Access Study Solar Farm Salinas, Puerto Rico

Prepared for PMG and Associates

June 2023

605 Condado Avenue | Suite 814 | San Juan, PR 00907-3814 (787) 724-2494 | (787) 587-9928 | (787) 566-0266 vanessa@vagtecpr.com | gustavo@vagtecpr.com www.vagtecpr.com

TABLE OF CONTENTS

LIST OF FIGURES	2
LIST OF TABLES	2
LIST OF ACRONYMS	3
PROJECT DESCRIPTION	4
ANALYSIS PARAMETERS	9
Study Area	9
Scenarios Analyzed	9
Typical Days	9
Peak Hours (AM and PM)	9
STUDY MATRIX	-
ANALYSIS OF EXISTING CONDITIONS (2023)	
Volumes	
Geometry of Intersections	11
Control of Intersections	
Capacity Analysis of Intersections	
CONSTRUCTION YEAR CONDITION (2024)	
Volumes	
Trip Generation	
Projections	
Geometry of Intersections	19
Control of Intersections	
Capacity Analysis of Intersections	20
RESULTS	
CONCLUSIONS AND RECOMMENDATIONS	
CERTIFICATION OF WORK	30
APPENDIXES	
Appendix A – Raw Traffic Count Data (every 15 minutes) for a 12-Hour Period Tabulated in a	Spreadsheet
Appendix B – Pictures of Intersections	
Appendix C – Results (HCS2010)	40

LIST OF FIGURES

Figure 1 Roadway Network (source: Official Transportation Network Map, 2022)	5
Figure 2 Influence Area, Project's Location, Existing Accesses, and Intersections Analyzed	
Figure 3 Existing Accesses (through PR-706 and PR-3)	
Figure 4 Existing Geometry - Intersection 1	
Figure 5 Existing Geometry - Intersection 2	
Figure 6 Existing Trip Distribution along PR-706	
Figure 7 Trip Generation and Traffic Projections for Access to the Site (Intersection 3)	
Figure 8 Traffic Control of the Access through PR-706 (Intersection 3)	20

LIST OF TABLES

Table 1 Study Matrix	10
Table 2 Summary of Results (2023) – Intersection 1 AM	13
Table 3 Summary of Results (2023) – Intersection 1 PM	14
Table 4 Summary of Results (2023) – Intersection 2 AM	15
Table 5 Summary of Results (2023) – Intersection 2 PM	16
Table 6 Summary of Results (2024) – Intersection 1 AM	
Table 7 Summary of Results (2024) – Intersection 1 PM	22
Table 8 Summary of Results (2024) – Intersection 2 AM	
Table 9 Summary of Results (2024) – Intersection 2 PM	
Table 10 Summary of Results (2024) – Intersection 3 AM	25
Table 11 Summary of Results (2024) – Intersection 3 PM	

LIST OF ACRONYMS

AADT – Annual Average Daily Traffic

ADT – Average Daily Traffic

ATC – Automatic Traffic Counts

CBD – Central Business District

CPD – Cyclists per Day

EB - Eastbound

FHWA – Federal Highway Administration

HCM – Highway Capacity Manual

LOS – Level(s) of Service

LRTP – Long Range Transportation Plan

MOE – Measures of Effectiveness

NB - Northbound

NHS – National Highway System

PPD – Pedestrians per Day

PPH – Pedestrians per Hour

PHF – Peak Hour Factor

PHV – Peak Hour Volume

PRHTA – Puerto Rico Highway and Transportation Authority

PRPB – Puerto Rico Planning Board

SB – Southbound

TMC – Turning Movement Counts

TSS – Traffic Signal System

TWSC – Two-Way Stop Controlled

WB - Westbound

PROJECT DESCRIPTION

Clean Flexible Energy, LLC proposes to build a 240 MV photovoltaics solar system to provide power to PREPA's distribution network. The property consists of twelve (12) parcels with a combined area of 1,844.03 cuerdas, located between PR-53 (to the north), PR-3 (to the south), PR-706 (to the west), and PR-713 (to the east) in the Municipalities of Guayama and Salinas. The proposed project will occupy eight (8) of the twelve (12) parcels in an area of 1,029.63 cuerdas. This operation is not expected to impact the transportation network nearby. The solar farm's construction will generate temporary heavy vehicle traffic during construction.

There are two existing accesses, one through PR-706, with acceleration and deceleration lanes, and one through PR-3.

The project's influence area includes two (2) intersections:

Intersection 1 - PR-3 with PR-706 – unsignalized four-leg intersection with a stop condition on its southbound approach.

Northbound – local street with one shared lane.

Southbound – PR-706 with one shared lane (left and thru movements) and an exclusive right-turn ramp.

Eastbound – PR-3 with one shared lane (right-, thru, and left-turn movements).

Westbound – PR-3 with one shared lane (left and thru movements) and an exclusive right-turn ramp.

Intersection 2 – PR-706 with PR-53 EB Ramps – unsignalized four-leg intersection with regulatory stop signs on the eastbound approach.

Northbound – PR-706 with two thru lanes and one exclusive right-turn ramp. Southbound – one thru lane and one shared lane (thru and left-turn movements). Eastbound – one shared lane (left and thru movements) and one exclusive right turn ramp. Westbound – N/A

The Average Daily Traffic (ADT) on each roadway segment under evaluation was estimated from the data gathered:

<u>Roadway</u>	Estimated ADT
PR-3	10,880 vpd
PR-706	5,376 vpd

PR-706 has 4% and PR-3 has 3% heavy vehicle traffic during peak hours.

S 706 90.8 2.6 (706) 53 87.0 8 COOl 91 CONECTOR 706 CONE PHILLIPS .3 152.9 152.1 148.0 RAL 0.8 3 705 707 BAHIA JOBOS 05

Figure 1 illustrates the project's location and the surrounding roadway network.

Figure 1 Roadway Network (source: Official Transportation Network Map, 2022)

Figure 2 illustrates the influence area, project's location, existing accesses, and intersections analyzed.

Figure 2 Influence Area, Project's Location, Existing Accesses, and Intersections Analyzed

Figure 3 presents the two existing site accesses.

Figure 3 Existing Accesses (through PR-706 and PR-3)

The proposed project is small per the PRHTA's guidelines, with minimum impact on the surrounding roadway network. An access study was prepared to analyze said impact. The analysis included two (2) intersections and the roadway network described previously (Figures 1 and 2). A list of recommendations to mitigate the impact is included as part of this study, following the requirements of Tables III and IV of the "*Guías para la Preparación de Estudios Operacionales de Accesos y de Tránsito para Puerto Rico*" (PRHTA 2004).

The following tasks were completed to attain the study's objectives:

- Traffic counts were collected during 12-hour periods on a typical weekday during the year of the study (2023);
- Peak Hour Factors (PHF) were calculated for each movement of the intersections analyzed;
- Maximum queues were calculated for each approach of each intersection analyzed;

- Traffic signal system timings were calculated for the signalized intersections analyzed;
- results were analyzed; and
- conclusions and recommendations were discussed.

The following tools were used in the completion of this study:

- Trafficware Synchro version 10,
- *"Guías para la Preparación de Estudios Operacionales de Accesos y Tránsito para Puerto Rico,"* Puerto Rico Highway and Transportation Authority (PRHTA), December 2004
- Highway Capacity Manual 2010, Transportation Research Board, 2010
- Highway Performance Monitoring System (HPMS) Functional Classification and Federal Aid Logs
- Puerto Rico Highway Transportation Official Map, 2021
- Manual of Transportation Engineering Studies, Institute of Transportation Engineers, 2nd edition

The document was organized following the outline proposed by the PRHTA in its "Guías para la Preparación de Estudios Operacionales de Accesos y Tránsito para Puerto Rico."

ANALYSIS PARAMETERS

Study Area

An access study was prepared for the proposed project according to the characteristics of the proposed land uses and the trips to be generated. The project is small according to the PRHTA's *Guías para la Preparación de Estudios Operacionales de Accesos y de Tránsito para Puerto Rico*.

Scenarios Analyzed

The study includes the analysis of the existing condition in 2023 and the opening year in 2024.

Typical Days

The turning movement counts were collected on Wednesday, April 19, 2023, from 6:00 AM to 6:00 PM.

Peak Hours (AM and PM)

From the traffic counts collected, morning and afternoon peak hours were determined to be:

Intersection 1 – from 7:15 AM to 8:15 AM and from 3:15 PM to 4:15 PM Intersection 2 – from 6:45 AM to 7:45 PM and from 3:45 PM to 4:45 PM

The tabulation of the raw data, 15-minute vehicle totals, and hourly totals is included in Appendix A.

STUDY MATRIX

The name of the electronic files for each analysis performed through HCS2010 is included in Table 1.

Table	1 Study	Matrix

Name of Electronic Files
Int. 1 Existing 2023 am.xtw
Int. 1 Existing 2023 pm.xtw
Int. 2 Existing 2023 am.xtw
Int. 2 Existing 2023 pm.xtw
Intersection 1 – Construction AM 2024.xtw
Intersection 1 – Construction PM 2024.xtw
Intersection 2 – Construction AM 2024.xtw
Intersection 2 – Construction PM 2024.xtw
Intersection 3 – Construction AM 2024.xhu
Intersection 3 – Construction PM 2024.xhu

ANALYSIS OF EXISTING CONDITIONS (2023)

Volumes

The existing conditions were evaluated in HCS2010, an industry-standard application. Tables 2 to 5 show the input.

Geometry of Intersections

The existing geometry of the two (2) intersections analyzed is presented in Figures 4 and 5. This illustration complements the previous description. Appendix B includes photos of each intersection's approach.

Figure 4 Existing Geometry - Intersection 1

Figure 5 Existing Geometry - Intersection 2

Control of Intersections

Both intersections are two-way stop-controlled (TWSC).

Capacity Analysis of Intersections

The traffic capacity analysis summary of results includes the following performance measures: flow rate, capacity, v/c ratio, 95% queue length, control delay per approach, LOS per approach, control delay per intersection, and LOS per intersection. Tables 2 to 5 present the summary of results for the AM and PM peak hours in 2023.

Table 2 Summary of Results (2023) – Intersection 1 AM

Intersection 1 - AM

Approach		Eastb	ound			West	oound			North	bound		Southbound								
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R					
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12					
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1					
Configuration			LTR			LT		R			LTR			LT		R					
Volume, V (veh/h)		231	341	1		1	250	41		2	1	0		43	0	225					
Percent Heavy Vehicles (%)		3				2				0	0	0		3	3	3					
Proportion Time Blocked																					
Percent Grade (%)			0 0										0								
Right Turn Channelized		N	No Yes								lo			Y	es						
Median Type/Storage		Undivided																			
Critical and Follow-up H	eadwa	ys																			
Base Critical Headway (sec)																					
Critical Headway (sec)																					
Base Follow-Up Headway (sec)																					
Follow-Up Headway (sec)																					
Delay, Queue Length, an	d Leve	of S	ervice	•																	
Flow Rate, v (veh/h)		436				2					6			81		425					
Capacity, c (veh/h)		1084				940					74			131		1041					
v/c Ratio		0.40				0.00					0.08			0.62		0.41					
95% Queue Length, Q ₉₅ (veh)		2.0				0.0					0.3			3.2		2.0					
Control Delay (s/veh)		10.5				8.8					57.7			69.6		10.8					
Level of Service, LOS		В				A					F			F		В					
Approach Delay (s/veh)		8	.2			0	.1			57	7.7			20	0.2						
Approach LOS		А	A A F C								С										

Intersection Control Delay and LOS = 11.32 sec/veh LOS B

Table 3 Summary of Results (2023) – Intersection 1 PM

Intersection 1 - PM

Approach		Eastb	ound			West	oound			North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1			
Configuration			LTR			LT		R			LTR			LT		R			
Volume, V (veh/h)		234	421	5		8	323	57		5	1	4		52	0	138			
Percent Heavy Vehicles (%)		3				0				3	3	3		4	4	4			
Proportion Time Blocked																			
Percent Grade (%)		0 0										0							
Right Turn Channelized		No Yes								N	lo			Y	es				
Median Type/Storage		Undivided																	
Critical and Follow-up H	eadwa	iys																	
Base Critical Headway (sec)		4.1				4.1				4.2	4.2	4.2		4.2	4.2	4.2			
Critical Headway (sec)		4.13				4.10				4.23	4.23	4.23		4.24	4.24	4.24			
Base Follow-Up Headway (sec)		2.2				2.2				2.3	2.3	2.3		2.3	2.3	2.3			
Follow-Up Headway (sec)		2.23				2.20				2.30	2.30	2.30		2.30	2.30	2.30			
Delay, Queue Length, an	d Leve	of S	ervice	•															
Flow Rate, v (veh/h)		390				13					17			87		230			
Capacity, c (veh/h)		1024				899					137			119		982			
v/c Ratio		0.38				0.01					0.12			0.73		0.23			
95% Queue Length, Q ₉₅ (veh)		1.8				0.0					0.4			4.0		0.9			
Control Delay (s/veh)		10.7				9.1					35.0			90.6		9.8			
Level of Service, LOS		В				A					E			F		A			
Approach Delay (s/veh)		8	.1		0.4 35.0						5.0			32	2.0				
Approach LOS		Ļ	4				A			1	E				D				

Intersection Control Delay and LOS = 10.88 sec/veh LOS B

Table 4 Summary of Results (2023) – Intersection 2 AM

Intersection 2 - AM

Approach		Eastb	ound			West	oound	_		North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	0	0		0	1	1		0	2	0	
Configuration		LT		R							Т	R		LT	Т		
Volume, V (veh/h)		6	0	161							159	141		14	133		
Percent Heavy Vehicles (%)		1									1	1		5	5		
Proportion Time Blocked																	
Percent Grade (%)			0 0										0				
Right Turn Channelized		Y	es			Ν	lo			Y	es			N	lo		
Median Type/Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		0.0									6.5	6.2		7.1	6.5		
Critical Headway (sec)		0.00									6.51	6.21		7.15	6.55		
Base Follow-Up Headway (sec)		0.0									4.0	3.3		0.0	4.0		
Follow-Up Headway (sec)		0.00									4.01	3.31		0.00	4.04		
Delay, Queue Length, an	d Leve	l of S	ervice	•													
Flow Rate, v (veh/h)		10									274	243		139	115		
Capacity, c (veh/h)		0									876	1088			869		
v/c Ratio											0.31	0.22			0.13		
95% Queue Length, Q ₉₅ (veh)											1.3	0.9			1.1		
Control Delay (s/veh)											11.0	9.3			10.6		
Level of Service, LOS											В	А			В		
Approach Delay (s/veh)										10).2						
Approach LOS		A	1							1	В						

Intersection Control Delay and LOS = 7.52 sec/veh LOS A

Table 5 Summary of Results (2023) – Intersection 2 PM

Intersection 2 - PM

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	Ľ	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	0	0		0	1	1		0	2	0	
Configuration		LT		R							Т	R		LT	Т		
Volume, V (veh/h)		7	0	107							175	98		10	101		
Percent Heavy Vehicles (%)		7									3	3		0	0		
Proportion Time Blocked																	
Percent Grade (%)											0				0		
Right Turn Channelized		Yes No								Y	es			N	lo		
Median Type/Storage			Undivided														
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		0.0									6.5	6.2		7.1	6.5		
Critical Headway (sec)		0.00									6.53	6.23		7.10	6.50		
Base Follow-Up Headway (sec)		0.0									4.0	3.3		0.0	4.0		
Follow-Up Headway (sec)		0.00									4.03	3.33		0.00	4.00		
Delay, Queue Length, an	d Leve	l of S	ervice	9													
Flow Rate, v (veh/h)		10									246	138		85	71		
Capacity, c (veh/h)		0									871	1081			878		
v/c Ratio											0.28	0.13			0.08		
95% Queue Length, Q ₉₅ (veh)											1.2	0.4			0.6		
Control Delay (s/veh)											10.7	8.8			9.9		
Level of Service, LOS											В	A			A		
Approach Delay (s/veh)										1(0.1						
Approach LOS		Α								Ì	В		A				

Intersection Control Delay and LOS = 7.50 sec/veh LOS A

The results show that both intersections operate well with LOS B or better. Intersection 1's minor crossroad, a local street on the northbound approach, operates at capacity (LOS E) or with recurring congestion (LOS F). This street has such low volumes (3 vph and 10 vph during the morning and afternoon peak hours) that mitigation is unwarranted. Once the project is completed, it will not generate much traffic. The evaluation presented in this study considers the temporary traffic generated during construction. The other intersection approaches operate acceptably with LOS D or better.

The output is included in Appendix C.

CONSTRUCTION YEAR CONDITION (2024)

Volumes

The project's access traffic capacity analysis includes the trips generated by its construction and traffic growth on the local roadway network by 2024, the year the project should be built. A 20-year traffic growth factor of 1.30 was obtained from the PRHTA's Highway Performance Monitoring System's Log (2022) for PR-706 and PR-3. Even though this factor is high, given Puerto Rico's demographic tendencies, it was used as a conservative measure. This results in a traffic growth factor of 1.01 for the opening year (2024). The analysis of trips generated by the project's construction and the projection of traffic growth is described below.

Trip Generation

The analysis of the future condition (2024) includes the trips generated by the project's construction. The client provided a trip generation estimate of 600 daily trips (300 arriving and 300 leaving), all by heavy vehicles.

Figure 6 presents the existing trip distribution along PR-706. The same distribution was considered for the trips generated by the project's construction. Since the analysis is performed for the day's peak hours, it was assumed that 50% of the trips occur during the morning and 50% during the afternoon.

Figure 6 Existing Trip Distribution along PR-706

Projections

Equation 1 (F/P, i%, n) was used to calculate the traffic growth rate.

Equation 1

 $F = P (1 + i)^n$

where:

F = Future AADT P = Present AADT

i = traffic growth raten = number of years in the analysis

Figure 7 Trip Generation and Traffic Projections for Access to the Site (Intersection 3)

Geometry of Intersections

The geometry of intersections 1 through 3 (the existing access to the site through PR-706) will remain unchanged. The geometry of both existing accesses will stay the same.

Control of Intersections

The traffic control of intersections 1 and 2 will remain unaltered. Intersection 3 will continue to be controlled by regulatory stop signs, as shown in Figure 8. This is the access through PR-706 that will be used during construction.

Figure 8 Traffic Control of the Access through PR-706 (Intersection 3)

Capacity Analysis of Intersections

The traffic capacity analysis summary of results includes the following performance measures: flow rate, capacity, v/c ratio, 95% queue length, control delay per approach, LOS per approach, control delay per intersection, and LOS per intersection. Tables 6 to 11 present the summary of results for the AM and PM peak hours in 2024.

Table 6 Summary of Results (2024) – Intersection 1 AM

Approach	1		ound			West	oound			North	bound			South	bound			
Movement	U	L	т	R									U	L	т	R		
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1		
Configuration			LTR			LT		R			LTR			LT		R		
Volume, V (veh/h)		298	344	1		1	253	54		2	1	0		56	0	288		
Percent Heavy Vehicles (%)		4				2				0	0	0		3	3	5		
Proportion Time Blocked																		
Percent Grade (%)										0	0				0			
Right Turn Channelized		N	lo			Y	es			٨	lo			Y	es			
Median Type/Storage				Undi	vided													
Critical and Follow-up H	eadwa	iys																
Base Critical Headway (sec)		4.1				4.1				4.2	4.2	4.2		4.2	4.2	4.2		
Critical Headway (sec)		4.15				4.13				4.23	4.23	4.23		4.24	4.23	4.25		
Base Follow-Up Headway (sec)		2.2				2.2				2.3	2.3	2.3		2.3	2.3	2.3		
Follow-Up Headway (sec)		2.24				2.23				2.30	2.30	2.30		2.34	2.30	2.34		
Delay, Queue Length, an	d Leve	l of S	ervice	•														
Flow Rate, v (veh/h)		562				2					6			106		543		
Capacity, c (veh/h)		1073				935					28			63		1019		
v/c Ratio		0.52				0.00					0.22			1.68		0.53		
95% Queue Length, Q ₉₅ (veh)		3.1				0.0					0.7			9.5		3.2		
Control Delay (s/veh)		12.0				8.9					168.5			474.0		12.5		
Level of Service, LOS		В				A					F			F		В		
Approach Delay (s/veh)		10).8			0	.1			16	8.5		87.9					
Approach LOS	В						A			1	F				F			

Intersection 1 – Construction Year AM

Intersection Control Delay and LOS = 28.98 sec/veh LOS D

Table 7 Summary of Results (2024) – Intersection 1 PM

Approach			ound		<u>.</u>	West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U									L	т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1
Configuration			LTR			LT		R			LTR			LT		R
Volume, V (veh/h)		305	425	5		8	326	75		5	1	4		71	0	185
Percent Heavy Vehicles (%)		3				2				0	0	0		4	4	4
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		No Yes								N	lo			Y	es	
Median Type/Storage		Undivided														
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)		508				13					17			118		308
Capacity, c (veh/h)		1020				884					60			57		977
v/c Ratio		0.50				0.01					0.28			2.06		0.32
95% Queue Length, Q ₉₅ (veh)		2.9				0.0					1.0			11.5		1.4
Control Delay (s/veh)		12.0				9.1					87.7			645.1		10.4
Level of Service, LOS		В				Α					F			F		В
Approach Delay (s/veh)		10).8			0	.3			87	7.7			18	6.2	
Approach LOS		E	3				A				F			(F	

Intersection 1 – Construction Year PM

Intersection Control Delay and LOS = 40.19 sec/veh LOS E

Table 8 Summary of Results (2024) – Intersection 2 AM

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	т	R	U	L	Т	R	U	L	т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	0	0		0	1	1		0	2	0	
Configuration		LT		R							т	R		LT	т		
Volume, V (veh/h)		6	0	200							199	181		14	170		
Percent Heavy Vehicles (%)		1									2	2		5	5		
Proportion Time Blocked																	
Percent Grade (%)								0		0							
Right Turn Channelized		N	lo			Y	es		No								
Median Type/Storage				Undi	vided												
Critical and Follow-up H	eadwa	iys															
Base Critical Headway (sec)		0.0									6.5	6.2		7.1	6.5		
Critical Headway (sec)		0.00									6.51	6.21		7.15	6.55		
Base Follow-Up Headway (sec)		0.0									4.0	3.3		0.0	4.0		
Follow-Up Headway (sec)		0.00									4.01	3.31		0.00	4.04		
Delay, Queue Length, an	d Leve	l of S	ervice	•													
Flow Rate, v (veh/h)		10									343	312		171	147		
Capacity, c (veh/h)		0									873	1084			869		
v/c Ratio											0.39	0.29			0.17		
95% Queue Length, Q ₉₅ (veh)											1.9	1.2			1.5		
Control Delay (s/veh)											11.8	9.7			11.2		
Level of Service, LOS											В	A			В		
Approach Delay (s/veh)										1(0.8						
Approach LOS	oproach LOS A									1	в						

Intersection 2 – Construction Year AM

Intersection Control Delay and LOS = 8.0 sec/veh LOS A

Table 9 Summary of Results (2024) – Intersection 2 PM

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	0	0		0	1	1		0	2	0	
Configuration		LT		R							Т	R		LT	т		
Volume, V (veh/h)		7	0	140							232	130		10	134		
Percent Heavy Vehicles (%)		7									4	4		0	0		
Proportion Time Blocked																	
Percent Grade (%)							1	0		0							
Right Turn Channelized		Y	es			N	lo			Y	es		No				
Median Type/Storage																	
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)																	
Critical Headway (sec)																	
Base Follow-Up Headway (sec)																	
Follow-Up Headway (sec)																	
Delay, Queue Length, an	d Leve	l of S	ervice	e													
Flow Rate, v (veh/h)		10									327	183		109	95		
Capacity, c (veh/h)		0									869	1078			878		
v/c Ratio											0.38	0.17			0.11		
95% Queue Length, Q ₉₅ (veh)											1.8	0.6			0.8		
Control Delay (s/veh)											11.6	9.0			10.2		
Level of Service, LOS											В	A			В		
Approach Delay (s/veh)	pproach Delay (s/veh)									10	0.7						
Approach LOS A										1	В						

Intersection 2 – Construction Year PM

Intersection Control Delay and LOS = 8.16 sec/veh LOS A

Table 10 Summary of Results (2024) – Intersection 3 AM

	Northbound					Southbou	ind			
1	2	3		4		5		6		
L	Т	R		L		Т		R		
	303	77		73		297				
1.00	0.92	0.92	?	0.92		0.92		1.00		
0	329	83		79		322		0		
0				100						
			Raised	d curb						
		0						0		
0	1	1		1		1		0		
	Т	R		L		Т				
	0					0				
	Eastbound					Westbou	nd			
7	8	9		10		11		12		
L	Т	R		L		Т		R		
				73				77		
1.00	1.00	1.00)	0.92		1.00		0.92		
0	0	0		79		0		83		
0	0	0		100		0		100		
	0					0				
	N					N				
	0					0				
		0						0		
0	0	0		1		0		1		
				L				R		
nd Level of Se	ervice									
Northbound	Southbound		Westbo	ound		E	Eastbound	d		
1	4	7	8		9	10	11	12		
~	L	L		_	-					
	79	79		_	-			1		
				_				+		
				_				+		
			<u> </u>					-		
			<u> </u>							
			<u> </u>		_					
		C			в					
		1	16.6	5						
	L 1.00 0 0 0 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 1 1 1.00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 L T 303 1.00 0.92 0 329 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 4 1 4 1 10.2 8 10.2	1 2 3 L T R 303 77 1.00 0.92 0.92 0 329 83 0 0 1 1 0 1 1 0 1 1 0 1 1 7 8 9 L T R 1.00 1.00 1.00 0 0 0 0 0 0 0 0 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 7 1 4 7 1 4 7 79 79	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 3 4 5 L T R L T 303 77 73 297 1.00 0.92 0.92 0.92 0.92 0 329 83 79 322 0 100 Raised curb 0 Raised curb 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1.00 1.00 1.00 0.92 1.00 0 0 0 0 100 0 0 0 0 100 0 0 0 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Intersection 3 – Construction Year AM

Table 11 Summary of Results (2024) – Intersection 3 PM

Major Street		Northbound					Southbo	Southbound					
Movement	1	2	3			4	5		6				
	L	Т	R			L	Т		R				
/olume (veh/h)		276	86			64	210						
Peak-Hour Factor, PHF	1.00	0.92	0.92			0.92	0.92		1.00				
Hourly Flow Rate, HFR (veh/h)	0	299	93			69	228		0				
Percent Heavy Vehicles	0					100							
Median Type			rb										
RT Channelized			0						0				
anes	0	1	1			1	1		0				
Configuration		Т	R			L	Т						
Jpstream Signal		0					0						
Minor Street		Eastbound		Westbound									
Movement	7	8	9			10	11		12				
	L	Т	R			L	Т		R				
/olume (veh/h)						64			86				
Peak-Hour Factor, PHF	1.00	1.00	1.00			0.92	1.00		0.92				
Hourly Flow Rate, HFR (veh/h)	0	0	0			69	0		93				
Percent Heavy Vehicles	0	0	0			100	0		100				
Percent Grade (%)		0					0						
Flared Approach		N					N						
Storage		0					0						
RT Channelized			0						0				
anes	0	0	0			1	0		1				
Configuration						L			R				
Delay, Queue Length, a	and Level of Se	rvice											
Approach	Northbound	Southbound		Westbo	ound			Eastboun	d				
Movement	1	4	7	8		9	10	11	12				
ane Configuration		L	L	-		R							
/ (veh/h)		69	69			93		1	1				
C (m) (veh/h)		785	364			558			<u> </u>				
//c		0.09	0.19			0.17			<u> </u>				
95% queue length		0.29	0.69			0.59			-				
Control Delay (s/veh)		10.0	17.2			12.7							
_OS		B	C			B							
Approach Delay (s/veh)			- V	14.0	6	5							
Approach LOS					~								

Intersection 3 – Construction Year PM

The results of the construction year analysis reveal that Intersection 1 will operate at capacity (LOS E) during the afternoon peak hour due to the traffic increment. The other intersections will operate acceptably (LOS C or better). Since the project's construction traffic will be temporary, we do not recommend mitigation. However, the project owner could request the contractor only to use PR-

53 when traveling to the site. All construction vehicles would arrive through PR-53 to the north, not PR-3 to the south. This would alleviate traffic on Intersection 1 in the afternoon.

RESULTS

An access study was conducted for the construction of the proposed solar farm. The influence area includes two (2) intersections: PR-3 with PR-706 and PR-706 with PR-53 EB Ramps. The development will sit on a parcel that currently has two accesses: one through PR-706 and one through PR-3. No other accesses are proposed. During construction, the intersection along PR-706, which includes auxiliary lanes, will be used.

The study's primary goal was to determine the impact that the project's construction will have on the traffic capacity of the surrounding roadway network.

According to the PRHTA's guidelines, two scenarios were analyzed: existing condition (2023) and construction year (2024).

The analyses conducted show that Intersection 2 has ample capacity to carry the expected construction traffic. If the construction traffic is distributed through PR-53 and PR-3, there will be some impact to Intersection 1, especially in the afternoon. However, this condition will be temporary. Once completed, the development will have minimum effect. The land use proposed (solar farm) does not generate enough traffic to cause an impact.

CONCLUSIONS AND RECOMMENDATIONS

After evaluating the roadways within the influence area, the construction vehicles will have minimum impact. Intersection 1 will experience longer delays in the afternoon. However, since Intersection 2 has ample capacity, most construction vehicles should access the site through PR-53. Once completed, the development will have minimum effect. The land use proposed (solar farm) does not generate enough traffic to cause an impact.

The following recommendations should be implemented:

- ⇒ Include proper temporary control signing to alert drivers of the construction vehicles expected in and out of the site's access through PR-706.
- \Rightarrow Include retroreflective pavement markings at Intersection 3 (site's access through PR-706) as a safety measure for all users.
- \Rightarrow Contractor shall use PR-53 (to the north) to access the site while avoiding accessing the site through the south using PR-3 to connect PR-706.

CERTIFICATION OF WORK

I certify that the information presented herein is true, accurate, and complete, and that it was obtained and analyzed using the criteria of the best practice accepted by the Puerto Rico Highway and Transportation Authority and its Traffic Engineering and Operations Area.

Vanessa Amado, PhD, PE License Number 20887

APPENDIXES

Appendix A – Raw Traffic Count Data (every 15 minutes) for a 12-Hour Period Tabulated in a Spreadsheet

		Spre	eadsl	neet																		
Fil	e Name: I	nt 1 - PR	R-3 with F	PR-706																		
Sta	art Date: V	Nednesd	lay, April	19, 2023	3																	
Sta	art Time: 6	5:00 AM																				
Fini	sh Time: 6	5:00 PM																				
		SE	3			W	3			N	B_1			NB	2			E	В			
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	15-Min	Hourly
6:00 AM	16	0	6	0	9	49	0		C) (-			0 0	0		28	0	145	
6:15 AM	34	0	10	0	14	50	0	0	C				-			0 0	0			0	192	
6:30 AM	41	0	4	0	12	47	1	0	C					0		1 0	4	01	50	0	222	
6:45 AM	52	0	11	0	12	47 43	0		0			· ·	· ·			D 0	2			0	226 229	785 869
7:00 AM 7:15 AM	55 99	0	8	0	10	43	0	-	0		· ·			0		0 0		94	51	0	361	1038
7:30 AM	51	0	9	0	14	61	0						-	0		5 0 5 0			69	0	285	1101
7:45 AM	47	0	14	0	7	67	1	0					-	1		1 0	-		39	0	203	1127
8:00 AM	28	Ő	14	ő	. 9	50	0	ő					-	o		 	-		46	0	238	1136
8:15 AM	21	0	4	0	4	47	1	0	C) () (0 0	0		0 0	2			0	219	
8:30 AM	34	0	11	0	9	44	0	0	C) () ·	I 0	1	0	(0 0	0	71	33	1	205	914
8:45 AM	23	0	12	0	8	46	1	0	C) () () (0 0	0		2 0	1	56	28	0	177	839
9:00 AM	17	0	11	0	14	62	2	0	C) () () (0 0	0			0	60		1	202	803
9:15 AM	20	0	13	0	20	48	0		C				1	0		3 0	2			0	227	811
9:30 AM	20	0	11	0	16	53	2		1					-		0 0	0			0	195	801
9:45 AM	26	0	6	0	5	61	0	-	C) (-	-		2 0	0			0	183	807
10:00 AM	23	0	9	0	15	66	0		C) (0 0	0		0 0	1	15		0	216	
10:15 AM 10:30 AM	17 23	0	4	0	9	58 51	0	0) (· ·	0		1 0 1 0		69 59		•	182 182	
10:30 AM 10:45 AM	23	1	4	0	17	70	2	0								0 0	2			0	182	
11:00 AM	21	1	7	0	14	62	1	0	2		•			-		0 0	1	73		0	202	
11:15 AM	20	0	9	0	12	69	1	0			•			0		0 0	2		25	0	202	
11:30 AM	22	0	8	0	12	71	2	-	1		0 0		-	-		0 0	2			0	232	
11:45 AM	14	1	8	0	12	67	0		2	2 2		2 0	1	0		1 0	2			0	207	850
12:00 PM	31	0	7	0	7	66	2	0	C) ·	1 1	1 0) 1	0		1 0	3	83	27	Ö	230	878
12:15 PM	28	0	7	0	10	78	2	0	1	() () () 1	1		3 0	2	78	36	0	247	916
12:30 PM	21	0	4	0	9	68	1		C		•		0 0	-		0 0	1		32	0	208	892
12:45 PM	29	0	10	0	9	74	0		C					0		0 0	1			0	230	915
1:00 PM	19	0	7	0	5	59	2		C					•		0 0	0			0	210	
1:15 PM	19	0	5	0	14	74	0		C) 1					0 0	1	10		0	221	869
1:30 PM	17	0	14	0	10	75	1		0				0 0			2 0	0			0	233	
1:45 PM 2:00 PM	16 35	0	8	0	10	69 68	0		0				-	0		0 0	0 0		28 45	0	213 266	
2:00 PM 2:15 PM	30	0	6	0	12	71	1	0	1		•	2 0				1 0	2			0	200	933
2:30 PM	34	0	11	0	9	84	1	0) (-	0		3 0	1			0	259	972
2:45 PM	42	0	19	0	18	96	1		0							5 0 5 0	1		44	0	293	1052
3:00 PM	33	0	14	0	14	79	2		0					0		0 0	2			0	284	1070
3:15 PM	33	0	9	0	12	83	4	0	C) 1	0			0			0	283	1119
3:30 PM	32	0	11	0	15	66	2	0	1	. () () () 1	0	(o c	3	125	64	0	320	1180
3:45 PM	42	0	15	0	13	89	2	0	0) 1	I 1	I 0	1	0	(0 C	0	79	45	0	288	1175
4:00 PM	31	0	17	0	17	85	0	0	C) 1	I C	0 0	0	(0 C	2		75	0	357	1248
4:15 PM	31	0	11	0	13	77	1	0	C					-		0 0	-			0	269	1234
4:30 PM	45	0	13	0	11	75	1	0	1					0		0 0		73		0	262	1176
4:45 PM	42	0	13	0	12	69	1	0	1) (0		0 0			41	0	267	1155
5:00 PM	49	0	9	0	9	77	3		0					0		0 0	0		37	0	246	1044
5:15 PM 5:30 PM	33 38	0	7	0	8	73	0	0	0					0		1 0			37 34	0	224 223	999 960
5:30 PM 5:45 PM	38	0	19	0	5	62 56	1	0	1		-		-	0		0	-		34	0	223	960
5.45 PIVI	38	0	8	0		30	0	0	, 1		, (, L	q 1	0		· U	y 2	00	35	0	209	902

Fil	e Name: I	nt 2 - PR	-706 wit	h PR-53 I	EB Ramps	;												
	art Date: \		ay, April	19, 2023														
Sta	art Time: 6	6:00 AM																
Fini	sh Time: 6	6:00 PM																
		SB	3			WB	•			NB	;			EE				
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	15-Min	Hourly
6:00 AM	0	14	1		0	0	0	0	5	29	0	0	13	0	1	0	63	63
6:15 AM	0	16	1		0	0	0	0	14	46	0		25	0	1		103	166
6:30 AM	0	23	2		0	0	0	0	16	44	0		28	0	0		113	
6:45 AM	0	23	6		0	0	0	0	25	33	0	•	40	0	0	-	128	407
7:00 AM	0	34	3		0	0	0	0	23	35	0	-	35	0	2		132	
7:15 AM	0	43	2		0	0	0	0	53	36	0		54	0	0		188	561
7:30 AM	0	33	2		0	0	0	0	40	55	0		32	0	4		166	614
7:45 AM	0	23	3		0	0	0	0	24	27	0		30	0	0		108	594
8:00 AM	0	21	3		0	0	0	0	15	32	0		13	0	5		89	
8:15 AM	0	11	2		0	0	0	0	28	30	0		22	0	3		96	459
8:30 AM	0	23	2		0	0	0	0	17	24	0		18	0	4		88	
8:45 AM	0	18	2		0	0	0	0	15 20	25 25	0		23 11	0	0		83 74	356 341
9:00 AM	0	15	3		0	0	0	0	20	25 40	0		20	0	2		108	341
9:15 AM 9:30 AM	0	16 18	2		0	0	0	0	25 8	40 25	0		20 12	0	4		66	353
9:45 AM	0	20	2		0	0	0	0	0 11	23	0		12	0	2		74	322
10:00 AM	0	12	2		0	0	0	0	9	23	0		10	0	4		62	322
10:15 AM	0	8	1		0	0	0	0	14	23	0		14	0	3		63	265
10:30 AM	0	15	3		0	0	0	0	14	23	0		13	0	3		69	
10:45 AM	0	13	1		0	0	0	0	12	25	0		7	0	1		62	
11:00 AM	0	21	0		0	0	0	0	10	19	0		12	0	0		62	
11:15 AM	0	12	0		0	0	0	0	14	19	0		17	0	1		63	
11:30 AM	0	13	0		0	0	0	0	18	34	0		14	0	3		82	
11:45 AM	0	18	0		0	0	0	0	18	18	0		10	1	2		67	274
12:00 PM	0	20	0		0	0	0	0	19	24	0		10	0	2		75	
12:15 PM	0	17	1	0	0	0	0	0	17	27	0	0	16	0	3	0	81	305
12:30 PM	0	15	3	0	0	0	0	0	10	28	0	0	14	0	3	0	73	296
12:45 PM	0	17	1	0	0	0	0	0	16	26	0	0	17	1	0	0	78	307
1:00 PM	0	19	5	0	0	0	0	0	15	21	0	0	11	0	5	0	76	308
1:15 PM	0	10	2	0	0	0	0	0	15	30	0	0	10	1	2	0	70	297
1:30 PM	0	15	0		0	0	0	0	13	22	0		17	0	6		73	
1:45 PM	0	14	3		0	0	0	0	19	24	0	-	11	0	6		77	296
2:00 PM	0	25	1		0	0	0	0	19	37	0		15	0	5		102	
2:15 PM	0	22	3		0	0	0	0	24	25	0		13	0	0		87	339
2:30 PM	0	27	4	-	0	0	0	0	21	32	0	-	23	0	10	-	117	383
2:45 PM	0	29	0		0	0	0	0	26	30	0		26	0	4		115	421
3:00 PM	0	30	3		0	0	0	0	22	55	0		19	0	1		130	449
3:15 PM	0	31	2		0	0	0	0	23	36	0		13	0	2		107	469
3:30 PM	0	15	0		0	0	0	0	33	46	0		21	0	3		118	470
3:45 PM	0	26	3		0	0	0	0	20	38	0	-	32	0	1	0	120	475
4:00 PM	0	22	1	0	0	0	0	0	34	56	0	-	26	0	2	-	141	486
4:15 PM	0	17	4		0	0	0	0	25	49	0	-	17	0	1	0	113	492
4:30 PM	0	36	2		0	0	0	0	19	32 34	0		32 29	0	3		124	498
4:45 PM	0	24	4		0	0	0	0	18 16	34 33	0	-	29 17	0	3		112	
5:00 PM	0	38 22			0	0							17	1		-	109 93	
5:15 PM 5:30 PM	0	22	0		0	0	0	0	21 16	27 25	0		18	1	4		93	
5:45 PM	0	24	2		0	0	0	0	10	25	0		26	0	3		99	398
3.43 F 1VI	0	20	0	U	0	U	0	0		29	0	U	20	U	3	U	91	290

Appendix B – Pictures of Intersections

Photo 1 Eastbound Approach - Intersection 1

Photo 2 Northbound Approach - Intersection 1

Photo 3 Westbound Approach - Intersection 1

Photo 4 Southbound Approach - Intersection 1

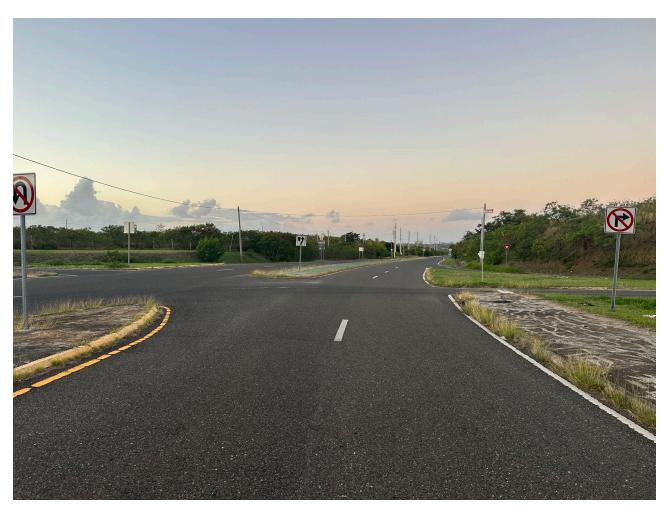


Photo 5 Southbound Approach - Intersection 2

Photo 6 Eastbound Approach - Intersection 2

Photo 7 Northbound Approach - Intersection 2

Appendix C – Results (HCS2010)

		HCS	5 201	0 Tw	/o-W	'ay St	top-(Conti	rol R	epor	t					
General Information							Site	Infor	natio	n						_
Analyst	A Tor	res					Inters	section			PR-3	& PR-7()6			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	West Str	eet		PR-3					
Analysis Year	2023						North	n/South	Street		PR-70	06				
Time Analyzed	7:15 a	a.m.					Peak	Hour Fa	ctor		0.53					
Intersection Orientation	East-	West					Analy	vsis Time	Period	(hrs)	0.25					
Project Description	Int. 1	- Existin	ig 2023 a	am												
Lanes																
				2 4 1 1 4 P		۲ street: Ea										
Vehicle Volumes and Adj	ustme				I								1			
Approach	<u> </u>		bound	_			bound				bound			1	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority Number of Lanes	1U 0	1 0	2	3	4U 0	4	5	6		7 0	8	9		10 0	11	12
Configuration	0	0	LTR	0	0	LT	1	1 R		0	LTR	0		LT		1 R
Volume, V (veh/h)		231	341	1		1	250	41	<u> </u>	2	1	0		43	0	225
Percent Heavy Vehicles (%)		3	541	'		2	230	41		0	0	0		43	3	3
Proportion Time Blocked		5				2				0	0	0		5	5	5
Percent Grade (%)											0				0	
Right Turn Channelized		Ν	lo			Y	es				0 10				es	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)																T
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	l of S	ervice	9												
Flow Rate, v (veh/h)		436				2					6			81		425
Capacity, c (veh/h)		1084				940					74			131		1041
v/c Ratio		0.40				0.00					0.08			0.62		0.41
95% Queue Length, Q ₉₅ (veh)		2.0				0.0					0.3			3.2		2.0
Control Delay (s/veh)		10.5				8.8					57.7			69.6		10.8
Level of Service, LOS		В				А					F			F		В
Approach Delay (s/veh)		8.2 0.1									7.7			20	0.2	
Approach LOS											F				С	

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

		HCS	5 201	0 Tw	vo-W	ay St	top-(Conti	rol R	epor	t					
General Information		_		_		_	Site	Inforr	natio	n		_			_	_
Analyst	A Tor	res					Inters	ection			PR-3	& PR-70)6			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	West Str	eet		PR-3					
Analysis Year	2023						North	/South	Street		PR-70)6				
Time Analyzed	3:15 p	p.m.					Peak	Hour Fa	ctor		0.60					
Intersection Orientation	East-	Nest					Analy	sis Time	Period	(hrs)	0.25					
Project Description	Int. 1	- Existin	g 2023 p	om												
Lanes																
Vehicle Volumes and Adj Approach Movement Priority Number of Lanes	Ustme 0 10 0		oound T 2 1	R 3 0	Majo U 4U 0	r Street: Ea Westl L 4 0	oound T 5 1	R 6 1	U	North L 7 0	bound T 8 1	R 9 0	U	South L 10 0	bound T 11 1	R 12 1
Configuration	Ŭ	0	LTR	0	0	LT		R		0	LTR	0		LT		R
Volume, V (veh/h)		234	421	5		8	323	57		5	1	4		52	0	138
Percent Heavy Vehicles (%)		3	421	5		0	525	- 37		3	3	3		4	4	4
Proportion Time Blocked		5	<u> </u>			0				5	5	5	<u> </u>	4	4	4
											0			(<u> </u>	
Percent Grade (%)		•	lo			V	es				lo			Ye	-	
Right Turn Channelized Median Type/Storage			10	Undi	vided	Ŷ	es			N	10			Ye	es	
				Unu	viueu											
Critical and Follow-up H		-					1		1							
Base Critical Headway (sec)	<u> </u>	4.1				4.1				4.2	4.2	4.2		4.2	4.2	4.2
Critical Headway (sec)	-	4.13				4.10				4.23	4.23	4.23		4.24	4.24	4.24
Base Follow-Up Headway (sec)		2.2				2.2				2.3	2.3	2.3		2.3	2.3	2.3
Follow-Up Headway (sec)		2.23				2.20				2.30	2.30	2.30		2.30	2.30	2.30
Delay, Queue Length, an	d Leve	l of S	ervice	3												
Flow Rate, v (veh/h)		390				13					17			87		230
Capacity, c (veh/h)		1024				899					137			119		982
v/c Ratio		0.38				0.01					0.12			0.73		0.23
95% Queue Length, Q ₉₅ (veh)		1.8				0.0					0.4			4.0		0.9
Control Delay (s/veh)		10.7				9.1					35.0			90.6		9.8
Level of Service, LOS		В				A					E			F		A
Approach Delay (s/veh)		8	.1			0	.4			35	5.0			32	2.0	
Approach LOS										ļ	E			[)	

		HCS	5 201	0 Tw	vo-W	ay St	top-(Conti	rol R	epor	t					
General Information	_	_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_	_
Analyst	A Tor	res						ection		-	PR-5	3 & PR-7	706			
Agency/Co.	VAGt							liction			Salina					
Date Performed	5/3/2	023						West Str	eet		PR-53	3				
Analysis Year	2023						-	n/South			PR-70	06				
Time Analyzed	6:45 a	a.m.					Peak	Hour Fac	ctor		0.58					
Intersection Orientation	East-	West					Analy	sis Time	Period	(hrs)	0.25					
Project Description	Int. 2	- Existin	g 2023 a	am												
Lanes																
Vehicle Volumes and Adju Approach Movement Priority Number of Lanes	Ustme U 1U 0	Eastb L 1	round T 2 1	R 3 1 R	Majo U 4U 0	r Street: Ea Westl L 4 0	ast-West T 5 0	R 6 0		North L 7 0	T 8 1	R 9 1 R	U 0	L 10 0	bound T 11 2 T	R 12 0
Configuration		LT		R							Т	R		LT	Т	
Volume, V (veh/h)		6	0	161							159	141		14	133	
Percent Heavy Vehicles (%)		1									1	1		5	5	
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized		Ye	es			Ν	10			Y	es			N	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		0.0									6.5	6.2		7.1	6.5	
Critical Headway (sec)		0.00									6.51	6.21		7.15	6.55	
Base Follow-Up Headway (sec)		0.0									4.0	3.3		0.0	4.0	
Follow-Up Headway (sec)		0.00									4.01	3.31		0.00	4.04	
Delay, Queue Length, and	d Leve	l of S	ervice	9												
Flow Rate, v (veh/h)		10									274	243		139	115	
Capacity, c (veh/h)		0									876	1088			869	
v/c Ratio											0.31	0.22			0.13	
95% Queue Length, Q ₉₅ (veh)											1.3	0.9			1.1	
Control Delay (s/veh)											11.0	9.3			10.6	
Level of Service, LOS											В	A			В	
Approach Delay (s/veh)										1().2					
Approach LOS											В					

		HCS	5 201	0 Tw	vo-W	ay Si	top-(Conti	rol R	epor	t					
General Information		_	_			_	Site	Inforr	natio	n				_	_	_
Analyst	A Tor	res					Inters	ection	_		PR-53	3 & PR-7	/06			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	Nest Str	eet		PR-53	3				
Analysis Year	2023						North	/South	Street		PR-70	06				
Time Analyzed	3:45	o.m.					Peak	Hour Fac	ctor		0.71					
Intersection Orientation	East-	West					Analy	sis Time	Period	(hrs)	0.25					
Project Description	Int. 2	- Existin	g 2023 j	om												
Lanes	-															
Vehicle Volumes and Adj	ustme	nte			Majo	r Street: Ea	ast-West									
Approach			ound			West	bound			North	bound			South	bound	
	U			п		_	1	D				D			T	D
Movement Priority		L 1	Т 2	R 3	U 4U	L 4	T 5	R 6	U	L 7	Т 8	R 9	U	L 10	11	R 12
Number of Lanes	10					· · ·										0
	0	0	1	1 R	0	0	0	0		0	1 T	1		0	2 T	0
Configuration	<u> </u>	LT	0									R		LT		<u> </u>
Volume, V (veh/h)		7	0	107							175	98		10	101	
Percent Heavy Vehicles (%)		7									3	3		0	0	
Proportion Time Blocked											<u> </u>					
Percent Grade (%) Right Turn Channelized	<u> </u>	V	es				10				0 es) lo	
Median Type/Storage		Y	es	Lindi	vided	۲ ۱	10			Y	es			IN	10	
Critical and Follow-up He				onu	videu											
		-						_			6.5	6.2		74	6.5	
Base Critical Headway (sec)		0.0									6.5	6.2		7.1	6.5	
Critical Headway (sec)		0.00								<u> </u>	6.53	6.23		7.10	6.50	
Base Follow-Up Headway (sec)		0.0									4.0	3.3		0.0	4.0	
Follow-Up Headway (sec)		0.00	•								4.03	3.33		0.00	4.00	
Delay, Queue Length, and			ervice				1				1	1				
Flow Rate, v (veh/h)		10									246	138		85	71	
Capacity, c (veh/h)		0									871	1081			878	
v/c Ratio											0.28	0.13			0.08	
95% Queue Length, Q ₉₅ (veh)											1.2	0.4			0.6	
Control Delay (s/veh)											10.7	8.8			9.9	
Level of Service, LOS											В	A			А	
Approach Delay (s/veh)										1().1					
Approach LOS											В					

		HCS	5 201	<u>0</u> Tw	o-W	ay St	op-0	Contr	rol Re	epor	t_					
General Information							Site	Inforr	natio	n						
Analyst	A Tor	res	_				Inters	ection		_	PR-3	& PR-70)6			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	Nest Stre	eet		PR-3					
Analysis Year	2023						North	/South !	Street		PR-70	06				
Time Analyzed	7:15 a	a.m.					Peak	Hour Fac	ctor		0.53					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Int. 1	- Consti	ruction 2	.024 am												
Lanes																
				741X++U		۲ ۲ Street: Ea										
Vehicle Volumes and Adju	ustme															
Approach		Eastb	bound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1
Configuration			LTR			LT		R			LTR			LT		R
Volume, V (veh/h)		298	344	1		1	253	54		2	1	0		56	0	288
Percent Heavy Vehicles (%)		4				2				0	0	0	<u> </u>	3	3	5
Proportion Time Blocked															<u> </u>	
Percent Grade (%)	<u> </u>					.,					0			(
Right Turn Channelized		Ν	No			Y	es			Ν	10			Ye	es	
Median Type/Storage				Undr	vided											
Critical and Follow-up He	eadwa	-										1				
Base Critical Headway (sec)		4.1				4.1				4.2	4.2	4.2		4.2	4.2	4.2
Critical Headway (sec)		4.15				4.13				4.23	4.23	4.23		4.24	4.23	4.25
Base Follow-Up Headway (sec)		2.2				2.2				2.3	2.3	2.3		2.3	2.3	2.3
Follow-Up Headway (sec)		2.24				2.23				2.30	2.30	2.30		2.34	2.30	2.34
Delay, Queue Length, and	d Leve	l of S	ervice	2												
Flow Rate, v (veh/h)		562				2					6			106		543
Capacity, c (veh/h)		1073				935					28			63		1019
v/c Ratio		0.52				0.00					0.22			1.68		0.53
95% Queue Length, Q_{95} (veh)		3.1				0.0					0.7			9.5		3.2
Control Delay (s/veh)		12.0				8.9					168.5			474.0		12.5
Level of Service, LOS		В				A					F			F		В

10.8

Approach Delay (s/veh)

Approach LOS

0.1

87.9

168.5

F

		HCS	5 201	0 Tv	vo-W	'ay St	top-(Conti	rol R	epor	t					
General Information	_		_	_	_	_	Site	Infor	matio	n	_	_	_	_	_	
Analyst	A Tor	res						ection			PR-3	& PR-7()6			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	West Str	eet		PR-3					
Analysis Year	2023						North	n/South	Street		PR-7	06				
Time Analyzed	3:15 p	o.m.					Peak	Hour Fa	ctor		0.60					
Intersection Orientation	East-	West					Analy	sis Time	Period	(hrs)	0.25					
Project Description	Int. 1	- Const	ruction 2	024 pm												
Lanes																
				J 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		۴ ۱ ۱ ۱ ۱ ۲ Street: Ea										
Vehicle Volumes and Adj	ustme															
Approach		Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	1		0	1	0		0	1	1
Configuration		205	LTR			LT	226	R			LTR		<u> </u>	LT		R
Volume, V (veh/h)		305	425	5		8	326	75		5	1	4		71	0	185
Percent Heavy Vehicles (%) Proportion Time Blocked		3	<u> </u>			2				0	0	0		4	4	4
Percent Grade (%)											0				0	
Right Turn Channelized		Ν	10			v	es				0 10				es	
Median Type/Storage		•	10	Undi	vided						10					
Critical and Follow-up H	eadwa	iys							<u> </u>							
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		508				13					17			118		308
Capacity, c (veh/h)		1020				884					60			57		977
v/c Ratio		0.50				0.01					0.28			2.06		0.32
95% Queue Length, Q ₉₅ (veh)		2.9				0.0					1.0			11.5		1.4
Control Delay (s/veh)		12.0				9.1					87.7			645.1		10.4
Level of Service, LOS		В				A					F			F		В
Approach Delay (s/veh)		1	0.8			C	.3			8	7.7			18	6.2	
Approach LOS											F				F	

		HCS	5 201	0 Tw	o-W	ay St	top-(Conti	rol R	epor	t					
General Information							Site	Infor	natio	n						_
Analyst	A Tor	res					Inters	ection			PR-5	3 & PR-7	706			
Agency/Co.	VAGt	ec					Jurisc	liction			Salina	as				
Date Performed	5/3/2	023					East/	West Str	eet		PR-5	3				
Analysis Year	2023						North	n/South	Street		PR-70	06				
Time Analyzed	6:45 a	a.m.					Peak	Hour Fa	ctor		0.58					
Intersection Orientation	East-	West					Analy	vsis Time	Period ((hrs)	0.25					
Project Description	Int. 2	- Consti	ruction 2	.024 am												
Lanes																
				2 4 1 1 4 5 F U		1 (1 • 17	117									
Vehicle Volumes and Adj	ustme	ents			Мајо	r Street: Ea	ast-West						-			
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	0	0		0	1	1		0	2	0
Configuration	<u> </u>	LT	<u> </u>	R							Т	R	<u> </u>	LT	Т	
Volume, V (veh/h)		6	0	200							199	181		14	170	
Percent Heavy Vehicles (%)		1									2	2		5	5	
Proportion Time Blocked																
Percent Grade (%)					<u> </u>		1.				0				0	
Right Turn Channelized Median Type/Storage		ř	es	Lindi	vided		10			ř	'es				10	
	<u> </u>			Unu	viueu											
Critical and Follow-up H	eadwa	-		1												
Base Critical Headway (sec)	<u> </u>	0.0									6.5	6.2		7.1	6.5	
Critical Headway (sec)	-	0.00									6.51	6.21		7.15	6.55	
Base Follow-Up Headway (sec)	-	0.0									4.0	3.3		0.0	4.0	
Follow-Up Headway (sec)		0.00									4.01	3.31		0.00	4.04	
Delay, Queue Length, an	d Leve	el of S	ervice	5												
Flow Rate, v (veh/h)		10									343	312		171	147	
Capacity, c (veh/h)		0									873	1084			869	
v/c Ratio											0.39	0.29			0.17	
95% Queue Length, Q ₉₅ (veh)											1.9	1.2			1.5	
Control Delay (s/veh)											11.8	9.7			11.2	
Level of Service, LOS											В	A			В	
Approach Delay (s/veh)											0.8					
Approach LOS											В					

		HCS	5 201	0 Tw	vo-W	'ay St	top-(Conti	rol R	epor	ť					
General Information		_			_		Site	Infor	matio	n						_
Analyst	A Tor	res						ection			PR-5	3 & PR-7	706			
Agency/Co.	VAGt	ec					Juriso	liction			Salin	as				
Date Performed	5/3/2	023					East/	West Str	eet		PR-5	3				
Analysis Year	2023						North	n/South	Street		PR-7	06				
Time Analyzed	3:45 p	o.m.					Peak	Hour Fa	ctor		0.71					
Intersection Orientation	East-	West					Analy	vsis Time	Period	(hrs)	0.25					
Project Description	Int. 2	- Const	ruction 2	2024 pm							1					
Lanes																
				J 4 1 4 4 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		The street: Ea										
Vehicle Volumes and Adj	justme				Indje				1				1			
Approach	<u> </u>		bound	-		1	bound			-	bound			1	bound	
Movement	U	L	T 2	R	U 4U	L 4	T	R	U	L 7	Т 8	R 9	U	L 10	T 11	R
Priority Number of Lanes	1U 0	1 0	1	3	40	4	5	6 0		0	0	9		0	2	12 0
Configuration	0	LT	<u> '</u>	R	0	0	0	0		0	T	R		LT	T	0
Volume, V (veh/h)		7	0	140							232	130		10	134	
Percent Heavy Vehicles (%)	-	7	Ŭ								4	4		0	0	
Proportion Time Blocked		,								-	-	-		0		
Percent Grade (%)											0				0	
Right Turn Channelized		Y	′es			Ν	١o				/es				10	
Median Type/Storage				Undi	vided				<u> </u>							
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	l of S	ervice	9												
Flow Rate, v (veh/h)		10									327	183		109	95	
Capacity, c (veh/h)		0									869	1078			878	
v/c Ratio											0.38	0.17			0.11	
95% Queue Length, Q ₉₅ (veh)											1.8	0.6			0.8	
Control Delay (s/veh)											11.6	9.0			10.2	
Level of Service, LOS											В	А			В	
Approach Delay (s/veh)										1	0.7					
Approach LOS											В					

	TW	O-WAY STOP	CONTR		MARY				
General Informatio	n		Site I	nformati	on				
Analyst	VAMADO)	Interse	ection		Intersect	ion 3		
Agency/Co.	PMG		Jurisdi			Salinas			
Date Performed	5/31/2023	3	Analys	sis Year		2024			
Analysis Time Period	AM								
Project Description In	tersection 3 - Co	onstruction Year	A <i>M</i>						
East/West Street: Site	Access			South Stree	et: PR-706	5			
ntersection Orientation:	North-South		Study I	Period (hrs): 0.25				
Vehicle Volumes a	nd Adiustme	ents							
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4	5			6
	L	<u>т</u>	R		L	T			R
/olume (veh/h)		303	77		73	297			
Peak-Hour Factor, PHF	1.00	0.92	0.92		0.92	0.92		1	.00
Hourly Flow Rate, HFR veh/h)	0	329	83		79	322			0
Percent Heavy Vehicles	0				100				
Vedian Type	1	<u>.</u>	•	Raised cu	rb	•			
RT Channelized	1		0						0
anes	0	1	1		1	1			0
Configuration		Т	R		L	Т			-
Jpstream Signal		0				0			
Minor Street		Eastbound				Westbou	Ind		
Movement	7	8	9		10	11			12
	L	T	R		L	T			R
/olume (veh/h)					73	· ·			77
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.92	1.00			.92
Hourly Flow Rate, HFR veh/h)	0	0	0		79	0			83
Percent Heavy Vehicles	0	0	0		100	0		1	100
Percent Grade (%)		0	1			0			
-lared Approach		N	1			N			
Storage	1	0	1			0			
RT Channelized	-	- Ŭ	0			Ť	-+		0
	0	0	0		1	0			1
Configuration					 				R
×			1		L	1			11
Delay, Queue Length, a Approach	Northbound	Southbound	,	Westbound	1		Eastbo	und	
Novement	Northbound 1		7	r	1	10			12
	1	4		8	9	10		·	12
ane Configuration		L	L		R				
/ (veh/h)		79	79		83	ļ			
C (m) (veh/h)		770	312		535				
//c		0.10	0.25		0.16				
95% queue length		0.34	0.98		0.55				
Control Delay (s/veh)		10.2	20.4		13.0				
_OS		В	С		В	1	1		
Approach Delay (s/veh)				16.6	<u> </u>				
Approach LOS									
	 Iorida All Rights Res					Gene			

Copyright $\ensuremath{\textcircled{O}}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6

Generated: 5/31/2023 3:23 PM

	1 **	O-WAY STOP						
General Informatio	n		Site I	nformati	ion			
Analyst	VAMADC)	Interse	ection		Intersecti	on 3	
Agency/Co.	PMG		Jurisdi			Salinas		
Date Performed	5/31/2023	3	Analys	sis Year		2024		
Analysis Time Period	PM							
Project Description Int	tersection 3 - Co	onstruction Year I	PM					
East/West Street: Site	Access		North/S	South Stree	et: PR-70	6		
ntersection Orientation:	North-South		Study I	Period (hrs	s): 0.25			
Vehicle Volumes ar	nd Adjustme	ents						
Major Street		Northbound				Southbou	und	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)		276	86		64	210		
Peak-Hour Factor, PHF	1.00	0.92	0.92		0.92	0.92		1.00
Hourly Flow Rate, HFR veh/h)	0	299	93		69	228		0
Percent Heavy Vehicles	0				100			
Vedian Type				Raised cu	ırb			
RT Channelized			0					0
anes	0	1	1		1	1		0
Configuration		Т	R		L	Т		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	Ind	
Novement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					64			86
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.92	1.00		0.92
Hourly Flow Rate, HFR veh/h)	0	0	0		69	0		93
Percent Heavy Vehicles	0	0	0		100	0		100
Percent Grade (%)		0				0		
-lared Approach		N	1			N		
Storage		0				0		
RT Channelized			0					0
_anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, a	and Level of Se	rvice						
Approach	Northbound	Southbound		Westbound	d		Eastbou	nd
Vovement	1	4	7	8	9	10	11	12
ane Configuration		L	L	- Ŭ	R			
/ (veh/h)		69	69		93			
· /						+		_
C (m) (veh/h)		785	364		558			
//c		0.09	0.19		0.17			
95% queue length		0.29	0.69		0.59	 		
Control Delay (s/veh)		10.0	17.2		12.7			
OS		В	С		В			
Approach Delay (s/veh)				14.6				
			r			1		

Copyright $\ensuremath{\textcircled{O}}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.6

Generated: 5/31/2023 2:50 PM