic battery manufacturing capacity, which is estimated 
from the U.S. Environmental Protection Agency’s OMEGA model [11], is relevant to the tax credit amounts 
received by LDVs under provision 30D. Efforts are under way to also consider international capacity when 
considering constraints on sector-wide production of EVs. Our results, as illustrated in Figure IV.2.2, show 
that under high technology progress assumptions (rapid improvements in battery cost and energy density), 
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domestic battery supply may be a constraining factor on EV adoption in the near term, particularly for non-
LDV modes. This constraint is particularly relevant in a scenario that considers the impact of IRA tax credits, 
which substantially increase near-term demand, particularly for MHDVs. However, in the longer term (beyond 
2025 to 2030), these supply chain constraints do not appear to be binding for EV adoption in this scenario. A 
full consideration of the IRA’s impacts on the MHDV and LDV modes, including the impacts of critical 
materials requirements and supply chain constraints, will be presented in a forthcoming report. 

 
 

 

 

 

 

 

 

 

 

Figure IV.2.2 Battery supply and demand estimates and implications for EV adoption in IRA and non-IRA scenarios. 
Source: NREL 

Finally, we also highlight the recent publication of “Exploring decarbonization pathways for USA passenger 
and freight mobility” in Nature Communications [10]. This paper evaluated a range of passenger and freight 
decarbonization strategies in the United States across future scenarios of travel behavior, technology 
advancement, and policy levers. This study found multiple pathways to deep decarbonization in the 
transportation sector and identified clean electric grids and EV adoption in on-road sectors as key components 
for successful decarbonization strategies. This paper’s publication was enabled by continued support for the 
TEMPO model and ongoing model development and maintenance efforts. Additional efforts on developing 
light-, medium-, and heavy-duty EV charging behavior (the fourth TEMPO enhancement) have informed past 
publications (including [1] and [7]) and ongoing efforts conducted by NREL and EPRI and funded by DOE to 
model the impact of EVs on the bulk power system. Efforts to expand passenger travel modes (the fifth 
TEMPO enhancement) will support the DOE-funded work on micromobility and travel demand management. 

Conclusions   
Continued support for the TEMPO model in FY 2023 has enabled implementation of substantial model 
enhancements, allowing the analysis of additional scenarios that were previously outside of the model’s scope. 
These include enhancements to the model’s ability to analyze LDV adoption targets, implementation of key 
IRA provisions for passenger and freight vehicles, and consideration of supply chain constraints in demand 
projections. Additional ongoing model developments have enabled improved modeling of LDV charging 
profiles and extensions of the charging profile module to MHDVs, as well as improved representation of a 
broader range of passenger modes. These improvements allow TEMPO to evaluate a broader range of 
scenarios, encompassing the most up-to-date policy landscape; to understand key areas of uncertainty 
surrounding the impact of EVs on the electric grid; and to offer new insights into proposed policies, such as 
light-duty EV adoption targets. In addition, support provided by this project allowed the TEMPO team to hire 
and train additional staff, expanding the team’s capacity to address additional research questions. An example 
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of TEMPO’s continued impact includes published analysis on the adoption of zero-emission MHDVs [12], 
which was extensively cited by the U.S. Environmental Protection Agency in its proposed rulemaking [13]. As 
this project progresses, we anticipate that the support provided for TEMPO will enable continued 
improvements in workflow, model maintenance and documentation, and model enhancements. These 
improvements will ensure that TEMPO continues to be a key tool to support VTO—and DOE in general—on a 
variety of critical topics, providing scenario analysis and timely quantitative insights to inform decision-
making. 
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V Application and Accounting 
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Project Introduction  
Energy use by the U.S. transportation sector has significant impacts on national energy security and both 
pollutant and greenhouse gas (GHG) emissions. To help research and develop technologies that can play a role 
in reducing those impacts, the Vehicle Technologies Office (VTO) needs strong analytical modeling 
capabilities to compare and evaluate the fleet impacts of vehicle and fuel technologies. Consistent, systematic 
approaches and methodologies should be employed to evaluate different transportation decarbonization 
strategies at both the national and regional levels. The macroeconomic accounting models, VISION and the 
Non-Light Duty Energy and Greenhouse Gas Emissions Accounting Tool (NEAT), have been developed and 
supported by VTO to provide estimates of the potential energy use, oil use, and carbon emission impacts of 
advanced light-, medium-, and heavy-duty vehicles; all freight modes; and alternative fuels [1], [2]. The five 
freight modes are (1) intercity freight-carrying trucks, (2) freight rail, (3) domestic freight marine, (4) domestic 
freight aviation, and (5) pipeline. 

The VISION/NEAT models have over 8,000 users worldwide. The models are extensively used by the U.S. 
Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and other agencies 
to evaluate the impacts of advanced vehicle/fuel technologies. Programs employing these models include the 
VTO Analysis Program, Systems and Modeling for Accelerated Research in Transportation (SMART) 
Mobility, H2@Scale, and Transportation Decarbonization Analysis. VISION/NEAT was recently used in the 
decarbonization tool development funded by EERE Strategic Analysis and will continue contributing to the 
cross-sectional decarbonization analysis. The NEAT model is also funded by the Advanced Research Projects 
Agency–Energy, which uses the model to extend the fuel pathways (e.g., electricity and hydrogen) for rail 
decarbonization. Furthermore, the models are widely used by researchers in universities, state agencies, 
consultancies, and energy companies. Several states, such as California and New York, adopted the 
VISION/NEAT model structure and developed their state-level accounting tools based on this structure. 

This project does the following: 

• Annually updates and calibrates the VISION/NEAT models with projections from the U.S. Energy 
Information Administration’s (EIA’s) Annual Energy Outlook (AEO) reference case and the U.S. 
Department of Transportation’s Freight Analysis Framework [3], [4]. 
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• Enhances the medium- and heavy-duty (MDHD) modeling capabilities and increases the model’s 
heterogeneity by adding flexible inputs for new mobility patterns and demographic variation that were 
developed in Fiscal Year (FY) 2021. 

• Conducts scenario analysis to assess the regional carbon emissions of electric vehicle adoption in the 
United States, considering the variation in the grid mix, work that was developed in FY 2022. 

• Examines the difference in emissions benefits estimated using generation-based and consumption-
based emission intensities, work that was developed in FY 2023. 

Objectives  
The objective of this project has been to develop and update macroeconomic accounting model capabilities for 
the VTO Analysis Program and other programs, enabling users to systematically and consistently evaluate 
and/or compare vehicle technologies, freight modes, and fuel systems with regard to energy and environmental 
impacts. Enhanced MDHD capabilities and model heterogeneity both respond to the needs of benefit analyses 
and reflect the expanding DOE research and development portfolio in the MDHD and non-road sectors. These 
enhancements will also reflect emerging trends, such as the growth observed in local and regional shipping 
relative to long-haul, and will support the future incorporation of emerging technologies, such as shared 
vehicles and connected and automated commercial vehicles. 

Using the VISION model, this project also quantifies county-level emissions benefits from plug-in electric 
vehicle (PEV) adoption and shows how regional variation depends on vehicle use and electric grid GHG 
emissions. Furthermore, by comparing the emissions benefits estimated using generation- and consumption-
based emissions intensities, this project also shows the effects of cross-region electricity flows on regional 
GHG emissions. 

Approach  
VISION/NEAT covers over 10 on-road and off-road vehicle classes and over 20 different powertrain 
technologies. Figure V.1.1 shows the overall model framework, along with the vehicle technologies and 
transportation fuel pathways considered. 

 
Figure V.1.1 VISION/NEAT model structure (VISION focuses on highway vehicle technologies; NEAT focuses on 

freight modes). Source: Argonne National Laboratory 
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Using the updated VISION model, we estimated the regional emissions benefits of PEV adoption. The 
emissions benefits of PEV adoption vary geographically, and factors that affect the actual magnitude of 
emissions benefits tend to vary even within a state. Additionally, the difficulty of acquiring local traffic data 
makes it very challenging to quantify the distributed impact of PEV adoption at finer geographic scales.  

This analysis demonstrated an approach to quantifying the potential emissions benefits from PEV adoption at 
the county level and explored factors causing the differences across regions using the process shown in Figure 
V.1.2. County-level vehicle emissions depend on county-level vehicle miles traveled (VMT), which have 
traditionally been difficult to measure. Vehicles registered in one county travel to adjacent counties regularly. 
Therefore, the approach of extrapolating regional VMT from vehicle registrations is not sufficient to estimate 
the total VMT by county, which includes the VMT from vehicles registered in adjacent counties. This study 
estimated the county-level GHG emissions reduction that will occur with increased PEV adoption using actual 
on-road vehicle activities (rather than vehicle registrations) to account for traffic flows across counties.  

 
Figure V.1.2 Method for quantifying the distributed emissions impact of EV adoption and usage. Source: 

Argonne National Laboratory. 

This study also considered the impact of existing state targets, such as zero-emission vehicle (ZEV) targets, for 
vehicle electrification. Matching the federal targets from the Biden Administration, this analysis assumed that 
50% of new light-duty vehicles sold in the United States in 2030 will be PEVs [5]. Moreover, this study 
compares generation-based and consumption-based GHG emissions at the county level, across the nation, to 
show the necessity of taking consumption-based emissions into account. 

Results  
The VISION 2022 base case reflects projections relating to light and heavy highway vehicles in EIA’s AEO 
2022 [3]. In the 2022 VISION model update, these projections have been extended to the year 2100. For GHG 
emissions, the VISION model uses carbon coefficients derived from Argonne’s Greenhouse gases, Regulated 
Emissions, and Energy use in Transportation (GREET) model [6]. GREET GHG coefficients account for the 
full fuel cycle. VISION 2022 has been updated to reflect (1) the EIA AEO 2022 Reference Case and (2) the 
GHG and upstream energy rates from GREET1_2022. Class 7–8 heavy-duty vehicles now are subdivided into 
three market segments, with separate accounting for multiple powertrain technologies: vocational single-unit 
trucks and day cab (regional) tractor–trailer combination trucks [7]. 

Figure V.1.3 shows the percentage of emissions reduction from accelerated (or targeted) PEV adoption 
compared with emissions under the AEO base case PEV market shares from 2020 to 2050. The plot shows 
data at the county level and is divided into two groups—states with PEV adoption targets vs. states without 
such targets—and three decades: the 2020s, 2030s, and 2040s. Regardless of the existence of PEV adoption 
targets, most states expect to see some level of emissions reduction in the next three decades. In general, as 
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PEV market shares increase, emissions reductions will also increase over the years. For states without PEV 
adoption targets, median percentages of emissions reduction at the county level increased from 3.5% to 24.7% 
from the 2020s to the 2040s, relative to the base case. For states with PEV adoption targets, median 
percentages of reduction at the county level are much higher, increasing from 4.9% to 41.2% during the same 
period. Moreover, as PEV market shares increase, the variation in emissions reduction becomes more 
substantial among states with PEV adoption targets because of differences in vehicle stocks and electricity grid 
mixes. 

 
Figure V.1.3 Ranges of county-level emissions reduction from 2020 to 2050 between states with and without 

defined PEV adoption targets. The top and bottom of each bar represent the anticipated 75th and 25th 
percentile of county-level emission reductions, respectively. The line in the middle indicates the median. The 
top and bottom whiskers represent the maximum and minimum emission reduction rates. Source: Argonne 

National Laboratory 

We calculated cumulative emissions benefits from 2020 to 2050 for all counties in the lower 48 states, as 
shown in Figure V.1.4 [8]. In general, because of the relatively aggressive goal of adopting PEVs, ZEV states, 
such as California and Colorado, tend to have larger emissions benefits than non-ZEV states [9]. Nevertheless, 
despite the lack of ZEV mandates, states with large amounts of vehicle activity (e.g., Florida) have the 
potential to see substantial emissions benefits. Likewise, high traffic volumes in the most populated 
metropolitan areas of each state (e.g., Chicago, Illinois, and the Twin Cities, Minnesota) lead to higher 
emissions benefits than are seen in other regions of the state.  
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Figure V.1.4 Cumulative emissions benefits of PEV adoption in the lower 48 states compared to the base 

case PEV market share (2020–2050). Source: Argonne National Laboratory 

In contrast, many regions show limited potential for emissions reduction. First, some of the least populated 
areas (e.g., most counties in North Dakota) do not see large emissions benefits, even as PEVs increasingly 
replace gasoline vehicles. Moreover, counties in regions with less clean electric grid mixes tend to have less 
potential for emissions reductions. For example, some parts of Indiana and Kentucky use high shares of coal in 
electricity generation, which leads to high carbon emissions intensities and less potential for emissions 
reductions.  

Nationally, Los Angeles County, California, has the largest cumulative emissions reduction (132.9 million 
metric tons of carbon equivalent [MMTCe]), thanks to its relatively clean grid and large VMT volume. At the 
state level, California has the largest cumulative emissions reduction (536.4 MMTCe), and North Dakota has 
the smallest (0.7 MMTCe). 

Figure V.1.5 shows the difference in emissions benefits estimated using generation-based and consumption-
based emissions intensities, respectively. In general, across the nation, differences between generation-based 
and consumption-based emissions at the county level range from -5.77 to +4.52 MMTCe for states like 
California, Texas, Florida, and West Virginia. If only generation-based emissions intensities are considered, 
the emissions benefit would be overestimated in many regions (red-shaded), such as California. This indicates 
that, despite having a relatively clean grid, California tends to shift some of its upstream emissions to adjacent 
electricity-exporting regions. In contrast, emissions benefits could be underestimated (blue-shaded) in states 
like Missouri and Indiana, which still rely heavily on coal for electricity generation and export large amounts 
of coal-based electricity. 
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Figure V.1.5 Differences in emission benefits by county, estimated by using generation-based and 

consumption-based emission intensities. Source: Argonne National Laboratory 

Conclusions 
The VISION/NEAT models have been used in several DOE EERE programs and activities, such as the VTO 
Analysis Program, Transportation Decarbonization Analysis, SMART Mobility, and H2@Scale. These models 
are used to evaluate the impacts of advanced vehicle technologies. VISION/NEAT has over 8,000 users. 

In this project, VISION/NEAT was fully updated to match the projections in the EIA AEO 2022 Reference 
Case. VISION/NEAT was also updated with GHG and upstream energy rates from GREET1_2022. Historical 
vehicle sales, stock, fuel economy, and other data were collected and documented in the model.  

County-level emissions analysis shows that PEV adoption will have nationwide emissions benefits. For states 
without defined PEV adoption targets, median percentages of emissions reduction at the county level could 
increase from 3.5% to 24.7% over the next three decades. In comparison, states with PEV adoption targets 
have higher median rates of emissions reduction at the county level, increasing from 4.9% to 41.2% over the 
next three decades. PEV adoption targets, electric grid mixes, and VMT all affect the magnitude of achievable 
emissions reduction and lead to geographic variations in emissions benefits. At the county level, cumulative 
emissions benefits range from 0 to 133 MMTCe.  

Furthermore, by comparing the emissions benefits estimated using generation- and consumption-based 
emissions intensities, this project shows the effect of cross-region electricity flows on regional GHG 
emissions. Through the trade of power across regions, developed areas with cleaner grids could shift some of 
their upstream emissions to areas with relatively more polluting grids. 
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Project Introduction 
Supported by the U.S. Department of Energy (DOE) since 1994, the Greenhouse gases, Regulated Emissions, 
and Energy use in Technologies (GREET®) model is an instrumental tool for life cycle analysis (LCA). Both 
frameworks of the tool (Excel and .Net versions) are updated and released to the public annually. The updates 
reflect state-of-the-art fuel and vehicle technologies and emerging LCA issues. This project supports deep 
technical analysis that benefits the model. The project also uses GREET® to support research tasks such as 
those of the U.S. DRIVE Integrated Systems Analysis Tech Team (ISATT) program and important quick-turn-
around analysis requests from DOE. 
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Expansion and Update of GREET 2 Modeling and Capabilities 
Task Introduction  
This task updates and evaluates vehicle parameters including operational characteristics, vehicle component 
masses, and vehicle component material compositions. The work also includes critical LCA issues related to 
materials, including the treatment of material recycling and consistent and continuous materials supply chain 
analysis. These activities are necessary: 

• To identify the hot spots along materials supply chains for energy use, greenhouse gas (GHG) 
emissions, and other environmental burdens. Supply chain analysis incorporates supply-chain-related 
factors in calculating environmental burdens (e.g., ore type and technologies used for material 
production, localized energy input parameters). 

• To evaluate the up-to-date energy and environmental burdens of producing the associated automotive 
materials and components and, thus, the final vehicle. A LCA is used to make these determinations. 

For this analysis, Argonne National Laboratory (ANL) configured and updated the GREET® model with the 
most recent available data. The GREET® model includes different vehicle classes (sedan, pickup truck, sport 
utility vehicle [SUV], and a variety of heavy-duty truck classes) with different powertrains (internal 
combustion engine vehicles [ICEVs], hybrid electric vehicles [HEVs], plug-in hybrid electric vehicles 
[PHEVs], battery electric vehicles [BEVs], and fuel-cell electric vehicles [FCEVs]). This task focuses on 
GREET® model development and expansion for new vehicle technologies, vehicle classes, and fuel production 
pathways and for emerging LCA issues that require reliable LCA results of vehicle/fuel systems. 

Objectives  
The objectives of this task are to: 

• Advance GREET® modeling by expanding the treatment of energy and emission credits at the end of 
life (EOL) for vehicle components in GREET 2 to inform the vehicle manufacturing cycle analysis. 

• Extend the modeling of critical automotive materials to be consistent with the state of the art, with a 
focus this year on aluminum (Al) disaggregation. 

• Update all vehicle energy consumption and mass characteristics within the GREET® model to 
represent the latest available data. 

Approach  
In Fiscal Year (FY) 2023, ANL undertook several important subtasks. First, we expanded the modeling of 
energy and emission credits of end-of-life recycling (EOLR) of vehicle components in GREET 2 to inform the 
vehicle manufacturing cycle analysis and evaluate the impacts of material displacement from a global supply 
chain perspective. Historically, GREET 2 used the recycled content (RC) approach, as commonly practiced in 
the LCA community, to address the recycling of key vehicle materials. Using the new EOLR credit approach, 
implemented recently, the energy and emission credits of recycled materials in used vehicles are estimated and 
credited specifically to the original vehicles. The EOLR credit approach addresses the recycling of vehicle 
materials and their new uses, thus enabling detailed circular economy analysis of vehicles and vehicle EOL. 
Furthermore, the EOLR approach allows evaluations of material recycling’s potential impacts on global supply 
chains. These details for selected materials are integrated into the GREET 2 portion of the model. 

Next, ANL continued to improve material modeling for GREET® by expanding its LCA of Al, specifically 
by revising the characterization of wrought Al into a disaggregated set of Al sheet and extruded Al. This 
effort builds upon prior studies and ANL’s own efforts [1], [2]. The integration effort was incorporated into 
GREET 2. 
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Finally, ANL continued to revise vehicle performance parameters within GREET® based on results from 
ANL’s Autonomie modeling [3]. Doing this ensures that ANL remains consistent with the latest developments 
in vehicle technologies. All of the energy consumption parameters for the light-duty vehicles (LDVs: cars, 
SUVs, and pickup trucks) and medium- and heavy-duty vehicles (MHDVs) are integrated into the GREET 1 
model. The vehicle mass characteristics are incorporated into GREET 2 for the cars, SUVs, and pickup trucks 
and for a subset of the MHDVs, namely Class 6 box trucks and Class 8 long-haul and regional-haul trucks. 

Results  
We expanded the capabilities of the EOLR approach to incorporate additional materials and to update the share 
of RC for these materials in vehicles. These materials include those for which material and energy flow data 
(i.e., life cycle inventory [LCI] data) is available for their recycled versions in GREET®, as well as those for 
which such LCI was not available. Updates have been made in the GREET 2023 model, subject to data 
availability in the literature. Table VI.1.1 details the parameters for RC and EOLR approaches updated in 
GREET 2023. While we incorporated details for lead, nickel, and magnesium into this year’s updates, we also 
investigated automotive glass, plastics, and platinum for both their RC and EOL recycling rates but had 
inconclusive results from the data available.  

Table VI.1.1 Shares of Different Material Origins in Semi-Fabricated Al Products 

Material 
RC Share (%) in LDVs EOL (GREET 2023) 

GREET 2022 GREET 2023 Collection 
rate (%) 

Processing 
rate (%) 

Recycling 
rate (%) 

Lead 73 100   99 
Nickel 44 44   80 

Magnesium 52.1 52.1   70 

Copper Not 
Applicable Inconclusive 91 54 49 

Lead is used in lead–acid start-up batteries of various LDVs. Prior GREET® versions noted a 73% RC for lead 
used in these batteries, with the remaining coming from primary lead metal [4], [5], [6]. However, the project 
team conducted a literature review that suggested a significant increase, with indications that each part of the 
lead–acid battery is recycled back into a new battery, indicating a 100% RC share [7]. Another study states that 
a typical lead–acid battery comprises 85% recycled material, with sulfuric acid and fiberglass being the 
primary virgin components [8]. A study by Battery Council International reports, from an EOLR perspective, 
an overall ~99% lead recycling rate—inclusive of lead collection and processing rates for recycling [9]. Hence, 
ANL used the value of 100% for RC share and 99% for EOLR rate in the updated GREET 2023 model as 
indicated in Table VI.1.1 above.  

For nickel, GREET® previously assumed a 44% RC rate for LDVs. No new data were available to recommend 
a change to this RC value. Given the lack of more recent data, we retained the same RC share of nickel in 
GREET 2023. However, for the EOLR approach, we assume an 80% recycling rate, based on the literature 
[10]. 

As with nickel, no new data from the literature could be found to update RC share for magnesium. However, a 
significant amount of magnesium in vehicles is recovered along with Al and mixed with it to produce Al 
alloys, while a small share is recovered as the metal itself [11], [12]. Hence, we keep the same RC content for 
magnesium as in previous GREET® versions while considering a 70% recycling rate for the EOLR approach, 
per [12]. This includes magnesium recycled both in the form of an alloy (with Al) and as an unalloyed metal.  

Previous GREET® versions have not considered any copper recycling, and the literature review did not yield 
any RC data for this element. However, for the EOLR approach, a study on global copper flows and stocks 
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[13] indicates that its post-use collection rate is 91% and that its processing rate is at 54%, translating into a 
recycling rate of 49%.  

Al is used extensively in various semi-fabricated forms across transportation, residential, commercial, and 
industrial end-use sectors. Since these forms are processed via divergent routes that result in differences in 
their respective life cycle GHG intensities, we account for the appropriate Al form corresponding to the 
application concerned. Furthermore, Al can be highly GHG- and cost-intensive when processed using virgin 
ore, so a considerable share of its production comes from either recycled or scrap Al sources. The Al shares 
from these different sources (virgin, recycled, and scrap) must be considered for each Al form while 
accounting for the sources’ respective GHG intensities.  

In FY 2023, ANL built upon its earlier work on expanding the Al forms in GREET® (for automotive and non-
automotive applications) [2] and modified the shares of Al sources in their respective production as indicated 
in Table VI.1.1 to make them representative of current-day data. This also influences the life cycle GHG 
intensity of these forms as shown in Table VI.1.1 and based on the North American Al consumption mix. We 
also removed the additional classifier of wrought Al (used in previous GREET® versions). Instead, we reverted 
to the direct use of its components (automotive extruded Al and cold-rolled/stamped Al sheets) to compute 
vehicular Al GHGs. Implementing this change across each vehicle and its components within GREET® was an 
extensive task that required coordination of hundreds of vehicle components across the two GREET® 
platforms. With this expansion, GREET® becomes a more flexible and user-friendly environment for users. 
This change was requested by several industry partners with whom ANL communicates regularly through the 
ISATT program (see Task 3 under this project) and on other projects.  

Table VI.1.1 Shares of Different Sources in Semi-Fabricated Al Products and Their Respective Life Cycle 
GHG Intensities 

Form of Al/Al Feedstock 
Non-Automotive Automotive 

Extruded Al Al sheet Al foil Extruded Al Stamped Al 
Virgin 39% 20% 20% 27% 50% 

Recycled 30% 23% 23% 16% 0% 
Scrap 31% 57% 57% 57% 50% 

GHG Intensity 
(kilograms CO2-eq/kilogram) 6.5 4.1 4.7 4.8 11.9 

Finally, GREET® relies upon vehicle specifications associated with energy consumption and vehicle mass, as 
developed by ANL’s Autonomie modeling team [3], to remain current with technology advancements. These 
updates are integrated into multiple platforms in GREET® to adjust the fuel economy of all existing vehicle 
technologies. This directly informs the associated well-to-wheels (WTW) energy and emissions of these 
vehicles. Furthermore, the vehicle mass characteristics for these vehicles are incorporated into GREET 2 (and 
.Net) for the cars, SUVs, pickup trucks, and Class 6 box trucks, and Class 8 long-haul and regional-haul trucks. 
This type of analysis allows ANL to develop complete cradle-to-grave (C2G) analyses for a variety of vehicle 
technologies. An example of such a C2G result is presented in Figure VI.1.1. This chart shows how the life 
cycle GHG impacts of passenger cars change over time and are subject to a variety of fueling pathways. It 
presents ICEVs, HEVs, PHEVs, EVs, and FCEVs fueled by differing conventional and advanced fuels. Note 
that fuel cell vehicles can utilize hydrogen that has been transported in either a gaseous or liquid form. The 
figure indicates that deep carbonization pathways exist for the investigated vehicle technologies if they are 
indeed operated on advanced fueling pathways. 
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US: US average; MISO: Midcontinent Independent System Operator; NPCC: Northeast Power Coordinating 

Council; CA: State of California average; FRCC: Florida Reliability Coordinating Council; PJM: Pennsylvania–
New Jersey–Maryland Interconnection; WECC: Western Electricity Coordinating Council 

Figure VI.1.1 C2G GHG emissions for passenger cars. Results for PHEVs and EVs are presented with U.S. 
average electricity grid, grids with the highest and lowest carbon intensity for each simulation year, and the 

state of California average grid. Source: ANL 

Conclusions    
This task updated and expanded the GREET® model’s LCA methodological capabilities by incorporating 
additional materials that can be included in comparisons of the RC and EOLR life cycle burdens of materials. 
These improvements allow for deeper insights into not only the current state of the market, which is typically 
indicated by the RC method, but also what the market could look like in the future, which is typically indicated 
by the EOLR method. This task also updates selected material LCIs; in FY 2023, the project focus was for Al. 
By expanding Al from an aggregate wrought product to both sheet and extrusion, we have allowed users much 
greater flexibility in their modeling and provided better representation of the market. Finally, we updated 
vehicle specifications within GREET® to ensure that the model continues to allow for the most up-to-date LCA 
studies for both WTW and C2G analyses. 
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Offroad decarbonization opportunities with expanded GREET®  

Task Introduction  
Offroad vehicles consist of vehicles used within the construction, agriculture, and recreation sectors, as well as 
many other sectors. These types of vehicles can be distinguished by size, weight, usage, and/or power demand. 
Such vehicles include farming tractors, excavators, bulldozers, airport service equipment, and a host of other 
equipment. As noted, there may be a wide range of vehicles within each application. 

These offroad vehicles typically use diesel fuel or gasoline, and they are often subject to tailpipe exhaust 
emissions standards but not efficiency regulations. Government and industrial efforts have begun to reduce GHG 
emissions of these vehicle types, with potential decarbonization pathways mirroring those afforded within the on-
road sector. One method is efficiency improvement through engine advancement or hybridization. Others include 
using low-carbon fuels, using fuel cell technologies, and adapting these vehicles for fully electric powertrains. 
Each approach has its own technical merits and challenges. There is a need to understand the degree to which the 
different powertrain technology options and fuel options reduce life cycle GHG emissions. The GREET 1 model 
has many fuel pathways for on-road vehicles. In addition, the model contains emissions factors for several 
offroad vehicle types that use conventional fuels. However, it does not have the same completeness and coverage 
for alternative fueling pathways and advanced powertrain systems for offroad vehicles. 

The GREET 2 model also contains vehicle cycle modeling of selected light-, medium-, and heavy-duty on-road 
vehicles, which allows for the determination of a vehicle’s total life cycle performance. The development of 
vehicle cycle modeling for offroad vehicles facilitates a deeper understanding of how the LCA is affected by 
various factors associated with the vehicles’ manufacture. For instance, vehicle electrification improves vehicle 
efficiency, but it requires large battery packs to provide adequate energy for operation. The battery itself for a 
300-mile-range LDV can represent a 50% increase in vehicle cycle GHG emissions compared to an ICEV.  

Objectives  
By adding vehicle cycle simulation for offroad vehicle types, we address what vehicle manufacturing might 
look like for an offroad vehicle, such as an excavator or a bulldozer, if it was electrified, given the duty cycle 
and lifetime of its operation.  

The expanded GREET® model includes not only the energy consumption and emissions associated with the 
conventional powertrains in the offroad sector but also those associated with low-carbon fuels and advanced 
powertrains. The project team uses comprehensive LCA of offroad vehicles—conducted in coordination with 
the Vehicle Technologies Office (VTO) Decarbonization of off-road, Rail, Marine and Aviation program—to 
enable the GREET® model to help identify the opportunities and challenges of decarbonizing offroad vehicles. 

Approach  
The project team analyzed the U.S. Environmental Protection Agency (EPA) MOtor Vehicle Emission 
Simulator (MOVES) offroad equipment carbon dioxide (CO2) inventory. Findings indicate that agricultural 
tractors produce 17% of CO2 emissions from the full offroad sector, and they produce the highest CO2 
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emissions of any particular type of offroad vehicle [1]. High-horsepower tractors (>175 hp) were responsible 
for approximately 75% of all tractor CO2 emissions. Therefore, the first offroad vehicle added to GREET 2023 
was a large 300 hp four-wheel-drive agricultural tractor. As with heavy-duty on-road vehicles, ANL added 
new sheets to GREET 1 for agricultural tractor fuel cycle (e.g., WTW) analysis, GREET 2 for vehicle cycle 
analysis, and C2G analysis when combining fuel cycle and vehicle cycle results. 

Four tractor powertrain options were added: ICEV, HEV, EV, and FCEV. Within GREET 1, users can select 
from conventional sources of fuel and electricity or from a variety of low-carbon fuel and electricity pathways. 
Results include life cycle WTW energy and water consumption, GHG emissions, and emissions of criteria air 
pollutants. Since fuel cycle GHG emissions vary with the energy consumption rate, GREET® users are able to 
designate what percentage of tractor operating hours are spent at low, medium, and high loads. Autonomie 
vehicle simulations were used to generate default energy consumption rates of a large tractor performing a 
chisel plow operation for each powertrain option and load [2]. 

In GREET 2, the vehicle-cycle energy consumption, water consumption, GHG emissions, and criteria air 
pollutant emissions are calculated. The GREET® user can adjust the tractor’s operating profile (number of 
hours per year and hours per vehicle lifetime), bill of materials (including powertrain components, chassis, 
etc.), fluid capacities, and life cycle component and fluid replacements. The default agricultural tractor had 550 
hours of operation per year (per the EPA) [1]; thus, the total lifetime operation of 15,000 hours was selected 
based on previous agricultural tractor life cycle survey data [3]. Total tractor weight, as well as subsystem 
weights (engine or fuel cell, chassis, electric motors, hydrogen tank, and batteries) were determined through 
iterations with the Autonomie vehicle modeling effort. Conventional large diesel-powered tractors operating in 
four-wheel drive can operate for approximately 20 hours continuously at 75% of pull [4]. In this work, the 
battery (for the battery electric tractor) and hydrogen tank (for the fuel cell tractor) were sized to allow for 10 
hours of continuous operation at 75% of pull based on information from the University of Kentucky [5]. 
Assuming a 90% depth of discharge, the full electric tractor would require a 1.88 MWh battery capacity, which 
would weigh approximately 25,000 lbs. and more than double the tractor weight compared to the conventional 
diesel tractor. Notably, even with such a heavy battery weight addition, the total tractor weight would still be 
less than the maximum ballasted tractor weight [6]. However, there would be challenges in distributing the 
additional battery system weight to be well-supported by the tractor chassis and to ensure no negative effects 
on the tractor’s pulling performance or soil compaction (and crop yield). Tire sizes and mass were set based on 
an equivalent large John Deere 8R 280 tractors [4]. Fluid capacities and replacement schedules were based on 
John Deere information for John Deere 8 series tractors [7]. Between the various tractor powertrain options, it 
was assumed that the non-powertrain systems (hydraulics, chassis, wheels/tires, cab, etc.) were the same. 

Results  
One of the key inputs to the fuel cycle analysis is the energy consumption rate of the tractor with each 
powertrain. Figure VI.1.2 shows the energy consumption rates of the conventional internal combustion engine 
(ICE), parallel hybrid electric, full battery electric, and fuel cell powertrains in terms of diesel gallon 
equivalent (DGE) per hour. All powertrains consumed more energy as load increased, with the energy 
consumption rate increasing the most with load for the fuel cell powertrain and the least for the full battery 
electric powertrain. The parallel hybrid powertrain lacked electric regeneration opportunities and experienced 
continuous operation and therefore, contrary to LDVs, did not offer energy consumption reductions. However, 
full battery electrification offered approximately 50% reductions in energy consumption rates, while the fuel 
cell powertrain allowed for 15%–20% lower energy consumption. 
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Figure VI.1.2 Energy consumption rates of a large agricultural tractor at low, medium, and high load with 
multiple powertrain options: internal combustion engine (ICE), parallel hybrid-electric (Hybrid), full battery 

electric (Electric), and fuel cell electric (Fuel Cell) in diesel gallon equivalent per hour (DGE/HR). Source: ANL 

Using the energy consumption rates of each powertrain, the project team calculated fuel cycle GHG emissions. 
The fuel cycle consists of the well-to-tank (WTT) GHG emissions, which come from production and 
transportation/distribution of the fuel (or electricity); while the tank-to-wheel (TTW) GHG emissions result 
from the use of that energy during vehicle operation. Figure VI.1.33 shows the WTT (green) and TTW (gray) 
results of each powertrain with various current and reduced carbon energy sources. 

For the ICE and hybrid electric powertrains, the majority of the WTW GHG emissions occurred during the 
TTW portion because of CO2 emissions from engine combustion, while WTT GHG emissions were much 
lower. When the ICE and hybrid electric powertrains were fueled by a 20% biodiesel blend (B20) or 100% 
renewable diesel (RD100), the WTT GHG emissions were reduced toward zero (B20) or became significantly 
negative (RD100) (as a result of CO2 uptake during biomass growth), driving down the WTW emissions. Since 
the battery electric and fuel cell tractors did not have any direct GHG emissions, their TTW GHG emissions 
were null, and the entirety of their WTW emissions were derived from their WTT energy production and 
transportation/distribution. Depending on the source of electricity (battery) or hydrogen (fuel cell), the WTW 
GHG emissions of those tractors could be significantly lower than the ICE and hybrid electric powertrains, or 
nearly as high as the conventional diesel-fueled ICE tractor. 

 
HE – hybrid electric; BE – battery electric; FC – fuel cell; CA – California 

Figure VI.1.3 C2G GHG emissions of a large agricultural tractor with multiple powertrain and fueling pathways. 
Source: ANL 
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Three current electrical grid carbon intensities are represented in Figure VI.1.3 for the battery electric tractor: 
U.S. average, Midwest Reliability Organization (MRO) region, and the California electrical grid. The MRO grid 
region was selected because it is where the highest population density of large agricultural tractors exists in the 
United States [8]. The MRO region also happens to be one of the highest-carbon-intensity electrical grids in the 
United States [9]. While California does not have as high of a large tractor population as the Midwest and Texas, 
it does have the lowest-carbon-intensity electrical grid in the United States and demonstrates the potential for 
WTW GHG reduction of battery electric tractors as the MRO grid carbon intensity decreases.  

For the fuel cell tractor, the current practice of natural gas (NG) steam methane reforming (SMR) to produce 
hydrogen is shown to drive the WTW GHG emissions quite high. However, hydrogen production from green 
electricity (such as from solar energy) can reduce the fuel cell tractor WTW GHG emissions by more than 
80%. To note, if low-carbon solar electricity were available to the battery electric tractor, it would also have 
similarly low WTW GHG emissions. This demonstrates the importance of low-carbon electricity and hydrogen 
availability, especially in the regions where large agricultural tractors are operated. The same could even be 
said for the WTT GHG emissions of low-carbon fuel (biofuel or e-fuel) production as the electrical grid drives 
toward zero carbon intensity.  

As also seen in Figure VI.1.3, the third important piece of the life cycle GHG emissions is the vehicle cycle 
(yellow), which consists of the tractor manufacturing, operation/maintenance, and EOL (disposal/recycling) GHG 
emissions. As decarbonized electricity and fuel production drive toward net-zero (or even net-negative) WTW 
GHG emissions, the vehicle cycle will become increasingly more important in the total C2G life cycle GHG 
emissions. Because of the large battery capacity requirement (1.88 MWh for 10 hours of chisel plow operation) 
of the battery electric tractor, its vehicle cycle GHG emissions were twofold to fourfold higher than the vehicle 
cycle GHG emissions of the ICE tractor, with most of the GHG emissions coming from the battery. As battery 
production is also decarbonized, there are opportunities for the battery electric tractor vehicle cycle GHG 
emissions to decrease. Consequently, the technology’s progress will need to be monitored and updated regularly. 

Conclusions 
The total C2G results of each tractor powertrain and energy pathway demonstrate that all have opportunities 
for deep decarbonization of large, high-power agricultural tractors: ICE tractors through net-zero carbon fuels 
(such as biofuels or e-fuels), battery electric tractors from low-carbon electricity production and battery 
manufacturing, and fuel cell tractors from low-carbon hydrogen production. 
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Integrated Systems Analysis Technology Team (ISATT) Analysis of Vehicle/Fuel Systems 

Task Introduction  
In years past, ANL supported the U.S. DRIVE’s ISATT and published C2G studies for LDVs, including 
reports in 2016 and 2022. During FY 2023, ANL extended its efforts from the LDV space to conduct C2G 
analysis of MHDVs. ANL provided support to conduct a C2G GHG emissions LCA of MHDVs for selected 
vehicle classes of interest to the ISATT and the 21st Century Truck Partnership. The C2G of MHDVs 
leveraged the recent development in GREET® for Class 6 box trucks and Class 8 long-haul trucks across 
ICEV, HEV, FCEV, and BEV powertrains. For this analysis, ANL configured the GREET® model to evaluate 
the life cycle GHG emissions of current and future technology pathways of petroleum and renewable diesel for 
ICEVs and HEVs, SMR and renewable hydrogen for FCEVs, and current and low-carbon electricity for BEVs. 
Additionally, ANL supported ISATT with the team’s roadmap development and target-setting needs. 

Objectives  
The goal of this task is to identify the C2G GHG emissions associated with current (2021) and future (2030–
2035) MHDV technologies, considering a variety of different fuel pathways. The comparison of these vehicles 
spans multiple powertrains, multiple vehicle classes, and multiple decarbonization approaches for vehicle 
energy sources. The results are investigated for the assumption that all vehicles have the capacity to carry the 
same payload, as well as for payload-reduced conditions for BEVs, which may have these limitations in the 
real world.  

Approach  
This analysis builds on our previous LCA of GHG emissions and costs of light-duty midsize sedans for a 
variety of vehicle–fuel pathways [1], [2]. In this effort, we leveraged concepts from those prior studies, 
including some assumptions and methods; however, we selected MHDVs for both current (2021) and expected 
future (2030-2035) conditions. This approach to LCA, often referred to as a C2G analysis, considers vehicle 
and fuel cycles starting from raw material extraction and including fuel production and transport, vehicle 
manufacturing, vehicle use, and vehicle EOL. The analysis does not include supporting infrastructure systems 
(e.g., refinery construction and EOL or LCA of roads and bridges). A C2G analysis provides a holistic view of 
the sustainability performance of vehicle–fuel technologies across multiple metrics. This evaluation is intended 
to provide a thorough and up-to-date understanding of the sustainability performance of vehicle technologies 
and fuels to inform policymaking, investments, and analyses. 

This C2G analysis focuses on the MHDV market, particularly the Class 6 box truck, Class 8 regional-haul, and 
Class 8 long-haul segments. The project team evaluates a variety of conventional and alternative vehicle 
technologies and fuels. In evaluating the vehicle–fuel combinations, we consider a “CURRENT TECHNOLOGY” 
case (nominally 2021) and a “FUTURE TECHNOLOGY” lower-carbon case (nominally 2035). We use a 

https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.eia.gov/outlooks/aeo/
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“pathway” rather than a “scenario” approach. A pathway is defined as a distinct, technically feasible route or 
sequence of processes starting with one or more feedstocks and ending with an intermediate or final product. 

The fuel pathways considered here are shown in Table VI.1.3. All cases assume large-scale production for both 
fuel and vehicle technologies. The electricity mix used in the FUTURE TECHNOLOGY pathways comes from the 
2035 U.S. grid generation mix projected by the U.S. Energy Information Administration in the Annual Energy 
Outlook 2023 (unless otherwise specified) [3]. 

Table VI.1.3 Fuel Production Pathways Considered in This C2G Analysis 
Fuel Current Technology Case Future Technology Case 

Diesel U.S. average crude mix 

Renewable diesel (pyrolysis of forest residue) 

Hydro-processed renewable diesel from soybeans 
20% fatty acid methyl ester bio-based diesel (B20) 

from soybeansa 
Gas-to-liquid Fischer–Tropsch diesel (GTL FTD) 

E-fuels (Nuclear electricity + CO2) 

E-fuels (Renewable electricity + CO2) 

Hydrogen Centralized NG SMR  

Low-temperature electrolysis using wind/solar 

High-temperature electrolysis using nuclear energy 

NG SMR with carbon capture and storage 

Electricity Annual Energy Outlook U.S. average 
electricity generation mix in 2021 

NG advanced combined cycle 
NG advanced combined cycle with carbon capture 

and storage 
Wind 

Solar photovoltaic 

Gasoline (E10) 
[Class 6 only] 

U.S. average crude mix 
 (blended with 10% corn ethanol) 

Pyrolysis of forest residue (no ethanol blending) 

E-fuels (nuclear electricity + CO2) 

E-fuels (renewable electricity + CO2) 

Ethanol (E85) 
[Class 6 only] 

85% corn ethanol 
(blended with 15% petroleum gasoline   

blendstock) 

85% cellulosic from corn stover  
(blended with 15% petroleum gasoline blendstock) 

a  American Society for Testing and Material (ASTM) specifications for conventional diesel fuel (ASTM D975) allows for 
biodiesel concentrations of up to 5% (B5) to be called diesel fuel (ASTM 2010). B20 (20% biodiesel, 80% petroleum diesel) is 
a biodiesel blend available in the United States that represents the maximum allowable concentration of biodiesel in ASTM 
D7467. FAME is also known as biodiesel. Percentage blending values are by volume. 

In assessing life cycle emissions, this analysis considers emissions associated with the fuel and the vehicle 
cycle. The C2G GHG emissions assessment was carried out by expanding and modifying the GREET® model 
suite with input from industrial experts. Figure VI.1.4 shows the main life cycle stages covered by the fuel 
cycle model (GREET 1) and the vehicle cycle model (GREET 2). The GREET1 model calculates the energy 
use and emissions associated with the recovery (or growth, in the case of biofuels) of the primary feedstock; 
transportation of the feedstock; fuel production from the feedstock; and transportation, distribution, and use of 
the fuel during vehicle operation. The GREET 2 model calculates the energy use and emissions associated with 
the production and processing of vehicle materials, vehicle manufacturing and assembly, and EOL 
decommissioning and recycling of vehicle components. GREET 1 contains more than 100 vehicle–fuel system 
combinations. Fuel types for MHDVs include gasoline, diesel, biofuels, hydrogen, NG-based fuels, and 
electricity. Figure VI.1.4 provides a GREET 1 fuel production pathway example. Vehicle technologies in 
GREET 1 for MHDVs include ICEVs, HEVs, BEVs, and FCEVs. 
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Figure VI.1.4 Combined fuel cycle and vehicle cycle activities included in C2G analysis. Source: ANL 

As in our prior analyses, the evaluation of vehicle technologies is conducted using publicly available data and 
models. Vehicle fuel economies and component sizes are estimated using ANL’s Autonomie model, with a 
consistent set of vehicle performance criteria across fuel–vehicle combinations. Each vehicle is presumed to be 
optimized for the fuel on which it operates. Inputs to Autonomie are based on vehicle manufacturer 
information and assumptions made by the authors, along with specific technology assumptions provided by 
DOE VTO and the Hydrogen Fuel Technologies Office; these inputs are detailed in Islam et al. [4]. Vehicle 
energy consumption is the most critical attribute in determining fuel cycle performance. In this study, vehicle 
efficiency is expressed as fuel economy. For the set of vehicles examined, fuel economies are expressed in 
diesel gallon equivalents (dge) terms.  

Additionally, this study considers that future technological progress may vary. Thus, we consider a low 
technology progression and a high technology progression. These are informed by DOE, automakers, and 
engineering modeling and are incorporated into the simulations within Autonomie [4]. 

Results  
This study investigates several different vehicle classes and several powertrains while also considering 
variations in technology advancement (low and high), along with decarbonization of energy sources used 
within the vehicles; we also consider all results on a per-mile and per-ton-mile condition. Given this large 
number of options, we constrain our presentation of results here to the high technology progression for the 
Class 6 box truck and the Class 8 long-haul truck. Doing so allows investigation into important findings of the 
study while not enumerating all conditions. Also, the high technology progression indicates the greatest 
opportunities for decarbonization, and representation of these is consistent with our prior studies [1], [2]. Note 
that Class 6 box trucks are assumed to have a lifetime driving distance of 300,000 miles, while the Class 8 
long-haul (and regional-haul) trucks are assumed to have a lifetime of 1 million miles. This lifetime serves as 
an allocation for the production burden of the vehicle, which allows it to be placed on the same basis as the 
operational GHG emissions. 

Figure VI.1.5 represents a subset of the study results. The figure demonstrates that for the diesel ICEV Class 6 
box truck, potential vehicle efficiency gains would bring emissions down from 1,641 g CO2e/mi (indicated by 
the black line, which represents CURRENT TECHNOLOGY) to 1,252 g CO2e/mi (indicated by the red line, which 
shows GHG emissions reductions in a FUTURE TECHNOLOGY case resulting from such potential future vehicle 
efficiency gains); these emissions could be further reduced using a low-carbon fuel to between 180 and 110 g 
CO2e/mi, as represented by the endpoints of the grey arrows. We further see that the burden of vehicle 
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production (indicated by the blue line, which represents the case in which the vehicle is operated on a 0 g 
CO2e/mi fuel) for the ICEV accounts for 58 g CO2e/mi of the FUTURE TECHNOLOGY emissions. Note that 
these vehicle production emissions do not include potential emissions reduction technologies for future vehicle 
material production. We similarly see, in Figure VI.1.66, for the diesel ICEV Class 8 long-haul truck, potential 
vehicle efficiency gains would bring emissions down from 1,830 g CO2e/mi to 1,126 g CO2e/mi in a FUTURE 
TECHNOLOGY case. By using a low-carbon fuel, the emissions could be further reduced to between 174 and 
115 g CO2e/mi, and the vehicle cycle of the future technology condition represents 68 g CO2e/mi. 

 
Figure VI.1.5 Per-mile GHG emissions of a Class 6 box truck considering a high future technology progression. 

Source: ANL 

 
Figure VI.1.6 Per-mile GHG emissions of a Class 8 long haul truck considering a high future technology 

progression. Source: ANL 
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Both Figure VI.1.5 and Figure VI.1.6 show that the combination of vehicle efficiency gains and low-carbon 
fuels GHG emission reductions allows for dramatically increased GHG reductions compared to vehicle gains 
alone. The down-arrows associated with decarbonized fueling pathways show a plausible reduction of the 
GHG emissions of the vehicle-fuel pathway from low-carbon fuels and electricity, but the feasibility of 
achieving the indicated GHG emission reductions were not considered. More broadly, these results 
demonstrate that large GHG reductions for MHDVs are challenging and require consideration of the entire life 
cycle, including vehicle manufacture, fuel production, and vehicle operation. 

Conclusions  
This analysis has found that technology advancement on the vehicle side will be an important facilitator of 
GHG reduction for MHDVs. Both efficiency improvement and powertrain switching could lead to GHG 
reductions for these vehicles. However, opportunities for technological improvement appear to be subject to 
operating conditions, as the GHG reduction for conventional fueling pathways is greater for Class 6 box 
trucks, which operate on “around town” routes, compared to Class 8 long-haul trucks, which operate across 
long distances at relatively high, steady speeds. To achieve deep decarbonization, it will be necessary to 
advance fueling technologies such that the energy sources themselves have much-reduced CO2e contents.  
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Select Presentations 
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Project Introduction 
Given the urgency of climate change and the need for deep decarbonization, electrification is gaining traction. 
To succeed at the speed and scale needed, experts agree that a rapid shift from fossil to carbon-free energy 
must occur across all energy sectors, along with efficiency improvements to mitigate challenges associated 
with expanding zero and near-zero energy supplies. Clearly, electrification will change how vehicles are 
manufactured and used, the infrastructure to maintain and support them, and the jobs associated with moving 
people and goods. But beyond direct changes, several “upstream” and “downstream” effects are likely. The 
former will include shifts in supply chain processes and industries; the latter will include shifts in 
interconnected industries gaining (or losing) jobs from induced effects. Since changes will extend beyond the 
production and use of vehicles and fuels, an integrated approach to economic analysis—comparable to 
estimating Scope 1, 2, and 3 emissions in lifecycle analysis—is needed to fully account for upstream and 
downstream effects. This project will assess the jobs and other macroeconomic impacts of various 
transportation decarbonization pathways, with a focus on electric vehicles (EVs) and charging infrastructure. 
The project team will use Argonne’s JOBS EVSE [1], which estimates macroeconomic impacts from 
deploying and operating charging infrastructure, and JOBS EV, which estimates impacts from all phases of EV 
production. This project is a three-year U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) 
lab annual operating plan (AOP) project that started in Fiscal Year (FY) 2023. 

Objectives 
The main objective of this project is to quantify the potential macroeconomic impacts of deep decarbonization 
via electrification of the transportation sector. The project includes the following tasks: 

1. Conduct a literature review and industry stakeholder interviews: Review the literature on EV 
impacts throughout the vehicles’ life cycles to identify key factors affecting job creation and engage 
with industry stakeholders to better understand manufacturing industries’ viewpoints and decision-
making processes 

2. Develop a database to assess jobs, wages, and gross domestic product (GDP) impacts: Develop a 
database of industries, business listings, employment job types, and quality of jobs corresponding to 

mailto:YZhou@anl.gov
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key stages of the life cycles for light-, medium-, and heavy-duty EVs and electric vehicle supply 
equipment (EVSE) production and use 

3. Develop electrification scenarios and analyze macroeconomic impacts by life cycle stage: Define 
electrification scenarios based on stakeholder inputs, DOE and VTO targets, prior VTO-supported 
analyses, and the database developed in Task 2 

4. Quantify shifts in macroeconomic indicators (jobs, wages, GDP) by location: Quantify changes in 
number of jobs and types of jobs by industry and location for each scenario developed in Task 3 

5. Identify job creation opportunities and potential energy equity and environmental justice  
outcomes: Identify job creation opportunities for new skilled job types in near-, medium-, and long-
term scenarios, and identify alternative industries in which traditional automotive job skillsets may 
also be applied 

This project provides data and information on the current state of U.S. auto-manufacturing-related industries 
and forecasts the expected macroeconomic impacts of transitioning to large-scale EV market penetration. 
Deliverables include reports and presentations to DOE VTO. 

Approach 
There are five tasks under this project. The following describes the method for each task. 

Conduct a literature review and industry stakeholder interviews: This task reviews current and past 
literature—including academic journals, industry whitepapers, and other reports—to identify factors affecting 
job creation. Additionally, the research team will engage with industry stakeholders through one-on-one 
interviews and the formation of an advisory group to validate findings and ensure the outcomes of each task 
are inclusive and meaningful. 

Develop a database to assess jobs, wages, and GDP impacts: This task lays the foundational groundwork 
for the remaining tasks by developing a database of industries, businesses, employment, job types, and job 
quality corresponding to key stages of the life cycles for light-, medium-, and heavy-duty EVs and EVSE 
production and use. Stages in the vehicle cycle extend from raw materials extraction and processing to product 
delivery and use; stages in the energy cycle extend from power generation to EV charging. Disaggregating 
economic features by life cycle stage is particularly relevant to addressing impacts associated with network 
upgrades to accommodate EVSE and anticipated load growth. This database helps set the parameters needed to 
design scenarios such as 50% battery electric vehicle (BEV) sales targets, 500,000 EVSE deployments, and 
net-zero-carbon pathways. 

Develop electrification scenarios and analyze macroeconomic impacts by life cycle stage: Electrification 
scenarios are defined based on stakeholder input, DOE and VTO targets, and prior VTO-supported analyses. 
Scenarios incorporate a range of assumptions, including Administration goals and industry sustainability 
objectives, as well as potential barriers and stakeholder concerns. From the overall electrification scenarios, a 
series of life-cycle-based scenarios is derived to estimate macroeconomic impacts at key life cycle stages as 
defined by the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model, 
including raw material extraction, intermediate component manufacturing, final component manufacturing and 
assembly, shipping and sales, equipment operation, and end-of-life disposal/recycling.  

Quantify shifts in macroeconomic indicators (jobs, wages, GDP) by location: By applying the database 
created in Task 2, this task analyzes how widespread electrification in the automotive sector changes jobs, both 
by type and by location. The aim is to identify the potential industries that will face large-scale job 
restructuring and build on the findings of previous high-level analyses. The analyses can be further 
disaggregated into state, county, and plant levels to allow for higher-resolution estimations of gross 
macroeconomic impacts.  
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Identify job creation opportunities and potential energy equity and environmental justice outcomes: The 
job creation opportunities of widespread electrification can be identified at community levels. Additionally, the 
project team will identify potential environmental justice and equity effects of transportation electrification via 
a focus on distribution of impacts on different communities. To this end, the team will use case studies 
centered around areas of interest. A geospatial economic and environmental impacts inventory will also be 
developed for national, regional, and local levels. 

Results 
The literature review focused on two main subjects: the BEV supply chain and anticipated economic impacts. 
Outsourcing from original equipment manufacturers (OEMs) to large suppliers may increase in the near term 
to leverage economies of scale. Combined with mergers and acquisitions, this may result in larger Tier 1 
suppliers. However, OEMs may be reluctant to wholly outsource because of highly proprietary, sensitive, and 
safety-critical vehicle systems. Long-standing relationships and track records for component design, 
engineering, and manufacturing at scale give global diversified Tier 1 suppliers advantages over new/niche 
suppliers. Traditional internal combustion engine (ICE) component suppliers remain diligent in diversifying 
product portfolios to avoid disintermediation over the long run with the evolution of technologies. Battery cell 
and pack suppliers are an exception because they typically supply only that specific system and because the 
technology is at a relatively early stage.  

Of the anticipated economic impact analyses available, the majority were state-specific reports that relied on 
input–output modeling (e.g., IMPLAN, Regional Input-Output Modeling System (RIMS II), etc.) and shift 
share analyses. Typically, only direct effects on jobs were reported. While some analyses report indirect 
effects, none report induced effects, indicating that no holistic studies are available. Further, no agreement 
could be found in the literature regarding a unifying set of preliminary assumptions, methods, or temporal 
scope. For instance, analyses conducted on the impact of transportation electrification in Illinois found job 
creation ranging from 2,850 to 79,500 new jobs, depending on the method, assumptions, and time horizon.  

Interviews with OEM and Tier 1 suppliers revealed five key takeaways. ICE vehicles and EVs will share production 
lines at assembly plants until EV sales volumes reach a breakpoint, typically 20,000–30,000 vehicles. Although this 
practice is inefficient from a labor perspective, sharing production lines is efficient from a capital perspective. While 
each OEM will continue to make vertical integration decisions based on internal make–buy studies, OEMs 
nonetheless show an industry trend toward vertical integration that includes power electronics, control drive units, 
charging and cooling systems, and motor manufacturing. An OEM move toward increasing automation depends on 
the expected vehicle production volumes. However, for suppliers, the automation decision depends on the 
complexity of assembly—for instance, subcomponents that are floppy do not lend themselves to automation. 
Discussions over the effects of the Inflation Reduction Act (IRA) during the interviews centered around the 
uncertainty over how long the IRA will last, which made it difficult for suppliers to plan long-term strategies; for 
suppliers, the United States–Mexico–Canada Agreement may have a larger effect on on-shoring decisions than the 
IRA. Foreign OEMs with U.S. assembly plants are more affected by the IRA than domestic OEMs, as the Act 
upends traditional manufacturing approaches for new vehicles (i.e., reach a threshold of vehicles sold before 
onshoring). Interviewees indicated that OEMs are making upstream deals or engaging in joint ventures to offset 
supply chain uncertainties. Similarly, the Tier 1 suppliers we spoke with were worried about Tier 2 and 3 suppliers 
staying solvent. OEMs also noted that they are facing labor shortages, especially in software engineering. 

The second project task is to develop a database of companies involved with motor vehicle manufacturing at all 
stages of the motor vehicle life cycle, including raw material extraction, subcomponent and component 
manufacturing, and vehicle assembly. Using Dun and Bradstreet Hoovers™ business listings data, we document 
the global vehicle manufacturing supply chain with a focus on North American-based, and particularly U.S.-
based, facilities. We do this for all subcomponents and components made of aluminum, steel, and plastic, as well 
as for battery cells and packs materials. Figure VI.2.1 shows the main components of the top 20 companies by 
annual sales for aluminum subcomponent manufacturing. The businesses’ products included in the figure are in 
Tiers 2 and 3. A separate analysis is being conducted for Tier 1 manufacturing and OEM assembly. 
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Figure VI.2.1 Aluminum subcomponent manufacturing by country. The types of aluminum shown in the 
second column are consistent with GREET aluminum types. The third column shows the subcomponents 
produced using the types of aluminum. The thickness of the lines between the third and fourth columns 

indicates the proportion of top 20 U.S. companies engaged in manufacturing each subcomponent. Source: 
Argonne National Laboratory 

From these data, we can see that the supply chain is global at Tiers 2 and 3, despite the United States–Mexico–
Canada Agreement and IRA, for non-powertrain-specific components—in stark contrast with Tier 1 and OEM 
assembly pipelines. Many small companies make up Tier 2 and are in the United States. Tier 2 and 3 
companies are more vulnerable to shocks than larger Tier 1 firms, as Tier 2 and 3 companies have lower 
operating margins and typically specialize in a smaller portfolio of products. These observations have been 
corroborated by interviews with the Tier 1 stakeholders.  

Preliminary investigation of workforce development and EV manufacturing jobs shows that most skillsets used 
in ICE vehicle assembly will also be relevant for EV assembly. The key difference is that EV assembly will 
require workers with training in high-voltage applications. The following table shows the occupations that will 
be needed for EV manufacturing, the minimum level of education for those occupations, and median annual 
wages (in 2010 dollars). 

Table VI.2.1 EV Manufacturing Occupations, Minimum Education Required, and Median Annual Wages 

Occupation 
Description 

Minimum 
Education 

Median Annual 
Wages (2010) Occupation Description Minimum 

Education 
Median Annual 
Wages (2010) 

Chemist Bachelor’s $68,320 Software developer, 
applications Bachelor’s $94,680 

Materials 
scientist Bachelor’s $84,720 Commercial and 

industrial designer Bachelor’s $67,790 

Chemical 
engineer Bachelor’s $97,480 Electrical and electronic 

equipment assembler 
On-the-job 

training $29,470 
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Occupation 
Description 

Minimum 
Education 

Median Annual 
Wages (2010) Occupation Description Minimum 

Education 
Median Annual 
Wages (2010) 

Electrical 
engineer Bachelor’s $87,580 Electromechanical 

equipment assembler 
On-the-job 

training $32,430 

Electronics 
engineer, except 

computer 
Bachelor’s $100,450 Engine and other 

machine assembler 
On-the-job 

training $47,440 

Industrial 
engineer Bachelor’s $77,160 Team assembler On-the-job 

training $32,500 

Materials 
engineer Bachelor’s $89,000 

Computer-controlled 
machine tool operator, 

metal, and plastic 

On-the-job 
training $35,580 

Mechanical 
engineer Bachelor’s $81,290 Machinist Apprenticeship $40,810 

Mechanical 
engineering 
technician 

Associate’s $52,950 Industrial production 
manager Bachelor’s $91,460 

Mechanical 
drafter Associate’s $53,840 Automotive service 

technician 
Vocational or 
certification $33,010 

 

Conclusions   
The transition to electrified transportation will have far-reaching effects across many industries and sectors, 
particularly once one considers the full motor vehicle manufacturing supply chain and the diverse services 
within an ecosystem required to support BEVs throughout the vehicle life cycle. FY 2023 efforts have focused 
on fleshing out the scope of this analysis by conducting a literature review, interviewing industry stakeholders, 
and developing a database of suppliers to assess economic impacts. The literature review revealed that many 
states with considerable vehicle manufacturing footprints are aware of the potential economic impacts EV 
manufacturing will have. However, these studies tend to be limited to a single state and to examining 
electrification’s effects only on OEMs and Tier 1 suppliers. Furthermore, these studies use differing 
assumptions and a variety of methods in estimating impacts. Conversations with stakeholders indicate that 
industry players have differing concerns depending on where they are positioned in the supply chain. For 
instance, OEMs are worried about being able to hire enough programmers, as EVs will have more software 
than ICE vehicles, while Tier 1 suppliers are concerned with being able to adequately source components from 
Tier 2 and 3 suppliers. The database developed in FY 2023 consists of OEMs and companies involved in Tiers 
1 and 2 in the automotive supply chain; upcoming efforts will enhance this database to cover the occupations 
and skillsets involved in these manufacturing sectors, enabling analysis of changes in job types and counts by 
location due to the transition to EVs.  
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Ke, Yue, and Matthew R. Sloggy. 2023. “Quantifying the Economic Impacts of Electric Car Production.” 
Agricultural and Applied Economics Association 2023 Annual Meeting, July 23–25, Washington, DC. 
Presentation 26386, record identifier 335677. 
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Project Introduction 
Over 400 million metric tons of carbon dioxide equivalent (CO2e) are emitted annually by over-the-road freight 
movement in the United States [1]. These vehicles drive a collective 300 billion miles [2] and move 10 billion 
tons of freight annually [3]. The environmental burden of moving goods—for vehicles from delivery vans to 
long-haul trucks—contributes to local air pollution and global greenhouse gas emissions. Medium- and heavy-
duty (MDHD) vehicle classes contribute 23% of the U.S. transportation sector’s carbon footprint [3]. With this 
sizable contribution to emissions, electrifying MDHD vehicles will be critical to meeting climate goals.  

Today, there are more than 150 electric MDHD (eMDHD) vehicle models available in the United States [4], 
with more scheduled for release in the coming years [5], [6]. However, the charging infrastructure required to 
power these vehicles is also of critical importance. Compared to passenger vehicle charging infrastructure, 
eMDHD vehicles require more expensive chargers capable of delivering higher power, and therefore judicious 
planning of this infrastructure is required. The goal of this project is to identify the most likely “electrifiable” 
trucks in 15 states that have enacted freight electrification regulations and to quantify the energy and charging 
infrastructure required to power these vehicles.  

Objectives  
The objective of the project is to create an understanding of the charging infrastructure required to support the 
effective use of electric trucks in states that have committed to increasing the sales of those vehicles. The focus 
will be on first mover market segments, and real-world data will be used to understand how charging needs are 
likely to be distributed over space and over time. This analysis will enable effective policymaking, fleet 
purchasing, and utility/public utility commission investment planning to provide a supportive operating 
environment for these vehicles. In addition to a final report, this work will develop a web-based, public-facing 
tool allowing users to explore the data at different levels of geographic aggregation. 

Approach 
In Budget Period 1, we defined electrifiable vehicles as those that return to a depot after fewer than 300 miles 
of travel in 95% of instances. These criteria—limited travel distance and a return to a fixed base—are intended 
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to capture the two primary constraints on real-world operation of electric trucks: limited mileage range and 
lack of public and/or shared charging infrastructure. This definition aims to capture the segment of the trucking 
market most easily electrified in the next one to three years.  

During Budget Period 2, we completed our analysis of trucking telematics data in the 15 states that are 
working toward implementing the Advanced Clean Trucks (ACT) rule [7]. From this understanding of how 
trucks currently operate, the project team computed the energy needed to electrify these duty cycles, the 
necessary charging infrastructure under various scenarios, and load curves. We have built a public-facing data 
explorer with maps and plots that is currently in public beta testing, with its final version expected to be 
published in January 2024 at https://rmi.org/early-trucking-electrification-in-act-states. Lastly, we have drafted 
a final report synthesizing our results and key insights, also to be published in January 2024.  

The project obtained truck telematics data from Geotab [8]. From observed driving patterns of these vehicles, we 
can determine which trucks could be replaced by electric vehicles based on existing electric vehicle technology 
and charging infrastructure. We estimated required daily energy demand per truck by assuming that medium-duty 
(MD) trucks consume, on average, 1.3 kWh/mile and heavy-duty (HD) trucks consume 2.5 kWh/mile. We then 
estimated 24-hour load curves at the county level using a Monte Carlo simulation to statistically determine the 
proportion of trucks at the depot during every hour of the day. The magnitude of the load was adjusted to ensure 
that the total area under the curve is equal to the total daily energy required by the trucks. 

Results  
The project team analyzed telematics data for 592,000 electrifiable MD trucks and 388,000 electrifiable HD 
trucks. The analysis was used to answer the questions below. 

1) How much energy and how many chargers will eMDHD vehicles need?  

Figure VI.3.1 shows the 75th percentile of daily mileage driven and the corresponding energy needs in kWh for 
MD and HD trucks for each of the 15 states (state-level values are an unweighted average of all county values 
within the state). Nationwide, the average 75th percentile of daily distance traveled for electrifiable trucks is 121 
miles for MD trucks and 156 miles for HD trucks, corresponding to average daily energy demands of 172 kWh 
for MD trucks and 427 kWh for HD trucks. Based on this, compliance with the ACT rule is achievable until 2040 
with today’s technology, and states should have few reservations about committing to ACT sales targets. 

  
Figure VI.3.1 Statewide daily energy (kWh) needed per truck for MD and HD trucks. Source: RMI, [7] 

https://rmi.org/early-trucking-electrification-in-act-states
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The project team then estimates the minimum charger size (kW) needed for a truck to fully charge, shown in 
Figure VI.3.2. (The range in the figure shows variation in results for the counties within each state.) Findings 
indicate that a 50 kW charger will be sufficient for almost all truck needs; a relatively higher-powered 150 kW 
charger would fully charge most vehicles in under three hours; and a 75 kW charger would do the job for eMD 
vehicles in three hours and eHD vehicles in seven hours (effectively overnight at a depot). 

 
(a) 

 
(b) 

Figure VI.3.2 Range of minimum necessary charger size (kW) for (a) eMD land (b) eHD trucks to fully recharge 
at depot, by state. Source: RMI, [7] 
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2) Where will energy and power demand increase, and how will this increase impact the electric grid?  

As shown in Figure VI.3.3, energy demand from electrifiable trucks is highest in urban areas because these 
densely populated areas tend to have more trucks. Rural areas have the lowest energy demand, which aligns 
with general industry sentiment that rural counties should be concerned mostly with corridor charging for 
long-haul trucks. However, in many cases, estimated load from electrified trucks that depot in rural counties—
primarily MD delivery vehicles—can exceed 1 MWh, roughly equivalent to a neighborhood of 30 homes. 
Suburban and exurban counties fall in between, with an intermediate but still sizable energy demand. 

 
Figure VI.3.3 Map of county-level daily energy demand from MD and HD trucks. Source: RMI, [7] 

How this impacts the local grid will depend on how fleets respond to the transition to electric trucks. What we 
can reasonably expect is that fleets will seek the most cost-effective path forward. It is quite possible that 
suburbs and exurbs with newer grids, more available grid capacity, and cheaper real estate than in urban areas 
will prove attractive to site new depots in the coming decade. Today, we are already seeing fleets choose to site 
depots in less dense areas, often located near lower-income communities that will be disproportionately 
impacted by emissions from trucks loading or unloading at these locations—all the more reason to ensure 
those trucks are electric. Over the next decade, policymakers and utilities need to pay close attention to 
industry trends and how fleets balance costs and make depot-siting decisions. 

3) Where is infrastructure investment needed, and how can costs be reduced?  

The project team models 24-hour load profiles for each county, shown in Figure VI.3.4, using a Monte Carlo 
simulation to statistically estimate the percentage of trucks parked at depots during each hour of the day. For 
our baseline charging scenario, we assume any truck parked at depot is charging, and we sum up the total 
trucks charging during each hour. We then adjust the magnitude of the load curve to ensure that the area under 
the curve is equal to the total daily energy needed by all electric trucks to fully recharge. This methodology is 
useful because it does not require that we assume a particular charger power or portfolio of chargers to meet 
the energy demand each hour. The resulting load profiles show, as expected, that electric load at the depot 
peaks in the evening and overnight hours, when trucks are parked, and is significantly lower during the day, 
when trucks are in operation. 
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                                             (a)                                                                                         (b) 
Figure VI.3.4 Load profiles for (a) MD and (b) HD trucks averaged over all counties, by state. Source: RMI, [7] 

To mitigate grid impacts, the project team then looked at the potential for trucks to share a single charger to 
reduce instantaneous peak load (both at individual sites and for the grid), shown in Figure VI.3.5, in terms of a 
truck-to-charger ratio for different charger sizes, up to 750 kW. Remarkably, for the readily available 150 kW 
charger, approximately 10 typical MD trucks or 5 HD trucks could share a single charger. 

    
                                            (a)                                                                                          (b) 

Figure VI.3.5 Potential to share chargers shown as truck-to-charger ratio (y-axis) for varied charger power for 
(a) MD and (b) HD trucks by state. Source: RMI, [7] 

As noted in the discussion of Figure VI.3.2, electrifiable trucks can also have relatively short charging times. 
This means not only that fleets can readily share chargers across multiple trucks operating under similar duty 
cycles, even with lower-powered 75 kW chargers, but also that fleets have flexibility to choose when they 
charge their trucks in order to minimize grid impacts and the subsequent need for grid infrastructure upgrades. 
In other words, if a truck arrives at depot at 6 PM, rather than charging immediately, the operator can wait to 
charge until later—possibly taking advantage of favorable electricity prices and avoiding peak load on the 
grid—while still knowing the truck will be fully charged by the morning.  

4) How should stakeholders prioritize investments to ensure they are made equitably?  

Our analysis highlights the need to direct significant investments toward fleets, as well as to the development 
of a robust public charging network. However, deciding where to prioritize these investments is not simply a 
matter of knowing where estimated energy demand will be highest (this would provide suburbs, exurbs, and 
rural areas with very little investment). Policymakers must balance many factors when prioritizing 
investments: fleet needs (e.g., counties with high truck populations or through which freight corridors pass), 
equity (e.g., investing in underserved or low-income communities), health (e.g., communities with poor air 
quality or increased incidence of respiratory illness), and grid impact. For this reason, the project has published 
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an accompanying data explorer where all data found in this report is available for readers to explore alongside 
many different map layers, available at https://rmi.org/early-trucking-electrification-in-act-states/. 

Recommendations for Stakeholders 
Lastly, our work highlights key actions that utilities and their regulators, policymakers, fleets, EV service 
providers, and site operators can each take to ensure a carbon-free trucking future. Key recommendations are 
below. 

For utilities and regulators: 

• Combine travel data with distribution grid hosting capacity to proactively plan and build grid 
infrastructure where eMDHD truck demand is expected. 

• Hire staff dedicated to electric transportation to reduce wait time for conducting site-specific grid 
impact studies and processing interconnection requests and to engage with fleet customers. 

For policymakers that have adopted, or are considering adopting, ACT regulations:  

• Support fleets with investments to reduce transition costs, including subsidies for site assessments or 
grid impact studies, chargers, and charger installation.  

• Invest in corridor charging to support higher-mileage trucks. 

• Watch industry trends for how fleets choose to site new depots. Weigh investments in underserved 
areas to attract fleets to depot in those areas.  

For fleet owners and operators: 

• Analyze your fleet’s data to assess electrification potential based on actual duty cycles and operational 
needs. Develop an electrification plan and share your plan with your utility early.  

Conclusions  
Electric trucks are here today. Model availability, increased battery capacity and range, fleet commitments, and 
regulations such as ACT are accelerating their adoption. Lack of adequate charging and grid infrastructure will 
be the primary bottleneck that could impede the transition to electric trucks and slow progress toward 
eliminating tailpipe emissions. There is urgency in taking meaningful steps to build electric truck charging 
infrastructure and support fleet owners as they navigate compliance with the ACT rule and the transition to 
electric trucks. 

A public beta version of the user-facing tool is currently available online at https://rmi.org/early-trucking-
electrification-in-act-states. We expect to release a final version of the tool and publish our final report, both in 
January 2024. 
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