Introduction to the Science & Technology (S&T) Risk Matrix

In December 2018, the Department of Energy Deputy Secretary signed the International Science and Technology Engagement Policy memo. The policy memo called for the creation of a Science and Technology (S&T) Risk Matrix. The purpose of the creation of the S&T Risk Matrix was to identify and protect critical emerging research and technologies that do not otherwise have control mechanisms, such as classified information, International Traffic in Arms Regulations, Export Administration Regulations, or 10 CFR Part 810 (Part 810)¹. The S&T Risk Matrix is intended to highlight areas of emerging and potential concern associated with e.g., economic and/or international competitiveness and *not to overlap or supersede existing controls associated with national security or export controls. Further, the S&T Risk Matrix is intended to be a living document evolving based on ongoing dialogue between DOE and its Laboratories.* The S&T Risk Matrix was updated in December 2022 by the National Laboratory Chief Research Officer group in coordination with the DOE Laboratory Operations Board. In the future annual updates are anticipated.

Per relevant DOE Orders, the S&T Risk Matrix only applies to interactions with and nationals of specified Countries of Risk. At this time, countries of risk are limited to China, Russia, Iran and North Korea.

To date six areas of research have been identified as within scope of the S&T Risk Matrix:

- Quantum Information Science & Technology
- High Performance Computing
- Machine Learning/Artificial Intelligence Science & Technology
- Battery Science & Technology
- Bioscience & Biotechnology
- Accelerator Science & Technology

As part of the annual S&T Risk Matrix review process, the addition of new technology areas to the matrix will be explored.

The S&T Risk Matrix uses a Red/Yellow/Green categorization scheme to quantify the risk associated with a given topic and the resulting level of controls that are required. When evaluating the status of a particular topic within the S&T Risk Matrix, in addition to examining the Red/Yellow/Green tables below, the reviewer must also review the additional information and broader context provided in Appendix 2 of the S&T Risk Matrix. Further, in addition to reviewing relevant content with respect to the S&T Risk Matrix, users of the matrix, consistent with existing practices and processes of their home organizations, must also consult e.g., relevant classification and export control guidance, which are beyond the scope

¹ Part 810 authorization requirement applies to all persons subject to the jurisdiction of the United States who directly or indirectly engage or participate in the development or production of any special nuclear material outside the United States. Pursuant to § 810.3, *Definitions*, the term "persons" does not include DOE. As such, DOE is not required to obtain Part 810 authorizations for its own exports of nuclear technology and assistance. However, DOE must maintain program oversight (federal funding and direction) of such activities undertaken at National Laboratories to ensure consistency with U.S. national security and nonproliferation objectives. See, *"Statement of Advice to Department of Energy (DOE) and National Nuclear Security Administration (NNSA) Laboratories, Plants, and Sites Regarding 10 CFR Part 810 (Part 810) Compliance"*.

of this document, in order to understand and implement the full suite of associated controls and protections required by DOE.

In addition to its function of quantifying risk and defining necessary controls and mitigation, the S&T Risk Matrix can also be used as a resource for education and awareness for Laboratory staff, providing insight into when research might move from Green to Yellow, highlighting the need for additional protections so that staff receive appropriate credit and protection for their innovations.

RED: Definition: Red (restricted) emerging technology topics have sensitivities associated with economic and/or international competitiveness that could cause significant harm to critical national interests of the United States if shared with a country of risk without appropriate vetting and approval. These red topics are considered "restricted" for purposes of increased vetting and controls involving interaction with Countries of Risk, and their representatives, as defined in various DOE Orders. Access to restricted technologies by Country of Risk nationals or entities requires enhanced vetting and approvals by DOE at both the local/field and HQ levels.

Additional Protections: Restricted topic areas trigger compliance requirements with elements of other DOE orders and policies (details are provided in Appendix 1). Laboratories will develop access management plans and ensure regular oversight/monitoring of these restricted projects to ensure they remain appropriately protected throughout their lifecycle. Access management plans for restricted S&T topics shall include at a minimum:

- description of the work that has been identified as restricted
- responsible principal investigator
- physical, logical, and administrative processes that control access to the restricted S&T topics, including as defined in DOE Order 471.7, Controlled Unclassified Information (CUI). Red areas are designated as CUI Basic.
- process by which the restricted S&T will have intellectual property protection prior to release/publication of the work, and appropriate notifications about the release/publication.
- DOE O 241.1B describes the process by which science and technology information (STI) is appropriately identified, categorized, disseminated, and preserved. Requirements for STI are laid out in the Contractor Requirements Document (CRD) to inform each Laboratory's processes, and these processes must include appropriate review and approval steps for restricted S&T topic areas. For research that is determined to be a Restricted S&T topic, notification to the funding DOE Program Office should occur prior to publication.

When possible, Laboratories should use existing protective measures, processes, or programs to implement needed controls on these projects.

YELLOW: Definition: Emerging technology topics that have the potential to become red (restricted) from an economic and/or international competitiveness standpoint or represent areas in which enhanced vigilance is appropriate.

Additional Protections: Yellow topic areas may require additional controls under certain circumstances. Yellow topics should be thought of as being on a 'watch list.' It is the responsibility of each Laboratory to establish processes for monitoring and controlling technologies in the yellow category. Depending on the technical area, yellow emerging technologies may be defined by a well-defined parameter space; other areas may require the judgement of technical and security SMEs to determine their degree of sensitivity. Laboratories may develop access management plans for projects in yellow technology areas (see elements described under red technology area access management plans). When possible, Laboratories should use existing protective measures or programs to implement needed controls on these projects. Yellow topics may require specific coaching/awareness training of performers and managers on how to engage with, involve and/or share information with individuals from designated countries of risk.

GREEN: Definition: Emerging technology topics that do not have particular sensitivities associated with economic and/or international competitiveness. Fundamental scientific studies or technologies at a low technology readiness level (TRL) are often – but not always – in the green category.

Additional Protections: Green subjects do not require additional controls beyond those already in place and will be handled with existing mechanisms.

Quantum Information Science & Technology

Quantum Information Science and Technology (QIST) is a highly interdisciplinary field that builds on quantum mechanics and information theory to explore the fundamental limits for computation, networking, and sensing. QIST incorporates research in a broad number of areas that include (but are not limited to) materials, computer science, mathematics, laser physics, atomic physics, cryogenics, electrical engineering, systems engineering, and application specific software development. The QIST research, development, and demonstration (RD&D) field has witnessed explosive growth in the last five years, and continues to rapidly progress. Novel quantum applications to sensing, computing and simulation, and communications could potentially disrupt many aspects of current information science and technology, although in many instances realization of these approaches is well in the future. The QIST section of the S&T risk matrix provides guidance in the four broad areas of 'Computing and Simulation,' 'Sensing, Clocks, and Metrology,' 'Communication,' and 'Materials and Fabrication.' For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination.

Computing and simulation

GREEN	YELLOW
Exploration of QIST foundations	Progress toward technologies
– fundamental questions	that would dramatically
related to the formulation of	improve qubit fidelity to move
quantum mechanics and its	quantum computing beyond the
relation to information.	noisy intermediate-scale
	quantum (NISQ) era.
Now approaches to gubit	
New approaches to qubit	
technology.	Development of preliminary
	high-bandwidth and/or
	cryogenic control and readout of quantum devices or other
Understanding of	•
environmental influences on	technologies that could scale quantum computing beyond the
qubit performance.	NISQ era.
Room-temperature electronics	
for high-bandwidth readout and	Development of quantum
control.	random number generators.

Digital and analog quantum simulation and optimization.	Development of quantum algorithms with potential or indirect implications for "red" category research.
Quantum algorithm development for chemistry, computational physics, and machine learning.	Quantum error correction and logical qubit development
Evaluation of algorithms for small-scale and low-fidelity applications and algorithms for chemistry, materials, particle and other physics, and machine learning.	Roadmaps that make statements about the long-term implementations of quantum computing development.
Algorithm-specific error mitigation on NISQ devices for chemistry, computational physics, and machine learning.	Laboratory experiments that run portions of error correction codes on systems of physical qubits that are significantly smaller than what would be needed for fault tolerant operation.
Application-specific design of NISQ devices for chemistry, computational physics, and machine learning.	Programmable gate-based laboratory devices with 50-100 physical qubits.
Quantum memories with improved coherence times. NISQ testbeds.	Development of large cryogenic refrigerators capable of extended operation below 4.2K and suitable for supporting "red" category quantum computing platforms.
Quantum simulators (classical computer simulations of quantum computer operation).	

NISQ device operating software.	
Basic research on error correction codes that is architecture-agnostic and with abstract qubit models.	
Demonstration of qubits that achieve breakeven but cannot, without further implementation of error-correction techniques, achieve fault tolerance.	

Sensing, Clocks, and Metrology

GREEN	YELLOW
General quantum sensing for basic research applications.	Development of entangled photonics capabilities useful for long range imaging.
General research into atomic clocks and networked atomic clocks.	Development of quantum navigations systems capable of 100 m positional uncertainty.
Use of quantum techniques for enhanced microscopy in a laboratory setting.	Development of quantum clocks with accuracy surpassing ps/day.

Development of fieldable system components that can
enable quantum sensors.

Communication

GREEN	YELLOW
GREEN	TELLOW
Development of fundamental	Robust and efficient
building blocks of quantum	entanglement distribution at
networks including single and	practical data rates.
entangled photon sources,	
single photon detectors, quantum memory, squeezed	Development of superture
light sources, and protocols	Development of quantum cybersecurity technology other
	than quantum key distribution
Development of error	
mitigation strategies	Experimental fault-tolerant
	quantum communications via
	quantum error-corrected
Integration of multiple quantum	quantum repeaters
networking devices	
Fundamental quantum repeater	
research	
Development and proof-of-	
principle demonstration of use	
cases for quantum networks for	
basic science and sensing	
applications.	

|--|

GREEN	YELLOW
Investigation of quantum materials and qubit materials candidates at milli-Kelvin temperatures.	Techniques to dramatically improve qubit fabrication yield without process control (still at the small laboratory level).
Investigation of the broad scope of materials for quantum devices such as 2-d topological materials or graphene nanoribbons.	Development of isotope enrichment technologies for materials relevant to QIST.
Development of rapid experimental capability to create and characterize quantum materials to determine detailed properties of these materials and their efficacy for use in quantum devices and interfaces.	

Development of materials modeling techniques to predict quantum device performance at relevant resolution.	
Synthesis, characterization, and theory of topological quantum materials including the demonstration and manipulation of Majorana modes.	
Research quantities of enriched stable isotopes that could be used in quantum computing devices.	
Work on individual process control ingredients (e.g., better atomic traps, better lithography control, better morphology).	
Techniques to rapidly characterize quantum- information devices for improvements to materials science or new materials that will move quantum platforms beyond the NISQ era.	

High Performance Computing

High Performance Computing (HPC) is a critical technology used for both predictive simulation and large-scale data analysis, essential to national security, scientific discovery, and economic competitiveness. Within the US, the Department of Energy (DOE) and the national laboratory complex have a leadership role in HPC, fielding some of the most powerful computing platforms in the world and providing expertise in computational modeling, data analytics, algorithms, and software. The labs also partner closely with the computing industry, academia, and other government entities to rapidly adopt new commercial innovations at scale and to drive the development of advanced HPC technologies, systems and expertise. DOE labs also partner with other industries and government entities to accelerate the application of HPC to engineering design, drug discovery, infrastructure security, energy security, manufacturing, and a wide array of other applications. HPC is critical to ensuring the safety and security of the nuclear weapons stockpile and to the basic science and applied energy missions of DOE. The HPC section of the S&T risk matrix provides guidance in the areas of system R&D; hardware components and systems; and software, including system software, applications, and libraries. Importantly, when HPC capabilities are used to contribute to another area of S&T, guidance from those areas, not the HPC section, is applicable in determining what topics, if any, are restricted. For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements, which are particularly prevalent in HPC) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination.

More specifically, DOE has historically engaged in development/procurement activities with vendors in realization of next-generation systems that are proprietary. Though individual hardware and software components under development by HPC vendors are typically explicitly protected by nondisclosure agreements (NDA), care should be exercised to identify information that could be discerned from publicly-available sources about the details of these components before their release. This could include production software components that are being specifically tailored to run on NDA-protected hardware platforms that might contain Application Programming Interface (API) usage specific to that new hardware, or even explicit workarounds for testing purposes (e.g., "hard-coded" enumerations of new hardware to be run on the new components that appeal to simple scaling arguments, but implicitly include scalings that specify particular architectural features.

HPC System R&D

GREEN	YELLOW
General R&D not associated with realization of specific systems, e.g.:	None currently identified that is not otherwise protected

- System management R&D for resilience, energy efficiency.
 Integration of runtime software with out of band system health and monitoring, and performance counter networks.

Vendor-Developed Hardware Components (processors, memory/storage, and interconnects) with Lab Co-Design

GREEN	YELLOW
	YELLOW
Note: Includes all post-release information not covered by NDA Component design details that are publicly available. Processor architecture (Instruction Set Architecture, or ISA) and performance characteristics. Memory/storage technology interface and performance. Interconnect performance characteristics and user level programming interface.	Lab suggestions for co-design improvements to vendor hardware component designs – prior to adoption/integration into product design.
Lab suggestions for co-design improvements to vendor	
hardware component designs that are not adopted and are generally applicable.	

Note: Any performance data or performance analysis for pre-release systems should be covered by NDAs and such information should be embargoed until general availability of the technology.

Lab R&D on HPC Components and Systems

GREEN	YELLOW
Conceptual design of HPC, sensors or instruments. This includes any ancillary performance projections, models, or any other analysis of an incomplete or conceptual design. Laboratory technical advances that have resulted in awarded patents.	Detailed design (or documentation/blueprint thereof) that includes all design elements and descriptions such that a reader could recreate or manufacture, but has not yet been manufactured, prototyped, or otherwise demonstrated. (See Note) Lab designs that warrant filing of technical advances because they are potentially valuable for DOE and US Government use, but have not progressed to patent filing stage.

HPC System Software

GREEN	YELLOW
General purpose system software (source and executables) developed by a Lab.	None currently identified that is not otherwise protected
General purpose open-source software (source and executables) used or modified by a Lab.	

HPC Application Libraries and Frameworks

GREEN	YELLOW
Open source libraries and frameworks.	Domain-specific modules of these libraries/frameworks that are designed specifically to benefit applications that may include, but are not limited to, applications that are already covered by export control, classification guidance, intellectual property processes, other sections of the S&T risk matrix or other controls.

Machine Learning/Artificial Intelligence Science & Technology

Machine Learning (ML) and Artificial Intelligence (AI) S&T are pervasive in DOE research, touching essentially all of the Department of Energy's programs. Data science research is often intertwined with AI/ML in their respective uses. ML/AI is also an active area of research in industry and academia. The ML/AI section of the S&T risk matrix provides guidance in the areas of foundational algorithm development as well as their application to control systems, societal applications, national security, and energy research. When ML/AI capabilities are used to contribute to another area of S&T, guidance from those areas is also applicable in determining what topics, if any, are restricted. An important rule of thumb is that if the underlying data are restricted, then ML/AI research that utilizes these data as training sets is also restricted. For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination.

Foundational Algorithms and Basic Research

GREEN	YELLOW
Basic research in machine learning methods and algorithms.	If the data on which the algorithms are trained is yellow, (as determined by the matrix section relevant to the data) then the output is yellow.
Methods for combining simulations and machine learning.	

Controls
controls

GREEN	YELLOW
Basic research on Al and ML for controls	Computing and data network controls that employ multi- segmented layers of security encompassing network isolation and monitoring of critical infrastructure.

Utilizing best-in-class solutions with both administrative and technical security measures that apply NIST/FISMA controls.
Security systems that are subject to annual review and testing by applicable governing and industry agencies.

Societal Applications

GREEN	YELLOW
Specific ML/AI techniques to improve data privacy	Applications involving biometrics or facial recognition
 Health applications: Drug design Disease detection and classification Interventions/ Therapeutics/ Personalized Medicine Basic research in data privacy 	

National Security

GREEN	YELLOW
Research on securing edge models and algorithms	 Cyber Security: Techniques that use AI/ML/data to emulate legitimate activity in order to obfuscate an attack. Counter-artificial intelligence: Methods for detecting adversarial inputs to classifiers Reverse engineering methods for inferring properties of training data from ML models Techniques for protecting or exploiting models Techniques for training data poisoning or manipulating ML decision boundaries
	Document Classification support Otherwise yellow other than what is identified in red. Examples include techniques to create content as well as review content.

Energy	

GREEN	YELLOW
Basic Research related to	None currently identified that is not otherwise protected

 Autonomous Energy Systems 	
 Molecular Design Algorithm development for Energy Forecasting 	
 Subsurface Systems Behavior 	
 Automated Feature Identification & Development of high resolution data, and associated methodologies 	

Battery Science & Technology

Batteries are a critical technology for the United States due to their potential to disrupt the vehicle market by replacing gasoline cars with electric cars, and to ensure a resilient grid that can adapt to the changing generation mix. In addition, batteries remain a key bottleneck for various military applications including powering forward operating bases, soldiers, sensors, and weapons. Finally, in the future, batteries are expected to become critical for enabling other modes of transportation such as hybrid electric aircraft, marine vessels, and electric trucks. The battery section of the S&T risk matrix provides guidance in the areas of cathodes, anodes, lithium, solid-state electrolytes, charging rates, energy storage, recycling, thermal runaway, lifetime, and technoeconomics. For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination.

Several foundational principles span all topics with the battery section of the S&T risk matrix. Patenting, publication and presentation are critical to the success of the US battery industry and a proper review process and IP protection will enable red projects to successfully contribute to the US economy. Areas are defined based on project goals and plans and not on achieving/demonstrating a fixed target or performance. Review of projects should occur at least on an annual basis based on proposed work and modifications to project documents like AOPs and prior to start for new projects.

Similarly, some cross-cutting topics are always green:

-Characterization methods, diagnostic and analysis tools, including research and development applications of such tools.

-Computational and modeling tools, directly related to fundamental research and understanding.

- Computational/high throughput discovery of new materials.

- Foundational research related to the structures and properties of materials or components potentially used in battery systems

- Research on fundamental reactions, mechanisms and kinetics of battery constituents/materials.

Battery S&T (cathodes)

GREEN	YELLOW
Characterization and understanding of degradation and failure mechanism for commercial cathode materials.	Modification of and characterization of commercial cathode materials that i) may enable capacities above 200mAh/g, ii) can operate between 2.0 and 4.5V vs lithium.

 Battery S&T (anodes)

GREEN	YELLOW
Characterization and understanding of degradation and failure mechanism for commercial anode materials.	Modification of and characterization of commercial anode materials that may enable capacities capacity of greater than 1000 mAh/cm ³ .

Battery S&T (lithium)

GREEN	YELLOW
Studies focused on the understanding of failure mechanisms related to Li metal negative electrodes, for examples, fundamental understanding of striping plating mechanisms and electrolyte stability.	Research into methods that mitigate detrimental aspects of lithium metal stripping and plating and stable solid electrolyte interface stabilization.

Battery S&T (solid state electrolytes)

GREEN	YELLOW
Studies focused on the investigation of chemical, physical or mechanical properties of known solid state electrolytes	Studies focused on the development of interface modification and stabilization of solid state electrolytes.

Battery S&T (charging rates)

GREEN	YELLOW
Studies which look at the	Approaches to accelerated
impacts of fast charging on cell	charging of lithium-ion cells
	which can be easily transferred

performance and degradation	across cell designs that enable
rates	acceptance of more than 2.5
	mAh/cm2 in 10 min or less.

Battery S&T (energy storage)

GREEN	YELLOW
Pre-conceptual research into energy storage systems and approaches	Technological approaches that will enable stationary energy storage that can achieve an installed capital cost of less than \$200/kWh.
	Novel manufacturing approaches that will reduce production costs and improve performance in batteries that will enable cells to be produced at less than \$80/KWh.

Battery S&T (recycling)

GREEN	YELLOW
Recycling methods which produce elemental metals at purities below battery grade	Recycling methods which produce products which can be directly fed into a cathode manufacturing process without significant additional purification.

Battery S&T (thermal runaway)

GREEN	YELLOW
Pre-conceptual research into thermal runaway systems and approaches	Technological approaches that reduce the risks of thermal runaway in battery storage systems in which, under a defined abuse condition (nail penetration, overvoltage, over temperature, etc.), cell to cell propagation is prevented.

Battery S&T (lifetime)

GREEN	YELLOW
Methods developed on commercial cells which do not consider cell design or classify/quantify degradation modes	Transferable methods (across chemistries or use cases) which rely on minimal experimental training data or which classify or quantify specific degradation modes for cells.
	Early-stage materials discovery efforts based on machine learning.

Battery	/ S&T	(technoeconomics)

GREEN	YELLOW
Technoeconomic and life-cycle	None currently identified that is
assessment of energy storage components and systems.	not otherwise protected

Bioscience & Biotechnology

Bioscience and biotechnology research is an exceptionally broad and rapidly expanding area, supported by many sponsors, including but not limited to the Department of Energy. The bioscience & biotechnology section of the S&T risk matrix provides guidance in the areas of synthetic biology, omics and automation technologies, data and advanced computational biology, biomanufacturing and biomaterials, agricultural and environmental technologies, and biomedical research and technologies. For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination. Similarly, reviewers should be cognizant of recommended controls developed by other segments of the biology research community and apply them appropriately.

Synthetic Biology

Keywords: CRISPR, gene editing, genetic modification, protein engineering, gene drive, gain of function, biological parts, transformation, DNA assembly, library, cloning, metabolic engineering, genome-scale modeling

GREEN	YELLOW
UNLEN	
Publicly accessible	Optimization of
databases, such as	commercially viable
registries of standard	microbial, algal, fungal, viral,
biological parts,	and plant chassis using
GenBank, and DIVA,	proprietary synthetic
which are informatic	biology tools, technologies,
repositories of microbial	and methods to produce
strain DNA and protein	biofuels and bioproducts.
sequences and designs	
thereof.	
	Early (pre-commercial
	release) access to gene
Publicly available	editing reagents from
techniques that enable	commercial vendors (e.g.
the same genetic	vectors, nucleic acid
construct to be deployed	modifying enzymes, genetic
/ assessed in parallel	code expansion, or gene
across biological	drives) or early (pre-
phylogeny - currently	commercial) access to
across some groups of	equipment and/or upgrades
selected non-pathogenic	
bacteria and fungi for	
discovery or proof of	

concept. These	Reagents or equipment that
capabilities are used in	are NOT available in
support of basic	sensitive countries and
research, e.g., in	potentially suitable for
establishing the	reverse engineering. This
molecules biosynthesized	technology could be widely
by secondary metabolite	distributed in the US.
clusters for use as	
biofuels or bioproducts.	
	Demonstration of disruptive
	synthetic biology methods,
Publicly available	tools or technologies at
methods or genetic tools	relevant scale that have the
that manipulate non-	potential for significant
hazardous	economic or national
microorganisms for basic	security impact (e.g.,
research regulating gene	improved genome editing
expression.	technologies, DNA
	cryptography, or viral
	genome modification to
Design and construction	increase payload size and
of gRNA expression	transduction efficiency).
plasmid libraries (that in	
conjunction with dCas9	
or aCas9 can be used to	Booting or rescue
implement genome-scale	technology of synthetic
gene deactivation or	microbes or viruses.
activation studies) that	
are used in support of	
basic research, e.g., in	
mapping phenotype to	
genotype, functional	
genomics, and metabolic	
pathway optimization for	
proof-of-concept	
applications in biofuels	
and bioproducts.	
Internationally	
distributed microfluidic	
or nanofluidic devices	
that enable more	
automated and higher-	
automateu anu mgner-	

throughput genetic	
engineering and systems	
biology of microbes,	
algae and fungi to	
produce biofuels and	
bioproducts.	
Manipulation and	
optimization of microbes,	
algae, fungi, viruses and	
plants using widely and	
commercially available	
synthetic biology tools,	
technologies and	
methods for the	
incremental performance	
improvement of	
production of biofuels	
and bioproducts.	
State-of-the-art models	
for predicting mutations	
for a desired phenotype	
(models still must be	
parametrized on a case-	
to-case basis).	

Omics & Automation Technologies

Keywords: DNA sequencing, genomics, transcriptomics, proteomics, lipidomics, glycomics, metabolomics, metagenomics, metatranscriptomics, metaproteomics, laboratory automation

	YELLOW Gafeguard development for
	Safeguard development for
public domain. ge	genome sequencing centers and genome sequence databases to avoid misuse.
biological systems. These can include:Ia m• Research on the structure, function, or chemical properties of molecular species that drive prototype technological advancements in analytical measurements or computational pipelinesAdvector second 	Safeguard development for aboratory automation to avoid misuse (e.g., external control of nstrumentation to confound standards and/or data ntegrity). Advances in nucleic acid sequencing technologies that significantly advance the state of the art. Development of advancements n omics instrumentation for pattlefield, clandestine, or defense applications.

 Small sample size or single cell omics measurement platforms that only measure a single class of biomolecules (e.g., proteins, metabolites) 	
• Research using omics-based measurements and technologies for a mechanistic understanding of biological and environmental systems	
Early-stage technologies that could significantly advance the state of the art for <i>in situ</i> omics analyses, including proteomic, transcriptomic, post- transcriptomic, and epigenetic analyses.	
Development of advancements in omics instrumentation that can identify >10,000 chemical species with <1% false discovery in less than 1 minute.	
Development of novel technologies not based in mass spectrometry, hybridization arrays, or sequencing technologies to confidently measure and identify molecular species (non-nucleic acids) from a single sample.	
Development of advancements in omics sample preparation methods that result in analysis of several biomolecules classes from a single sample.	

Development of advances in instrumentation that drive towards miniaturization, self- contained, self-powered, and/or readily portable omics instruments (e.g., for inclusion in Industrial Internet of Things [IIOT] context).
Development of fully automated instruments that cake cells, tissues or other piological matrices as input and provide data results without numan interaction.

Data & Advanced Computational Biology

Key Words: Predictive Models, Medical Counter Measures (MCM), Digital Biosecurity, Signatures, Detection Probes

GREEN	YELLOW
Technologies already commercially available or in the public domain.	Development of tools used to clean up and identify errors in publicly used biodata sets for activities related to any
	organisms on US commerce
Fundamental research involving omics measurements of biological systems. These can	control and export control lists.
include:	Development of methods to
• Research on the structure, function, or chemical properties	protect data in cloud computing resources
of molecular species that drive	
prototype technological advancements in analytical	

measurements or	Development of proprietary or
computational pipelines	controlled datasets used for
	MCM development and
Omics sample preparation	predictive mechanistic MCM
methods that require human	modeling.
intervention or evaluation or	modeling.
those that require multiple	
hours to accomplish	Net publicly cycilchic cyclic
• Incremental advancements in	Not publicly available synbio
 Incremental advancements in omics instrumentation that still 	software and workflows (in accordance with U.S. DHHS
require multiple measurement	screening guidance for
modes for confident	providers of synthetic nucleic
identification (e.g., mass	acids) for the screening of DNA
followed by fragmentation with	sequences against lists of
additional mass measurements)	sequences of concern. This
and combinations of instrument systems (e.g., vacuum pumps	includes both software and workflows that pertain to
	·
and chromatography systems)	specific signatures, details of
Small sample size or single	(informatic) sensor systems and
cell omics measurement	analysis methods relating to the identification of biological
platforms that only measure a	
single class of biomolecules	agents.
(e.g., proteins, metabolites)	
Basaarch using omics basad	Socurity of drug products
Research using omics-based measurements and	Security of drug products information [e.g., supply chain
	dependencies, vulnerabilities in
technologies for a mechanistic understanding of biological and	•
environmental systems that	the development pipeline, drug product data, regulatory filings,
serves fundamental or	
biomedical research	etc.]
biomedical research	
	Socurity of databases and
• Computational and modeling	Security of databases and
Computational and modeling	computational tools that can be
tools; research, development	used as training/validation sets
and applications of such tools	for computational applications
for fundamental science	in MCM
• Now methods in UDC	
New methods in HPC architecture and AL/ML	
architecture and AI/ML methods to manipulate,	MOU controlled health data
store, model data more	used in event and
efficiently.	epidemiological modeling
,	

Environmental databases of	Unpublished and/or proprietary
viruses that may contain	synbio software and workflows
sequences not readily available	(in accordance with U.S. Dept
from other sources. These	HHS guidelines for providers of
databases are used in support	synthetic double stranded DNA)
of basic science research, e.g.,	for the screening of DNA
in finding new branches of life	sequences against lists of
and understanding virus/host	organisms and toxins on the
relationships.	select agent and commerce
	control lists. This includes both
	software and workflows that
	pertain to specific signatures,
	details of (informatic) sensor
	systems and analysis and
	annotation methods relating to
	the identification of biological
	agents.
	Testing and a strating of
	Testing and evaluation of
	technologies to store, read and
	display data in a significantly
	smaller footprint.
	Databases of biological data
	collected from large population,
	especially genomic information
	Brain Computer interface and
	other neurotechnologies
	Genome sequencing, gene banks, and personalized
	medicine: technology and
	efforts that are meant to
	facilitate genetic testing and
	personalized medicine including
	"gene banks"
	Cell-based medicine and animal
	models for disease and brain research

Biomanufacturing and Biomaterials

Keywords: process engineering, bioreactor, supply chain, bioproduction, biocatalysis, pilot scale, commercial scale, mis-use, dual use, extraction and purification, industrial enzymes, biomimetic.

GREEN	YELLOW
Publicly available gene editing	Engineering and optimization of
and protein expression	metabolic pathways for
technologies for microbes,	commercial bioproduction with
fungi, yeasts, plants, and	significant near-term
animals.	commercial value.
Publicly available in vitro regeneration and propagation techniques.	Late-stage engineering and optimization of biosynthetic pathways for commercial
Publicly available basic tools for biomanufacturing plant modification and development.	production of target products that are national security relevant, for example the use of engineered microbes to mine
Bioreactor designs and	rare earth elements.
technologies including inline	Development of a full process
monitoring and real time	scheme at a pilot or commercial
monitoring and quality	scale for valorization of bio-
assurance optimization.	derived materials into energy,
Global regulatory testing	security, or industrial
standards, advanced process	applications.
control strategies and raw	Advances in biomanufacturing
material characterization.	systems using "plug and play"
Modeling bio-manufacturing	standard designs for scalable
scenarios to identify areas for	production.
technology innovation.	New sterility assurance
Publicly available methods for	processes with commercial
the separation of components	value.
and harvesting logistics at the	Knowledge management:
molecular and tissue levels	Integrated knowledge of
including methodology and	product and process technology
equipment designs.	that increases speed to market,
New methods for process	cross-product learning, and
intensification and quality	efficiency throughout product
control techniques	lifecycle.

Enzyme compositions from	Pilot or commercial scale
natural biomass degrading	activities on extraction and
communities (metaproteomes).	purification of intermediate
'omics' studies of natural	products with energy and
biomass degrading	environmental applications.
communities.	Protein and process
communities.	optimization at pilot or
Research on model enzyme	commercial scale of top
systems, both natural and	performing enzymes that
engineered.	deemed to be especially
Characterization and imaging of	enabling at commercial scale.
Characterization and imaging of	
enzymes for biomass	Late-stage optimization of
degradation and upcycling.	production protocols of
Application and improvement	industrial enzymes and
of tools (including software) for	biomimetic enzymes that likely
computational simulation of	to change reactor design,
microbes, proteins and	profits, and markets, etc. at the
microbial products.	commercial scale.
General approaches for	Pilot or commercial scale
immobilizing and channeling	production protocols for
enzymes in multi-enzyme	catalyst materials, catalyst
reactions.	active phases or supports, and
	process design for
New approaches for	biomanufacturing systems with
engineering substrate	significant, near-term
channeling enzymes in multi-	commercial value.
enzyme reactions for increased	
metabolic flux and productivity.	Pilot or commercial scale
Current state of the art models	production of biomaterials and
for sequence, structure, and	processes that substantially
function prediction for a desired	outperform present market alternatives.
phenotype	
	Modeling and simulation that
Sub-cloning and passaging	specifically supports design and
methodology, storage	optimization of proprietary
methodology (clones, cells), cell	reactors or separation systems
handling methods.	to produce novel biomaterials.
Fundamental research on	
catalyst materials, chemistry,	
structure, and modeling	
including synthesis and	
characterization techniques.	

Fundamental research on biomaterials such as nanocellulose and other plant- based polymers.
Research and development of the production of bio-derived materials from natural and engineered organisms.
Development of theory and simulation methods that describe the behavior of biomaterials.

Agricultural & Environmental Technologies

Key words: 3-D printing of foods, bioenergy crop, cellular agriculture, field trial, genome-wide associations, genotype, germplasm, marker-assisted plant breeding, microbiome, phenotype, propagules, robotics, seeds, transformation, UAV hyperspectral detection, vertical agriculture

GREEN	YELLOW
Research on publicly accessible germplasm or germplasm intended to be made publicly available, i.e., research on component or system validation at Laboratory-scale, to establish proof of concept, and to	Technology demonstration on germplasm at the engineering/pilot scale in a relevant environment, including field testing.
understand basic biological mechanisms.	Demonstration and deployment of high-efficiency, high- throughput, crop transformation technology at
Determining the function of individual genes and gene combinations and/or linking	pre-commercial scale.
genotypes to phenotypes using germplasm, as described above.	Pilot-scale development of processing technologies for bioenergy crop species.
Analysis of samples from laboratory scale systems or of devitalized samples from research field trials and pilot scale processing.	
The use of published and/or publicly available transformation and gene editing technologies.	
Plant breeding technologies for specific traits including the use of Genome-Wide Association Studies	

and the development of marker-assisted breeding techniques.	
Emerging technologies including "Cellular Agriculture" for protein production; 3-D printing of foods; vertical agriculture; microbiome research to support plant health; UAV hyperspectral and biosensor technologies: and the use of robotics and AI/ML in harvesting technologies are currently green but should be reviewed in the future for potential economic security risks.	

Biomedical Research and Technologies

Key Words: Diagnostics, Treatments, Medicine, Bioengineering, Cognitive Sciences,

GREEN	YELLOW
Fundamental biology research into cellular mechanisms of host function and response to various stimuli such as pathogens, radiation, etc.	 Applied research resulting in therapeutics and vaccine design for clinical trials and human treatment Immunomodulation Mosaic vaccine design Crispr gene editing tools
 High-throughput screening tools for R&D: Biomarker identification, verification, validation Epigenetics Small molecule inhibitor/activator screens Lab automation Instrumentation for R&D and clinical measurements: Microarrays Flow cytometry Bioimaging and microscopy Label free screening assays Molecular reagents for plate-type assays 	 Delivery systems for therapeutics and vaccines for regulated material: Nanomaterials Microneedles Targeted <i>in vivo</i> delivery Systems designed to cross the blood-brain barrier Safety / toxicity evaluations of delivery systems Platform technologies: Implantable bionics Wearable sensors with <i>in</i> <i>situ</i> data analytics Multiplexed, point-of-care, fieldable devices Monoclonal antibody design and development
Implementation of AI systems using HPC to inform clinical decisions and optimize health	design and development, natural and synthetic Neuroscience
Biomaterials/Biosynthetic polymers:	 Human brain mapping studies/methods Early evaluation of new treatment technologies

 Regenerative repair/wound healing Basic research on implanting biological signals into synthetic polymers 	 (e.g., graphene based, cognitive prosthetics) Development of brain- computer interfaces Materials Molecular tools Communications
-	Biomaterials/Biosynthetic polymers:
	 3D printing of biological materials that can replace human components Development and implementation of medical implants technology involving material characteristics and basic function
	Fabrication methods for biomedical technologies:
	 Advanced methods and automation for nano- and microfabrication of medical devices or therapeutic delivery systems

Accelerator Science & Technology

The current breadth of particle accelerator technology began in the 1930's and continues to see dramatic advancement of capabilities through the development of novel concepts and technological improvements. Since their conception, accelerators have been instruments of discovery and scientific advancement, evidenced by the fact that almost one third of the Nobel Prizes granted in physics have been connected to the interaction of accelerated particles, particle detection, or the advancement of accelerator technology. Over the course of 90 years of internationally cooperative and competitive development, machine energies have increased by a factor of 10,000,000,000,000. This technology has many important applications in medicine and industry, with more than 40,000 accelerators operating around the world and total accelerator sales of about US\$5B. Advanced accelerator technology continues to be developed in the US, largely at DOE national laboratories and at universities, with important anticipated applications in scientific research, industrial and medical processes, and national security. Accelerator technology plays a crucial role in many scientific areas where the US currently has significant technological advantages over other countries. Achieving the right balance of open participation in international development efforts, and discretion in disclosing select aspects of application-related knowledge, enables the US to maintain its advantages and continue to realize the commercial and intellectual-property based economic benefits.

The accelerator science & technology section of the S&T risk matrix provides guidance in the areas of supercomputing radio frequency technology, laser and plasma acceleration, superconducting magnets, cryogenic plan design and operation, advanced light source technologies, very high current electron and hadron beams, and the application of accelerators to nuclear systems and isotope production. When accelerator capabilities are used to contribute to another area of S&T, guidance from those areas is also applicable in determining what topics, if any, are restricted. For all topics below, information already protected by either classification or export control (or, in some cases vendor-specific non-disclosure agreements) is not reflected here, but scope should be evaluated relative to these controls on a case-by-case basis prior to release or dissemination.

Superconducting Radio Frequency Technology

GREEN	YELLOW
Basic research applications.	
including:	Development of SRF cryomodules
	using high-Q and/or high-gradient
SRF accelerators for future HEP	cavities: for CW applications $Q > 10^{11}$
and NP colliders, neutrino	at intermediate gradients of 15 to 25
facilities, and rare isotope	MV/m at 1,300 MHz in the
research.	frequency range from 650 to 1,500
	MHz; for pulsed applications Q >
Generic SRF research on niobium	5·10 ¹⁰ at gradients of > 50 MV/m at
surface modification, new	

materials, coating and processes	1,300 MHz in the frequency range
toward achieving higher Q and/or	from 650 to 1,500 MHz.
gradient, unless performed	
specifically for a	Conduction-cooled (T=4K or greater)
project/application.	SRF cavities and systems for
	industrial/medical/security
Generic cryomodule engineering	applications.
and cleanroom assembly	
techniques.	
R&D on narrowband SRF cavity	
resonance control.	
Research and development on	
conduction-cooled (T = 4 K or	
greater) SRF cavities and systems.	

Laser and Plasma Wakefield Acceleration

GREEN	YELLOW
Plasma target gas valves and capillaries ionized by lasers or >100 ns discharges, systems are being built with commercial components. Small niche markets in the accelerator community; some potential for future licenses. Wake accelerating structure excitation and particle injection, beam control. Basic research with physical concepts being developed and used in the research community, potential for long term market in accelerator applications.	Integrated systems beyond the laboratory proof-of-principle stage of development with application potential in near term markets (<5 y away)
Diagnostics including for radiation	
sources and positron production.	
Basic concepts are being	
developed and used to measure	

Applications: High Energy Physics Colliders, Thomson MeV photon sources, and Free Electron Laser type coherent photon sources. Basic research with physical concepts being developed and used in research community, potential for long term markets (>10 y away) in accelerator applications and markets in scientific, imaging & detection (nonproliferation, industrial, medical)	and support area (2), similar status.	ı (2), similar	
	Colliders, Thomson MeV photon sources, and Free Electron Laser type coherent photon sources. Basic research with physical concepts being developed and used in research community, potential for long term markets (>10 y away) in accelerator applications and markets in scientific, imaging & detection	on MeV photon e Electron Laser noton sources. ith physical eveloped and community, g term markets ccelerator markets in g & detection	

Superconducting Magnets

GREEN	YELLOW
Basic research thrusts, including:	Research with potential near-term (<5 years) commercial applicability, such as:
Development of diagnostics and the associated signal analysis that provides feedback to magnet design.	Advanced superconducting materials with high transition temperature (>10K) and high critical field (>15T), including
The development of improved NbTi magnet fabrication techniques.	material science and processing optimization, intended to enhance conductor performance.
Development of high and very high field accelerator magnets needed for basic science applications.	High field magnet technologies (>12T) with identified commercial applications – for example, high- field NMR solenoids.
	Advanced design tools (non-open source), including modeling techniques, that enable advancement of magnet designs.

GREEN	YELLOW
Basic research thrusts, including:	
Studies of materials properties at low temperatures, design optimization of cryo-cycles and cryo-equipment.	None currently identified that is not otherwise protected

GREEN	YELLOW
Basic research and long-term R&D on fundamental lightsource techniques, including:	4th generation storage ring integrated designs and design tools.
Fast, high power pulse electronics (<10 ns rise and fall time) and associated kicker magnet concepts.	Application/project specific design implementations of advanced beam physics concepts for storage rings, FELs, and ultrahigh
General designs and beam physics concepts for storage rings (including ultrahigh brightness storage ring lattices as well as storage rings for hadrons and other particles for scientific applications) expressed in abstract mathematical or optical design form, possibly including elements such as integrable nonlinear optics technology, optical stochastic or	brightness storage rings. New ultrabright electron photocathodes to optimize the performance of FEL facilities. Coatings and processes for small diameter vacuum components that are critical for the next generation light sources and FELs.
other cooling methods, beam polarization control, etc.	Developing next generation superconducting undulators, including conduction cooling technology.

High accuracy and bandwidth	
electron beam position monitors	
and electronics.	

Very High Current Beam Technologies: Electron Beams

GREEN	YELLOW
the share of a state state of a second state of the state of the second state of the s	None currently identified that is not otherwise protected

Very High Current Beam Technologies: Hadron Beams

	YELLOW
Basic research thrusts including: Negative ion sources developed for applications such as ITER or DEMO with very high currents, >>1 A, pulsed, but modest current density. H- source for injection into accelerators with modest CW and pulsed currents. produce (approac mA pulse above 12 A/cm2 pulse System d machine toward a and/or ac reliability beyond. Technolo	roton sources capable to high currents ching 250 mA CW and 120 ed) with current density 25 mA/cm2 CW, 1.6 ulsed, and high reliability. designs of adaptive and learning techniques autonomous control chieving the overall y of the facility to 99% and ogies for proton beam 5 MW and <10 MW.

Accelerator-based Nuclear Systems

GREEN	YELLOW
None currently identified that is	None currently identified that is
not otherwise protected	not otherwise protected

Accelerator-based Isotope Production

GREEN	YELLOW
	None currently identified that is not otherwise protected

Appendix 1: Associated DOE Orders and Policies Involving the S&T Risk Matrix

Order 142.3B - Unclassified Foreign National Access Program

A determination of access approval is required before each access request is granted and must ensure that any identified risk to the Government associated with the access granted has been appropriately evaluated and mitigated, including a review against the Science and Technology (S&T) Risk Matrix.

Country of Risk foreign nationals' access to certain restricted technology or information as identified in the S&T Risk Matrix must undergo an enhanced review process (see below).

Requests for access to conduct research under a User Agreement at an Office of Science, Energy Efficiency Renewable Energy, or Nuclear Energy User Facility at a non-NNSA DOE laboratory are exempt from the review requirements related to the S&T Risk Matrix discussed below.

- 1. A request for access is reviewed by the site, in coordination with the Head of the cognizant DOE Field Element, to determine if the access request is in an area identified as restricted in the current S&T Risk Matrix before submitting the proposed access request through the standard access request review and approval process promulgated by this Order. When an access request is from a Country of Risk foreign national and in an area identified as restricted in the current S&T Risk Matrix, the cognizant DOE Field Element must agree to proceed with the enhanced review process. Absent this agreement the proposed access request is not pursued any further.
- 2. When the Head of the cognizant DOE Field Element agrees to proceed with the enhanced review process, a justification and clear description of why the access request benefits the U.S. must be prepared. The access request must then be submitted through the appropriate PSO and CSO, with final approval/disapproval being provided by the cognizant Under Secretary or their designee.
- 3. Completion of specialized enhanced vetting conducted by the DOE Office of Intelligence and Counterintelligence (IN) is required prior to final approval of the access request. A copy of the request, along with the required additional information, must be submitted to the cognizant local CI office to support the review. Indices checks will be conducted as part of the specialized enhanced vetting process; therefore, it is recommended the request be submitted 45 days prior to the start date of the access request.
- 4. DOE may consider broad approvals for specific categories of these types of access requests, such as those supported under government-to-government agreements and in line with National Security Council policy guidance, to ensure existing priorities are not unduly impeded.

Order 241.1B - Scientific and Technical Information Management

The Contractor reviews S&T Information generated under the contract to determine appropriate release and handling and apply any necessary statutory or program-driven announcement and/or availability restrictions, including those related to nonproliferation, national security, export control, intellectual property, protected Personally Identifiable Information and privacy. In addition, the Contractor must apply to the STI product any restrictive markings required, include any required legal disclaimers, and, for STI products resulting from DOE-funded work, identify the sponsor as follows: U.S. Department of Energy, [name of DOE program office], [name of DOE subprogram].

Note: Although this order doesn't specifically include reference to the S&T Risk Matrix at this time, the Contractor Requirements Document will be modified as needed, and places the responsibility of determining the process by which S&T Information is reviewed, marked, and controlled, associated with the publication/ release of S&T Information. For research that is determined to be a Restricted S&T topic, this should include a notification to the funding DOE Program Office prior to publication.

Order 481.1E – Strategic Partnership Projects

The S&T Risk Matrix must be reviewed for each proposed engagement with a foreign entity from a Country of Risk to determine if the engagement is in an area identified as restricted. Project exemption requests for foreign-sponsored work with entities from Countries of Risk in areas identified as restricted in the current S&T Risk Matrix must be submitted to the cognizant Under Secretary or his/her designee. Exemptions must be approved by the cognizant Under Secretary or his/her designee prior to initiating a review of foreign-sponsored work under DOE P 485.1A.

Order 483.1B - DOE Cooperative Research and Development Agreements

Review the current Science and Technology (S&T) Risk Matrix for each proposed foreign CRADA project with a foreign entity from a Country of Risk, to determine if that project is in an area identified as restricted. Proceeding with such a CRADA requires an exemption request through the field element, CSO, and PSO for cognizant Under Secretarial approval.

Policy 485.1A – Foreign Engagements with DOE National Laboratories

Restricts DOE National Laboratories from conducting foreign engagements with Countries of Risk in the scientific and technology areas identified as restricted in the current Science and Technology (S&T) Risk Matrix unless an exemption is granted by the Department.

Order 550.1 – Official Travel

Requires a review of the S&T Risk Matrix, for all proposed official foreign travel to a Country of Risk to determine if the travel involves areas identified in the S&T Risk Matrix as restricted.

DOE Order 471.7 – Controlled Unclassified Information

While this Order does not specifically invoke the S&T Risk Matrix, it provides the requirements for how restricted information identified within the S&T Risk Matrix, which is designated as Controlled Unclassified Information Basic, is properly safeguarded.