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Abstract 
This article explores best practices for conducting psychophysical experiments that investigate how 
colour rendition influences the perception of architectural environments. We offer guidance that covers 
all stages of research from preliminary development to publication, focusing especially on experiments 
that investigate qualities such as perceived naturalness, vividness, preference, or acceptability in 
response to changes in the spectral power distribution (SPD) of light sources. This article is intended to 
be a consolidated guide for researchers and reviewers of this type of research. Key recommendations 
include: 1) New work should be motivated by clearly expressed research questions and, when possible, 
explicit hypotheses that build on the existing body of knowledge, 2) Visual stimuli comprising SPDs and 
visual targets should be deliberately engineered to probe the research questions, 3) Experiments should 
be designed to lessen potential biases, 4) Reporting of experimental conditions and statistical analyses 
should be thorough, and 5) Results should be contextual, resisting overgeneralization that cannot be 
supported by the data. Our motivation is to encourage high quality research that is credible and 
discourage poor quality research that slows scientific progress and misuses resources. 
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1. Introduction  
Colour rendition describes the influence of light source spectrum on the colour appearance of objects. 
The ability of a light source to render object colours in desirable ways has attracted much attention in 
the lighting community. Efforts to quantify colour rendition can be traced to the work of Bouma,1 who in 
the 1930s proposed an eight-band method to characterize the similarity between a light sources’ 
spectral power distribution (SPD) and the SPD of a model of daylight. In the more than 80 years since 
Bouma’s first study, many others have endeavoured to advance the theory and practice of how light 
source spectrum affects perceptions of object colour. Researchers have commonly employed 
psychophysical experimental techniques where human participants are asked to evaluate various 
subjective aspects of object colour appearance (e.g. colour preference, naturalness, vividness, 
acceptability) when a laboratory setting is illuminated by light of different SPDs. This article provides 
recommendations on the methods used in this type of research, although many of the 
recommendations are applicable to other experimental paradigms, including field studies, meta 
analyses, and the development of metrics that are intended to predict colour perceptions. 

The number of articles reporting psychophysical experiments on subjective evaluations of colour 
rendition has significantly increased in the last decade, with more than 49 articles published since 
2010,2–50 likely accounting for more than half of the published work of this nature. This intensifying 
interest has at least two causes, both arising because LEDs can have different spectral features than 
predecessor technologies and because the composite spectrum of an LED-based system can be 
engineered with relative ease. First, the scientific community has recognized that the CIE general colour 
rendering index Ra (colloquially, “CRI”) is an inaccurate measure of colour fidelity and has limited utility 
when used alone for characterizing other facets of colour rendition, such as colour preference or colour 
naturalness.51–59 Second, the availability of spectrally-tunable LED-based lighting systems has made it 
practical to generate a wide variety of lighting conditions, allowing researchers to more easily explore 
possibilities. 

Increased interest in psychophysical experimentation on subjective evaluations of colour rendition and 
the ease with which these experiments can now be performed has not necessarily translated into 
improved research quality, a more diverse range of experiments, or more definitive findings. While the 
growing volume of research has increased knowledge and acceptance of the most detectable effects, 
the collective body of work has sometimes produced contradictory results, with widespread publication 
of research that employed questionable methods (by current standards) and overgeneralized the 
results.  

A whirlwind of unfocused research activity leads to increased noise, not increased clarity. For example, 
CIE Ra has been reported to be a very good predictor of perceived naturalness (r > 0.9),12 but also very 
poor for that purpose (r < 0.3).24 Between these two examples, there were substantial differences in the 
colour rendition characteristics of the lighting stimuli, the objects viewed, the apparatus used, and 
procedures followed, so it is not possible to isolate a single factor causing the discrepancy in findings. 
Each of these important aspects of research design is discussed further in this article. Another contrast 
can be observed in reports of the importance of chromaticity for subjective evaluations of colour 
quality. Some studies40,41,60,61 that have employed relatively short periods of adaptation (≤ 1 min) 
coupled with variation in chromaticity between stimuli have reported chromaticity to be a significant or 
even dominant factor, whereas others27,29,44 that have employed procedures with longer periods of 
chromatic adaptation (> 3 mins) with stimuli grouped based on chromaticity have not—again, other 
aspects varied as well. As a third example, the importance of gamut area as a predictor of colour 
preference has been affirmed by some7,62 but revealed to have limitations by others.18,24,37 A key 
methodological difference that may explain the different conclusions is how SPD was operationalized. 
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The goal of this article is not to determine what is “correct,” and evaluation of experimental results is 
not within the scope. Rather, these examples illustrate how research methods may affect experimental 
results, research conclusions, and design practice. 

We were motivated to write this paper to encourage exceptional practices in conceptualization, design, 
implementation, analysis, and reporting of psychophysical experiments on light source colour rendition. 
We hope this manuscript will be of value for those planning studies and for those interpreting the 
results of others. We have tried to avoid duplicating general knowledge, such as best practices for 
psychophysical experiments, statistical analysis methods, open science, or general research quality 
considerations, as these topics are well covered by others, including specific treatment in lighting.63 
Within the length and scope limits of a journal article, we describe what we believe to be the most 
important methodological considerations specifically related to laboratory-based psychophysical 
experiments on the subjective evaluation of scene colour appearance as influenced by light source 
spectrum (i.e. colour rendition).  

2. Conceptualizing Colour Rendition Experiments 
There are many aspects of research conceptualization, including understanding the target audience, 
need, relevance, required effort, available budget, and existing capabilities that are important but not 
the focus of this article. Rather, here we limit our focus to three conceptualization topics: literature 
review and contextualization, developing appropriate research questions, and the difference between 
exploratory and confirmatory research. 

2.1. Literature Review 
To conceptualize new research, it is important to understand the context provided by prior work, and in 
the case of subjective evaluations of colour rendition, there is an extensive body of literature.2–50,62,64–81 
A well-executed and reported literature review should support and justify an experiment by positioning 
the research question(s) within an appropriate historical context and synthesizing past results within a 
contemporary framework. The latter is important, and challenging, because the conclusions of older 
work should not be blindly repeated, as subsequent research with modern methodologies may reveal 
previously unseen issues. For example, previous research indicated that gamut area measures are 
sufficient for capturing subjective qualities related to preference,e.g. 2,62,80,82,83 but newer research has 
shown that such hue-averaged measures are less informative when gamut shape84 is varied.e.g. 

24,27,29,37,38,44 A similar issue has arisen with gamut area and colour discrimination.85,86 An incomplete 
assessment of the body of colour rendition literature could lead to an experimental design that is 
inadequate by today’s standards. 

It is recommended that researchers conduct and report thorough literature reviews that connect the 
present work to the lineage of preceding work, with an emphasis on contemporary work that is directly 
applicable to the research question being posed. The citations included in this article—although not 
exhaustive—were selected to provide a good basis for understanding the body of literature. Further, it is 
recommended that authors scrutinize reviewed literature, including both the methods and results, 
based on current understanding. It is the limitations of past work that often justify new work.  

2.2. Research Questions  
In conjunction with a literature review, experiment planning begins with a question. For example, Judd87 
asked whether some colour shifts are more preferred than others. Houser and colleagues88 asked if a 
light source with proportionally more radiation near the prime colour wavelengths enhances brightness 
and colour perception. Several recent studies inquired about the relationship between colour rendition 
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measures in ANSI/IES TM-3056,89,90 and subjective evaluations of naturalness, preference, and 
vividness.24,27,29,37,44    

As this article continues, we will consider an arbitrary example where a hypothetical research team has 
identified the need to investigate the subjective evaluations of red tomatoes. Some specific research 
questions might be: 

1. Do changes in SPD lead to changes in the preference for the colour of red tomatoes?  
2. What level of chroma maximizes the colour preference of the tomatoes? 
3. Do hue shifts affect the perceived ripeness of tomatoes? 
4. Is colour preference of the tomatoes related to other aspects of the visual appreciation of the 

tomatoes, such as perceived naturalness or saturation? 
5. In what manner does context, such as placing the red tomatoes adjacent to other foods or 

objects, affect the subjective evaluations? 

The choice of the specific questions depends on many of the factors previously mentioned, including 
target audience, budget, and state of prior knowledge. 

2.3. Research Types 
There are two primary classes of research, exploratory and confirmatory,91 each of which has 
appropriate uses.92 Understanding their differences is important for deciphering and weighing the 
results.93  

When limited or no precedent exists, researchers may conduct exploratory research to investigate 
relationships between variables. This may take the form of “If X changes, what happens to Y?” This type 
of research is useful to gain a better understanding of a new or recently defined problem before a 
hypothesis can be solidified. It does not lend itself to conclusive or generalizable results but instead 
helps identify possible new relationships between variables and preliminary estimates of variance, 
which are useful for power analyses for subsequent studies. Exploratory research is most appropriate 
toward the beginning of a line of inquiry, as exemplified in the work of Judd87 and Thornton,94 or the 
early days of a research project, published as a “pilot study” (e.g. Houser et al.,77 Wang and Wei,95 Yang 
and Wei96). It helps sharpen the focus of research questions for subsequent studies. 

Exploratory methods could help answer a question such as, “Do changes in SPD lead to changes in the 
preference for the colour of red tomatoes?” To probe this question, a handful of commercially available 
lamps could be selected (or several could be mixed together) to alter the colour appearance of the red 
tomatoes, the visual stimuli could then be shown to a sample of people, and their ratings of preference 
in response to those changes could be recorded. If the chosen light sources happened to have changed 
the tomatoes’ chroma, it would have provided early evidence that object chroma influences colour 
preference.e.g. 67,68,87,97,98 However, such results should not be interpreted to be predictive of what will 
happen if the same variable is manipulated in a different way in the future.  

Exploratory research might inspire the development of a confirmatory experiment to further investigate 
the findings and establish a causal relationship. Confirmatory experiments typically utilize null-
hypothesis (H0) significance testing and inferential statistics. Statistically, a hypothesis is a statement 
about a probability distribution or a population parameter. Informally, a hypothesis is a statement that 
is true in an alternate, imagined world (the alternate hypothesis, Ha). Continuing the example with the 
red tomatoes, an experimenter might test null and alternate hypotheses such as: 

Null hypothesis, H0: Red chroma shift is not related to the colour preference of red tomatoes 
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Alternate hypothesis, Ha: Increased red chroma is positively correlated with the colour 
preference of red tomatoes 

The experimenter seeks data to support the alternative hypothesis (Ha) and reject the null hypothesis. 
Only through repeated and rigorous attempts to disprove the alternate hypothesis (Ha), and failing to do 
so, can we have confidence that the null hypothesis is likely untrue. It should be noted that a null 
hypothesis (H0) cannot be proven correct but can only be proven unlikely because hypothesis testing is 
based on the falsification theory.99 An effect can only be confidently established within the range of 
conditions studied. So, for example, given contemporary knowledge, we know that the alternative 
hypothesis given above is true up to a specific red chroma level, after which preference will decline as 
chroma shift oversaturates the red appearance of the tomatoes. Such nuance can be captured with 
progressively refined alternate hypotheses, such as: 

Alternative hypothesis, H1: Decreased red chroma is negatively correlated with colour 
preference of red tomatoes 

Alternative hypothesis, H2: Increased red chroma is positively correlated with colour 
preference of red tomatoes, up to a limit 

Alternative hypothesis, H3: If red chroma is increased past a limit, colour preference of red 
tomatoes will begin to decline 

This sequence of alternative hypotheses progressively bracket expectations as knowledge of the 
phenomenon grows. Further refinements of the hypotheses are possible by expressing them in 
quantitative terms; for example, replacing the phrase “red chroma shift” with a measurable quantity 
such as Rcs,h1 from ANSI/IES TM-30-20, and the vague notion of “limit” can be replaced with 
mathematical operators and values, such as: 

Alternative hypothesis, H4:  Colour preference of red tomatoes will be most preferred if -1% ≤ 
Rcs,h1 ≤ 15%, if viewed within a polychromatic environment at an illuminance between 200 and 
700 lx 

Depending on the complexity of the problem and available resources, it may take months, years, or 
decades to defensibly advance the specificity of alternative hypotheses. Given the advanced state of 
research on subjective evaluations of colour rendition, in most circumstances confirmatory research 
should be pursued rather than exploratory research, although there are new branches just beginning to 
be explored. In short, researchers should intentionally vary specific aspects of the visual stimulus based 
on an anticipated effect on the subjective evaluation, rather than simply generating a collection of SPDs 
and seeing what existing metrics best fit the response data. 

3. Designing and Performing Colour Rendition Experiments 
The primary goal of experimental design is to devise a way to answer the research question that is 
credible, repeatable, and produces valuable results. Designing an experiment requires definition of the 
variables, apparatus, procedures, participants, and statistical analyses to be conducted, all in order to 
limit or counteract bias. Bias is the systematic error that causes distortions in the results of a study, 
which can occur throughout the design, participant selection, data collection, measurement, analysis, 
and publication processes.100–102 Experimental design is often an iterative process; as such, the order in 
which specific topics are presented in this section is not a recommended sequence and does not 
indicate the level of importance. 

For confirmatory research, we recommend developing and explicitly documenting an experimental 
design and analysis plan prior to executing a study. This documentation may be internal (i.e. shared only 
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among the research team), or external using a process known as preregistration,103,104 but the key is to 
differentiate between planned and unplanned research. There has been extensive discussion about 
replication in scientific research,105–107 or the fact that many published results, perhaps even a majority, 
are not replicated when the same experiment is repeated. It is evident that choices made by researchers 
regarding the design, conduct, and analysis of experiments—sometimes called researcher degrees of 
freedom—can influence the conclusions,108–111 for example, by increasing chances of false positive 
findings or inflating effect sizes. Carefully designing and thoroughly documenting an experimental plan, 
as well as following the plan exactly, is a strongly recommended practice that can help address the 
replication crisis. 

3.1. Defining and Operationalizing Variables 
Operationalization is the process of defining the variables under investigation, accompanied by an 
explicit method of measuring such variables. Variables fall into three major categories: independent (i.e. 
the “causes”), dependent (i.e. the “effects”), and control. Independent variables are systematically 
manipulated in controlled experiments or thoroughly measured and reported in field studies. Dependent 
variables—also referred to as dependent measures—are the responses of interest, and may include 
perceptual, behavioural, or physiological outcomes. Control variables are known sources of variation, 
but of peripheral interest to the active study, and are intentionally fixed. They are held constant 
because, if not, they could confound results and make it difficult or impossible to make credible 
inferences between cause and effect. They can also help constrain the scope of a project. When a factor 
is not well controlled and not systematically manipulated, it becomes an uncontrolled or nuisance 
variable, which can harm the credibility of an experiment and the veracity of the results.  

In the example of the red tomatoes, operationalization requires specifying the aspects of the SPD that 
will be varied to form the independent variable, such as Rcs,h1 according to the H4 hypothesis. It also 
requires precisely specifying the dependent measures, such as a numerical rating scale from 1 to 10 
where 1 is least preferred and 10 is most preferred. Finally, it requires identifying lighting and non-
lighting aspects that must be held constant to avoid creating a confounding variable, such as 
illuminance, gamut shape, or the tomatoes being evaluated (among others).  

3.1.1. Types of Independent and Control Variables 
In typical experiments on subjective evaluations of colour rendition, essentially all lighting-related 
characteristics should be designated as independent or controlled variables—or as a last resort, as 
uncontrolled variables. The large variety of lighting conditions that can be manipulated or controlled by 
lighting researchers can be summarized in four major categories: spatial, temporal, intensity, and 
spectral. Spatial relates to the geometric patterns of optical radiation in an observer’s field of view. 
Temporal relates to the duration of exposure to optical radiation and the timing of that exposure. 
Intensity relates to the quantity of optical radiation. Spectral factors, dominant in colour rendition 
research, concern the wavelength distribution of optical radiation as described by a light source’s SPD. 
Optical radiation is normally weighted by an appropriate spectral weighting function to convert 
radiometric units to photometric, colorimetric, or physiological quantities intended to correlate with a 
perceptual or biological response.  

While this manuscript focuses on experimental design considerations related to spectral factors, this 
does not diminish the importance of spatial, temporal, and intensity factors. We encourage review of 
other sources that treat those variables with greater detail.e.g. 63,112 A researcher may intend to vary only 
one or a few aspects of the illumination, but because variables are related, care is needed to ensure that 
intentional variation of one aspect does not produce unintentional variation in another. For example, 
light source spectrum often varies with dimming state. If not controlled, spectrum and intensity may be 
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confounded, making it impossible to make independent inferences about either. Therefore, mechanical 
dimming is often employed in research where spectrum and light level must both be controlled.e.g. 

15,37,113 

3.1.2. Quantifying Independent and Control Variables 
Almost all research about perceptions of colour rendition involves varying the SPD of the light. While 
readily measured, SPD is still an infinitely complex independent variable. SPD is not particularly useful as 
a variable on its own because, for the purpose of operationalization, SPD must be reduced to a set of 
numbers that are expected to relate to one or more human responses. We recommend the following 
methods for characterizing many aspects of SPDs, which are rooted in the consensus recommendations 
of the International Commission on Illumination (CIE from its French title, Commission Internationale de 
l´Eclairage), Illumination Engineering Society (IES), and NEMA (National Electrical Manufacturers 
Association) that follow either ISO (International Standards Organization) or ANSI (American National 
Standards Institute) protocols and are recommended for scientific use: 

• Chromaticity expressed with correlated colour temperature (CCT)114 and the distance of the light 
source chromaticity from the Planckian locus, Duv.115,116 Chromaticity can be equivalently 
expressed with CIE 1931 (x, y) or 1976 (u', v') chromaticity coordinates using the CIE 1931 2° 
standard observer, though context may also make it more suitable to employ the CIE 1964 10° 
standard observer or one of the CIE 2015 cone-fundamental-based tristimulus functions.114 

• An average measure of colour fidelity. For accurate scientific use as expected in a peer-reviewed 
journal, Rf from CIE 224:2017 and ANSI/IES TM-30-20 should be employed.56,58,89,90 

• A measure of relative gamut area, such as Rg from ANSI/IES TM-30-20.56,89,90 
• Measures of chroma and hue shifts, such as Rcs,hj and Rhs,hj from ANSI/IES TM-30-20,84,89 which 

relate to gamut shape and have been shown to be crucial for predicting subjective evaluations 
of colour rendition.e.g. 16,18,24,37  

• An average measure of “red” fidelity, such as Rf,h1 from ANSI/IES TM-30-20. 
• A measure of the absolute quantity of illumination, such as luminance or illuminance. If this 

varies spatially (across the scene) or temporally (across parts of the experiment), then such 
variation should be documented. The specific measure of quantity may vary with application. 
Illuminance is commonly used in laboratory-based colour rendition studies; luminance is 
commonly used in exterior or roadway lighting studies.  

• Measures of photopigment responses weighted by α-opic action spectra,117 in accordance with 
recent reporting guidance.118 There is emerging evidence that response of intrinsically-
photosensitive retinal ganglion cells, for example, may contribute to color perception.119,120 

Beyond these requisites, other measures that are applicable should be reported. For example, other 
measures from ANSI/IES TM-30-20 may be relevant for specific objects, and reporting non-standardized 
measures is important when experimenting on the performance of new methods for evaluating light 
source colour rendition. Additionally, even though it is not recommended for scientific use, researchers 
may want to report Ra or other measures from CIE 13.3-1995 that are still used in professional practice. 

Many SPD-derived quantities are documented in the scientific literature. The examples given below 
have, to date, not been adopted through a consensus-based process, but they offer unique information 
not currently covered with standardized measures and may have utility for research on subjective 
evaluations of colour rendition. Therefore, we recommend using and reporting these measures as 
appropriate: 

• Alternative systems for quantifying light source chromaticity, based on a standard observer that 
is more representative of the experimental conditions (i.e. larger field of view). e.g. 121–124 
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• Metrics quantifying metameric mismatch or metameric uncertainty. e.g. 125,126 
• Metrics of colour discrimination. e.g. 86 
• Metrics of colour preference.e.g. 3,51 
• Ability of the source spectrum to excite fluorescent whitening agents (FWAs). e.g. 113,127,128 

We expect continued refinement and debate about how to reduce light source SPDs to a set of numbers 
that correlate with human responses in laboratory and/or real-world settings, are simple to 
communicate, and are valuable for lighting practice. That is, we anticipate new research will continue to 
probe the effectiveness of existing and new non-standardized measures. We view this positively and are 
optimistic for future innovation that builds upon present knowledge. That said, we believe it is prudent 
to employ consensus-based measures as the building blocks for new understandings, which can provide 
continuity and a solid foundation for design practice. For example, a subset of the measures from TM-30 
were shown by three separate laboratories to correlate with salient aspects of colour rendering 
perceptions,24,27,29,37,44 findings that were amalgamated into specification guidance (IES TM-30 Annex 
E).89 The amalgamation of the findings from those five studies was possible because the different 
laboratories operationalized SPD using common measures. New measures should be investigated within 
the context of the many existing tools that are at the disposal of researchers, and we discourage a new 
metric being proposed based on data-fitting to each new experimental result. 

3.1.3. Operationalizing Independent Variables 
In operationalizing the independent variable(s), a researcher must choose the assigned values, or levels, 
of the variable(s). In the example of an experimenter studying the relationship between the colour 
preference of red tomatoes and light spectrum, the experimenter should operationalize light source SPD 
into a variable or variables that will, based on an a priori theory, be expected to relate to a subjective 
quality of the colour appearance. The experimenter might choose Rcs,h1 from TM-30, which characterizes 
chroma shift in nominally “red” colour evaluation samples. In another scenario where a researcher is 
trying to contrast the performance of existing and newly proposed evaluation methods, SPD can be 
operationalized based on the difference between measures. 

The levels of the independent variable(s) should relate to current scientific understanding. With respect 
to the tomato example, if there was no prior knowledge about desirable colour appearance of red 
objects, then an experimenter might choose a range of red chroma shift beyond what would be 
expected in real settings, such as Rcs,h1 = -25% to 25%. If substantive differences in perception were not 
found within those two extremes, then it would be difficult to justify further study. Importantly, many 
colour rendition perception phenomena are non-linear, and two SPDs inducing shifts in opposite 
directions may be preferred equally, precluding the detection of an effect without an intermediate level. 
If a substantive difference were found, the researcher would be empowered to continue the research 
using more refined levels within a range of interest to real settings, such as Rcs,h1 with levels of -5%, 0%, 
5%, 10%, 15%, and 20%. Such a range should provide information about preference as a function of 
Rcs,h1.  In this example the levels were fixed at discrete intervals, but that is not a strict requirement. If an 
adjustment task were employed (see Section 3.1.5), participants could be given freedom to set the level 
of the independent variable within the range of an upper and lower bound. 

Operationalization of independent variables and definition of their levels must be done with knowledge, 
control, and characterization of other variables that may concurrently change and become sources of 
confounding and experimental error. Figure 1 demonstrates the operationalization of SPD where gamut 
shape is varied but average colour fidelity (Rf) and gamut area (Rg) are constant, presenting a confound 
that could be detrimental to external validity. In the hypothetical experiment studying subjective 
evaluation of the colour appearance of red tomatoes, chromaticity and illuminance—through visual 
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adaptation mechanisms discussed in section 3.3.3—might also affect evaluations and should therefore 
be controlled. An important concern for research on the subjective evaluation of colour rendition is that 
it may be impractical or impossible to hold some other spectrally derived measures constant while 
varying one specific parameter, since colour shifts occur in a pattern and measures of colour rendition 
are not independent. In the case of the red tomatoes, all other aspects of colour rendition cannot be 
held constant while varying red chroma; minimally, it would be important to maintain systematic 
chroma shifts in other hue bins, which could be demonstrated graphically for all SPDs and by reporting 
relevant covariates including average colour fidelity and gamut area. 

  

Figure 1. Four SPDs that are nearly identical on some spectrally derived quantities while being substantially 
different on other spectrally derived quantities, illustrating the exquisite care that is needed to operationalize 
SPD using derived measures. All four SPDs have IES TM-30-20 Rf = 80.4, Rg = 100 ± 0.5, and CCT = 3492 ± 3 K. SPDs 
(A) and (B) also have equivalent Duv, making them metameric to the CIE 1931 Standard Observer, but they vary 
in gamut shape: Rcs,h1 for (A) is -10% and Rcs,h1 for (B) is +10%. SPDs (B), (C), and (D) all have Rcs,h1 = +10%, but 
they vary in Duv: (B) is nearly on the Planckian locus with Duv = 0.0001, (C) is markedly above the Plankian locus 
with Duv = 0.025, and (D) is markedly below the Plankian locus with Duv = -0.025. The melanopic efficacy of 
luminous radiation (kmel,v) for SPD (D) is 49% greater than for SPD (C); thus, for this pair, melanopic content is 
confounded with Duv. SPDs were generated using an array of ten commercially available LED emitters. The SPDs 
shown have been scaled to 1000 lumens. 

We emphasize that there is a serious risk of confounding, or even the creation of nonsensical variables, 
when operationalizing SPDs using derived measures. For example, two sources may have the same CCT, 
but very different chromaticity. Further, neither CCT nor chromaticity offers much insight about a 
source’s colour rendition. Even when chromaticity is controlled, two sources may have the same 
average colour fidelity and gamut area but render objects very differently. This could occur if one source 
increases red chroma and the other source decreases red chroma, for example, like the SPDs in Figure 1. 
These examples suggest the need for meticulous care when manipulating and operationalizing SPDs 
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using derived measures as independent variables. At a minimum, colour fidelity, gamut area, gamut 
shape, and illuminance should be specified. This expectation is likely to change as science progresses. 
Modern colour rendering research requires experimenters to employ optimization software to generate 
SPDs that simultaneously satisfy multiple criteria, after which the spectra can be physically realized, then 
carefully calibrated, measured, and monitored throughout the experiment. 

The process of operationalizing SPDs using derived measures also establishes the limits of 
generalization, or the applicability of the results to situations outside the experiment. When the 
operationalization requires a narrow range of conditions, as may be necessitated by a budget- or time-
constrained study, the results should not be generalized outside the range examined. Sometimes these 
limits are obvious; for example, if a study only presents Rg values between 90 and 110, it should be clear 
that the results may not apply for a light source with Rg of 120. Sometimes, generalization can be limited 
even within the range of the variable tested. For example, if only colour fidelity or only colour gamut are 
varied, no generalized conclusion can be drawn beyond the specific SPDs used because there are 
substantial differences in colour shifts that lead to the same average value. For these reasons, sampling 
colour rendition space by considering—at a minimum—average color fidelity, gamut area, and gamut 
shape, is recommended. Future work may reveal that additional parameters are necessary, as being 
equal in those three aspects may not always lead to equal perceptions. 

3.1.4. SPD, Visual Targets, and the Visual Stimulus 
While SPD is most often the manipulated factor in subjective evaluations of colour rendition, the visual 
stimulus being evaluated is a result of the interaction between the light source, the experimental object 
set, and the receiver. The source is characterized with a light source SPD. Objects modify a source SPD 
through reflection, transmission, scattering, and/or fluorescing. This spectrally modified light becomes 
the actual visual stimulus of the receiver, the human visual system of the experimental participant(s). 
The human visual system takes optical radiation as input and constructs colour perceptions based on 
complex neurological responses that include photopigment responses, photoreceptor signals, brain 
processing, experience, adaptation, and contextual factors. Each of these can be characterized to a 
certain degree, but with increasing uncertainty in the transmission from sources, to objects, to the 
human visual system, to perception. Complexity and uncertainty also increase as the experimental 
setting approaches naturalistic viewing conditions. 

The proliferation of portable spectroradiometers has made it relatively easy to measure and report light 
source SPDs and the spectral reflectance functions (SRFs) of objects. Characterization of real-world 
scenes is complicated by the fact that real environments are not monochromatic and gaze direction is 
constantly changing. Thus, even if the SRF of all surfaces in an experimental setting were to be 
characterized, the composite visual stimulus will still vary with gaze direction. Hyperspectral imaging has 
the potential to better characterize the visual stimulus experienced by research participants,e.g. 129 but it 
has not been widely applied in research about colour rendition. 

Researchers often quantitatively ignore SRFs even while acknowledging the relevance of spectral 
interactions between objects and light sources on perceptions of colour—which can have real 
implications for experiments.130 The argument in favour of making inferences based directly on light 
source SPDs is a desire to be able to relate perceptions of colour quality directly to light sources 
independent of the end-use application. If typical polychromatic environments are considered that are 
not too different from the environment employed in an experimental study, then this approach has 
ecological validity. However, it is important to refrain from overgeneralizing. For example, if a 
researcher studies colour preference of paintings, the hue, chroma, subject matter, and genre of the 
paintings studied, as well as the illuminance and surround conditions of the painting, should all be 
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expected to influence perceptions—this will constrain the ability to apply conclusions to other paintings 
in other contexts. Finally, using object sets that are not polychromatic, such as only skin tone, or do not 
have context (such as an X-rite Colour Checker Chart), may limit the general applicability of the results, 
even if they are informative for a specific scenario. Object selection is discussed further in Section 3.2.2.  

3.1.5. Dependent Measures 
Psychophysics aims to measure perception and performance by linking perceptual experiences with 
physical stimuli using psychometric scales. There are several important concepts. Validity concerns 
whether the measurement tool captures the concept intended, without unintentionally overlapping 
with other concepts. Face validity concerns whether the measurement looks like it ought to measure 
what is intended. For example, evaluating colour perception in the absence of coloured objects does not 
have face validity. Face validity is a necessary first step, but it is inadequate on its own. A psychometric 
scale should also exhibit convergent validity (i.e. it should correlate with other concepts to which it is 
logically related) and discriminant validity (i.e. it should not correlate with other concepts to which it is 
not logically related). Reliability concerns both the internally consistency of the psychometric scale and 
its repeatability—if the same person responds repeatedly to the same conditions using the same scale, 
the responses should be the same. Refer to Ghiselli et al.131 for a more thorough treatment of these 
concepts.  

For experiments on the subjective evaluation of colour rendition, the dependent measures are 
perceived attributes of the visual environment. The most studied attributes have been preference and 
naturalness, but others include vividness, colourfulness, saturation, normalness, fidelity, acceptability, 
attractiveness, pleasantness, and suitability. These adjectives can anecdotally be divided into three 
categories: desirability, vibrancy, and similarity to a reference. However, a lack of consistent terminology 
between studies, and no concerted effort to understand if terms are truly interchangeable or valid—
with some evidence against132—has introduced uncertainty when trying to make inferences from the 
larger body of literature. We recommend more research explicitly aimed at understanding the 
relationships between these constructs. 

The subjective experience attributed to each iteration of the independent variable(s) can be obtained 
with passive judgements and active adjustments. Classical psychophysical methods can be grouped 
depending on the stimulus-participant interaction and the presence of a reference stimulus, as shown in 
Figure 2. In a judgment task participants are asked to classify the stimulus with a reference condition 
(e.g. two-alternative forced-choicee.g. 12,13,16,28,30,39,43 ) or without a reference condition (e.g. rating scalee.g. 

29,32,37,44). Forced choice and rating scales are the two most common methods used in experiments on 
the subjective evaluation of colour rendition. In an adjustment task, participants actively adjust the 
stimulus to satisfy a criterion, but experiments on the subjective evaluation of colour rendition have 
almost exclusively relied on judgment tasks, given the difficulty in parameterizing SPD to allow easy 
adjustment.  

Both rating scale and forced choice tasks have unique considerations in terms of their precision, 
efficiency, and biases. The choice between them requires simultaneous attention to the apparatus and 
procedures to be followed, as discussed in subsequent sections. 

The precision of ratings scales can be affected by the difficulty and interpretation of the task and the 
measurement scale, especially in the absence of a reference condition.133 Addressing this requires 
emphasis on carefully constructing and conveying to participants how to employ the scale, particularly 
the endpoints or individual categorical descriptors. Anchoring with visual examples can help.134,135 There 
has been considerable research on the development of effective rating scales, covering topics such as 
the number of points, the order of verbal labels, and the availability of a neutral response.136–139 Choices 
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in scale development can also influence how the data should be analysed, as subsequently discussed. In 
general, we recommend presenting ratings scales such that they are interpreted as interval, including at 
least five values136 (or using a continuous slider scale) and avoiding assigning words to intermediate 
points on the scale. This approach is more conducive to the use of parametric statistics—assuming all 
other statistical assumptions are met—which can be controversial for rating scale data (see Section 4.1).  

 

 
Absolute Evaluation 
Stimulus viewed alone with no other point 
of comparison 

Relative Evaluation 
Stimulus viewed along with a point of 
comparison (temporal or spatial 
separation)  

Passive  
No interaction with stimulus 

Rating 
Examples: Likert scale, semantic 
differential, magnitude estimation, yes/no 
response 

Discrimination 
Examples: Forced choice, difference rating 

Active  
Interaction with stimulus 

Magnitude Production 
Example: Adjust meet to threshold along a 
colour percept 

Matching 
Examples: Adjust stimuli to equal colour 
percept, matching null conditions 

Figure 2. Examples of psychophysical methods that could be employed in experiments on the subjective 
evaluation of colour rendition. This figure is not exhaustive of all possible methods. 

 
Rating scales can be used for independent presentation of stimuli, or with paired/simultaneous viewing 
of stimuli where one stimulus serves as a reference against which the other stimulus is rated. Even when 
faced with the same pair of lighting conditions, variance in the responses can be affected by the 
presentation format, such as rapid sequential presentation or simultaneous side-by-side 
presentation.140,141 A forced choice task always requires the presentation of at least two stimuli. By 
having participants repeatedly making choices about different combinations of stimuli, a rating or 
ranking of the perceived attribute can be obtained. However, the analysis is more involved than simply 
converting the categorical judgements to scale data (see Section 3.4). While using a binary choice may 
ease the cognitive load of the task, simultaneous viewing of stimuli further reduces tolerances for 
controlled variables and creates a situation with mixed adaptation of the visual system (see Section 
3.3.3).  

3.2. Apparatus 

3.2.1. Physical space 
Colour rendition experiments are typically conducted in controlled, confined spaces, such as a booth or 
a room. Both can be used to present simultaneous or individual stimuli, but they have important 
differences. Booths accommodate a smaller number of objects and result in a less immersive 
experience. Rooms usually provide a larger field of view, greater freedom of gaze direction, the potential 
for more objects, and increased spatial complexity, so they may be better suited for investigating 
contextual factors. Either booths or rooms can be an effective tool, depending on the specific research 
question being asked, so we do not universally recommend one over the other. Although no 
experiments have been completed that directly compare the two apparatus styles, there is some 
evidence to suggest they provide compatible results when other factors are similar.e.g. 24,37,135 
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Beyond the physical size of the apparatus, the configuration of the apparatus into one, two, or more 
individual spaces is an important factor that intersects with other key procedural details. Both single-
scene and side-by-side viewing have been widely used. Direct comparison of the configuration is 
challenging because they are often used with different procedures (e.g. rating versus choice, as 
described in Figure 2), and simultaneous viewing of multiple scenes can create a different adaptation 
condition (see Section 3.3.3). 

In the case of the red tomatoes, either a booth or a room could be a suitable apparatus. A booth would 
allow narrower focus on one or a small number of tomatoes, whereas a room filled with a variety of 
vegetables simulating a supermarket might offer a more contextualized stimulus. If the study is targeting 
sales or appreciation in a supermarket context, then it would be worth considering running the 
experiment in an appropriate vignette.  

3.2.2. Objects 
In colour rendition research, all physical entities in an architectural space, including people and the 
walls, should be considered as objects being evaluated. The objects are integral part of the visual 
stimulus (see Section 3.1.4) and thus require careful consideration during experimental design.130 
Objects contribute to a simple or complex stimulus and an experiment can contain only a limited 
number of them. Therefore, selecting a sample that is representative of the population of object 
characteristics in a target application is necessary to answer the primary research question. Choosing 
objects that span the colour volume, or at least the hue-chroma plane, is often useful when attempting 
to develop generalized recommendations for architectural lighting practice. 

It is also recognized that no one set of objects or colours is a definitive representation of a particular 
lighting application. Thus, any one set of objects is insufficient to make generalized colour rendition 
recommendations for a specific application. Because there is limited ability to create visual scenes of 
different application but equivalent colour composition, it is difficult to conclusively demonstrate 
application specificity in subjective evaluations of colour rendition. Nonetheless, it is evident that 
subjective evaluations can vary from one scene to the next, even within a given application. For 
example, the appearance of different paintings may be viewed most favourably with different colour 
rendition,6 even though they would both fall under the application of museum lighting. 

Colour psychology can play an important role in colour rendition research, with different hues carrying 
different meaning and importance.142 Several colour rendition experiments have confirmed the weight 
placed on nominally red objects.2,16,18,24,27,44,143 If red objects are omitted or are used exclusively, 
however, the results may not be applicable to general architectural lighting applications, because while 
red tends to be dominant, it is not the exclusive driver of perception. Attention should also be paid to 
the chroma of objects, balancing across hues and potentially varying within hues. In the case of the red 
tomatoes, any results about the significance of a particular colour rendition measure as a predictor, or 
establishment of desirable levels of a given measure, should not be suggested to have validity for other 
applications—and may have little benefit for lighting practice. 

Another important consideration in the creation of a sample of objects, particularly for a small number 
of objects, is metamerism. Any single object may not represent the central tendency of shift for a group 
of objects with the same nominal hue, or even the same colour coordinates. This may influence the 
external validity of an experiment. For example, the colour shift of a red tomato is unlikely to be 
identical to the shift of one or more standardized colour samples used to calculate a measure of red 
chroma shift, such as Rcs,h1 in TM-30 (which is an average of several colour evaluation samples with 
similar hue angles). Depending on the degree of mismatch, the standardized calculation may not 
represent the change in the visual stimulus. Further, two similarly coloured objects, represented by the 
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same standardized measure, could shift in opposite directions, potentially leading to undesirable 
mismatch that is not effectively characterized with typical measures of colour rendition; this is a topic of 
current research.125,144,145 

We recommended carefully measuring SRFs and documenting the expected visual stimulus. Custom 
versions of familiar measures of colour rendition can be calculated by swapping the standardized colour 
evaluation samples for the SRFs of experimental objects (or another set of colour samples), as 
exemplified by Royer and Wei.130 Alternatively, it is possible to report individual shifts in the appearance 
of objects using colorimetric tools, such as colour difference or chroma shift formulae.e.g. 21,26-30,34,70 This 
practice can help identify unusual behaviours—or a mismatch between the experimental stimulus and 
standardized characterization of the stimulus—before an experiment begins, and is generally valuable 
when reporting the results. If the customized measures are substantially different from the standardized 
measures, using the experimental results to establish generalized criteria with the standardized 
measures is less reliable. 

For red tomatoes, it would be important to consider the specific type of tomato being evaluated, as 
there are many varieties. There are also concerns about freshness or ripeness, as colour is an important 
indicator of state for fresh foods.146 Further, it is important to reiterate that average measures, like Rf 
and Rg, have little predictive power for the colour appearance of specific objects. 

In past research, the objects have included standardized colour swatches (e.g. X-rite Colour Checker), 
packaged goods, fresh produce, clothing, artwork, and human skin complexion. For some objects that 
people have frequently seen in the past (i.e. familiar objects), participants have an internal memory that 
helps establish expectations for the appearance and makes the object carry more subjective meaning 
and have more influence on overall scene evaluation.24,27 Evaluation of familiar objects may also reduce 
variability and thus provide a more conclusive result. However, sometimes particular objects can have a 
substantial colour shift or notable contrast with its surround that can elevate its importance in 
subjective evaluations.44 Nonetheless, memory colours can be shifted in time even for familiar 
objects.147,148 Therefore, solely depending on long-term memory may not be appropriate. For unfamiliar 
objects without an internal memory reference, as with colour samples, evaluators must rely on 
contextual factors alone to make judgements. In most cases, subjective evaluations of context-less 
objects (e.g. colour swatches in isolation) will not produce meaningful data about percepts such as 
colour preference or naturalness, though they may be used to probe vividness and colour 
discrimination. While specific situations may vary, we recommended inclusion of familiar objects, in an 
appropriate context, whenever possible. 

The colour appearance of the objects in a scene may not be the same as when the objects are viewed in 
isolation. The human visual system determines colour appearance using the complexities of the 
environment—local surrounds and backgrounds, distant surrounds, patterns, mean colour, etc.—both 
for local areas and across the entire scene.149–151 For example, objects may appear more vivid against a 
grey background than a multi-coloured, high-variance one,149 which could influence the subjective 
evaluation of a scene. Thus, the visual stimulus in experiments is not the average spectral power 
reaching the eye, nor is it the aggregate of individual colour shifts calculated for individual items. It is the 
entirety of the complex scene. This suggests value in presenting scenes that mimic real environments 
when the goal is to understand perception in real environments. Nonetheless, there is little evidence 
that carefully contrived experimental environments produce results that are not applicable to real 
scenes, and there is some evidence that a small number of objects (e.g. Esposito and Houser37) can 
produce a similar result to a large number of objects (e.g. Royer et al.24) when similar lighting conditions 
are used. The effect of colour rendition may be large enough to overwhelm other factors influencing 
colour appearance.  
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3.3. Procedures 
Experimental procedures may introduce several forms of systematic error that can greatly reduce the 
internal and external validity of results.102 This section provides a brief overview of important biases and 
other procedural considerations important to research on colour rendition. 

3.3.1. Observer, Investigator, and Response Considerations 
Recruiting people to participate in research studies is a familiar part of human subject research. It is 
important to remember that research participants are a sample of a population that is being 
investigated, and most statistical tests rely on the assumption that this sample is randomly selected 
from the population, with participants acting independently. In most cases, it is accepted that the 
sample is not strictly random, because of proximity, availability, or other convenience factors. However, 
obviously skewed samples (e.g. only 18-22 years old, substantial imbalance between males and females, 
racial or cultural homogeneity) should not be used to draw conclusions about the full adult population 
unless there is strong evidence that the factor sampled with bias plays no role on subjective evaluations 
of colour rendition. Furthermore, there is both considerable constancy and considerable variation in 
human colour vision, making a broad, and moderately large sample recommended. Beyond vision, there 
can be variations in the likes and dislikes of individuals, which may or may not be influenced by 
culture.6,38,152,153 

Another important decision is whether to include participants with colour vision deficiencies, which 
constitute about 8% of men and 0.4% of women of European Caucasian descent.154 We are not aware of 
work examining colour perceptions as a function of light source SPD among people with colour vision 
deficiencies, although there are bodies of research about colour vision anomalies155–157 and adjusting 
images for observers with abnormal colour vision.158–160 Chroma-enhancing glasses have been developed 
that can change colour perception for dichromats or anomalous trichromats.161 

Generally, a sample size of 30 is considered moderately large for psychophysical experiments, satisfying 
the central limit theorem and making violations of important statistical assumptions about normality162 
less prone to causing errors. Therefore, we recommend this as a minimum target sample size, unless a 
power analysis—a recommended practice—suggests a greater number is necessary for the anticipated 
effect size. If fewer than 30 participants are included, extra care should be taken during statistical 
analysis. 

Lay (agnostic to lighting and colour science) and naïve (agnostic to the purpose of the study) 
participants’ responses may differ from expert participants or participants who are informed of the 
purpose of the study (i.e. not naïve). Since expertise and naivete are not mutually exclusive, it is possible 
to run experiments with expert and naïve participants (i.e. lighting/colour science experts who do not 
know the purpose of the study). Naivete and expertise of the participants should be reported. 
Experiments about colour and brightness perceptions using both naive and expert participants suggest 
that expertise might77 or might not88,163 influence participant responses. 

Beyond selecting an appropriate sample of a population, the actions of the participants are important to 
consider. Participants’ inaccurate or false responses to research questions can impact the validity of the 
results. An observer’s response to rating questions can be skewed due to response contraction bias 
(overestimating small and underestimating large values), centring bias (tendency to choose middle 
values in a scale), stimulus-equalizing bias (tendency to use the full range of responses regardless of the 
actual physical spacing), and stimulus-spacing bias (responding as if the stimuli are equally spaced 
regardless of the actual physical spacing).100,101,164–166 
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The participants may sometimes modify their responses to meet experimenters’ expectations, when 
they consciously or subconsciously introduce bias by providing too much or little information to the 
participants or asking leading questions. An infamous example is the Hawthorne effect (also known as 
the observer effect), where factory workers’ productivity increased regardless of the change in 
illumination levels (until the illumination levels were reduced to moonlight illumination level) because 
factory workers were aware that their performance was being recorded.167 Double-blind techniques 
(hiding the order/properties of test conditions from both participants and experimenters) or blind 
analysis can minimize the effect of researchers’ expectations on study outcomes.168,169 For the visually-
based assessments made in experiments on the subjective evaluation of colour rendition, complete 
blinding is often impractical. Standardizing interaction with participants using scripts is another way to 
reduce investigator bias. 

Inter- and intra- observer differences can be checked using the standardized residual sum of squares 
(STRESS)170 to report variation in participant responses and to account for observer variations in colour 
perception.e.g. 171–173 Previous colour rendition studies suggest that inter-observer variations can be 
similar174 or slightly larger than intra-observer variations.175,176 The observer variations can also be 
affected by the dependent measures. For example, it is possible that intra-observer differences in 
preference judgments can outweigh inter-observer differences, while the relationship could be inverted 
for naturalness judgments.29 In general, a lower variability in inter and intra-observer judgments indicate 
higher reliability of the experimental results.  

3.3.2. Stimulus Presentation Considerations 
Numerous biases can be introduced based on the stimulus presentation procedures, including position 
bias, order bias, and range bias. Position bias can occur due to asymmetry in the stimuli in a 
simultaneous comparison task (e.g. differences in chromaticity, booth size and shape, non-uniform paint 
finish, unbalanced object positions) or due to unequal tendencies of observers. Precise calibration, 
counterbalancing the position of the stimuli (between or within subjects), randomization of the stimuli 
order, and testing null conditions (i.e. a trial where both stimuli are identical) can help address some of 
these biases.177   

The order of the stimuli can affect participants’ judgment relative to previous trials.164 This is of 
particular concern for colour perception studies due to adapting and memory effects of human colour 
perception. Because the visual system is constantly adapting at a variety of timescales (see Section 
3.3.3), the visual experience preceding an evaluation can influence how a given stimulus is rated (or 
chosen), regardless of the apparatus and other procedures. 

Randomization of stimuli or use of specific designs that allow for counterbalancing the order of 
presentation are basic requirements that can prevent order bias. Other recommended mitigation efforts 
include ensuring the transition of visible stimuli is not visible to observers—potentially introducing a null 
or dark stimulus between test cases—or introducing long periods away from the experiment between 
evaluations (e.g. one stimulus evaluated per day37). Sometimes randomizing blocks of stimuli is prudent; 
for example, when chromaticity and colour rendition are both varied. 

Randomization does not eliminate order effects, but simply spreads the added variance across the levels 
of the independent variable This reduces correlation when evaluating the individual data, but not when 
evaluating the mean response data for each condition. The latter may give a better indication of the size 
of the effect of a variable on the dependent measure. 

Stimulus range bias describes the effect of the extents of the stimuli performance characteristics on the 
evaluations. Range bias has been studied and thoroughly documented for the field of discomfort glare, 
where it is hypothesized to be a substantial contributor to inconsistencies between studies.178 Others 
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have examined how it affects preferred illuminance.179,180 Range bias has also been demonstrated to be 
in effect in an experiment related to CCT preferences.181 To our knowledge, no experiments have been 
conducted to explicitly examine how the range of stimuli presented may affect subjective evaluations of 
colour rendition with all other factors held constant. However, some anecdotal evidence from similar 
studies suggests that the stimulus range bias can affect the optimum range of performance, if not the 
factors (e.g. red chroma) that are most strongly correlated with perceptions. We recommend 
confirmatory research on this topic. 

Returning to the tomatoes experiment, let us say the experimenter has reason to hypothesize that 
preference will be maximal near Rcs,h1 = 15%. One set of participants might then evaluate conditions with 
Rcs,h1 = 0%, 5%, 10%, 15%, and 20%. A second set of participants might evaluate conditions with Rcs,h1 = 
10%, 15%, 20%, 25%, and 30%. If there is a stimulus range bias in the form of a centring bias, the first 
group might select a preferred level near the centre of their range, at 10%, whereas the second group 
might select the preferred level near the centre of their range, at 20%. That result would indicate that 
participants responses were likely driven more by the range of conditions presented rather than by a 
true visual preference. If instead both groups demonstrated a preference at 15%, which would be away 
from the centre point for both groups, then the results are much more likely free of a centring bias. 

Training that anchors the stimulus range can reduce range effects,101,134 but probably not eliminate 
them. Like order bias, range bias is a particularly important concern for colour rendition experiments 
because of the visual adaptation that occurs over various time scales. As an example of this effect, it has 
been observed anecdotally that studies employing shorter durations of adaptation to a new stimulus 
have often found an effect that the preferred or most natural chromaticity, in the context of colour 
appearance evaluation, is at the centre of the range shown,e.g. 40,41,60,61 corresponding to the average 
state of adaptation—this effect is often not present in experiments using longer adaptation 
periods.27,29,44  

3.3.3. Adaptation 
The visual experience is heavily dependent on adaptation to accommodate the vast range of visual 
stimuli. Several distinct but related adaptive processes (e.g. light adaptation, dark adaptation, chromatic 
adaptation, contrast adaptation) follow different timescales—from nearly instantaneous to weeks or 
months—and rely on a variety of mechanisms in the eye-brain system.182 Adaptation state is critical to 
understanding colour perception, and can greatly influence the results of psychophysical experiments 
on colour rendition via the apparatus and experimental procedures. The consequence of not addressing 
adaptation can mean the results lack external validity and have minimal value for advancing lighting 
practice.  

Light and dark adaptation refer to adjustments of the visual system in response to the intensity of 
light.183,184 Light adaptation generally occurs rapidly (within seconds), whereas dark adaptation can take 
minutes and full dark adaptation can take an hour or longer. Light and dark adaptation help to facilitate 
brightness constancy,185 whereby a wide range of intensities appear neutral brightness, but as with 
other adaptive processes, there are limits. Light and dark adaptation are important to colour rendition 
experiments, even though they are often conducted at constant luminance. Colour perception varies 
with lighting intensity,186 and care should be taken to ensure that experiment participants have had 
sufficient time to adapt to the intensity of the viewed conditions, especially if they have come from 
daytime outdoor conditions (i.e. high illumination levels). 

The processes of chromatic and colour contrast adaptation are both highly relevant to colour rendition 
experiments. These forms of adaptation help the visual system have nominal colour constancy,187,188 
meaning that objects’ colour appearance stays (almost) the same over time and across a wide range of 
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illumination. However, there are limitations to the ability of the visual system to adapt and produce 
constancy,150,185,187,189–191 with different time courses and different mechanisms of adaptation, which 
enables changes to the colour appearance of a scene through colour rendition. For example, colour 
constancy varies with context and spatial characteristics150,187 and is relational.150 Colour constancy 
varies with hue189 and can be attenuated by high-chroma objects,192 which tend to be less constant. It is 
not entirely clear what objects in a scene are most important for establishing colour constancy;187 colour 
constancy likely depends on multiple cues and mechanisms. 

Chromatic adaptation, studied for well over 100 years, is the change in the visual system’s sensitivity in 
response to the changes in the average chromaticity of the visual scene, according to the prevalent 
illumination. There is a cognitive (cortical) component that occurs very rapidly, potentially accounting 
for up to 60% of the visual change;193–195 it is potentially influenced by colour contrasts within the scene 
and contextual factors.195,196 The sensory component is slower, with existing evidence suggesting two 
stages of what is effectively gain control of the three cone photoreceptors. An initial rapid mechanism 
lasts up to a few seconds,194,195,197 and may be asymmetric (i.e. adaptation to middle-wavelength light is 
faster than adaptation to short and long-wavelength light) in the presence of complex viewing 
conditions.198 This initial phase of sensory adaptation may account for about 50% of the adaptive 
change. For constant-luminance changes, chromatic adaptation is 90% complete between 60 s and 310 
s.194,195,197–199 There can be substantial differences between observers194 and the time course can be 
longer if light-dark adaptation is also involved.200,201 Changes in colour appearance tend to be part of the 
slower stages of chromatic adaptation, and contextual effects have a relatively greater effect over 
time.197 In some cases, chromatic adaption may never be complete, leaving residual bias.185,190,196 

Beyond the initial short-term adaptation, there are long-term adaptation and aftereffects than can occur 
on a timescale of days, months, or longer.187,191,202–208 Long-term and short-term chromatic adaptation 
effects are cumulative, despite some differences in mechanisms, but long-term effects are generally 
weaker.204 Long-term effects are less asymptotic, however, and decay slower. 

The visual system also adapts to the colour contrast within a scene, with both retinal and cortical 
processes;209 enabling the visual system to adapt to variations in chromaticity (and luminance) around a 
fixed average.210 This adaptation occurs for individual scenes and overall environments due to variation 
in chromaticity,211,212 and can vary with illumination.213 There is some evidence for long-term contrast 
adaptation effects,214 but other work does not support that conclusion.202 

In short, visual adaptation takes several forms, relies on several mechanisms, and occurs over multiple 
time scales. Thus, it is important to understand the visual state of the participants in experiments on 
colour rendition, so the results can be related to their intended practical use. In this regard, it is 
important to consider if the primary concern is occupants’ initial impression, long-term impression, or 
relative impression of a space. 

In general, we recommend a minimum of two minutes of adaptation if the chromaticity must change 
within a sequence of lighting conditions. (If possible, it would be better to avoid changes in chromaticity 
within an experimental session altogether.) If chromaticity change is necessary, we recommend 
following procedures that reduce or eliminate the ability of participants to detect chromaticity changes 
or that result in mixed adaptation, which may include: 

1. Eliminate any sources of stray light, such as from windows without blackout curtains that 
provide a contextual clue about the chromaticity of the experimental condition. 

2. Ensure that auxiliary light sources, such as computer screens, are not seen by observers. If 
unavoidable, adjust the colour appearance as the chromaticity of the lighting being evaluated 
changes. 
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3. Use an auxiliary space, outside of the experimental space, to adapt participants to a new 
chromaticity. 

4. Show all conditions with the same nominal chromaticity in a block. 
5. Avoid visible transitions in lighting conditions, even if the specified chromaticity is the same, 

because the chromaticity cannot precisely match for all observers (even if all conditions could 
have a perfect match in calculated chromaticity). 

For colour rendition research—and perhaps more broadly—we recommend being cautious with 
scenarios where mixed chromatic adaptation is elicited, such as side-by-side viewing conditions. This is 
especially true when chromaticity does not match but may also be a concern when chromaticity is 
specified to match (for a standard observer), because observer variability will mean chromaticity is not 
matched for all participants. Avoiding mixed adaptation might be safer (with the notable exception of 
research investigating mixed adaptation itself)e.g. 215,216  because existing standardized measures of colour 
rendition assume complete chromatic adaptation to the illuminant. In cases of mixed adaptation, the 
visual stimulus will not be characterized by the standardized measures. If mixed adaptation is elicited, 
extra care should be taken to understand the visual stimulus and researchers should use relevant 
colorimetric tools to characterize stimuli.  

It is true that many lighting scenarios involve lights with different chromaticities, such as adjacent retail 
establishments, different spaces within a restaurant, or daylit offices. However, real environments are 
complex and usually feature blended illumination. It would be rare (outside a laboratory) to see identical 
objects illuminated in two different ways, whether differences in chromaticity or colour rendition. This 
contrived situation may confuse cortical adaptation mechanisms—for chromaticity or contrast—and at 
the very least means the visual system, no matter the duration of exposure, cannot adapt to each local 
scene. Mixed adaptation scenarios may compromise external validity because the appearance of each 
stimulus is relative, and the same relative reference will not be present in architectural lighting 
applications. To be clear, being cautious does not mean probing the effects of mixed adaptation on 
subjective evaluations of colour rendition is not warranted, but that the presentation of such a visual 
stimulus should be intentional and the effects accounted for when assessing the validity of the results.  

3.4. Statistical Planning 
Planning and documenting data analysis is important because the statistical analysis is related to all 
other aspects of the experimental design, including the design of the response instruments and the 
stimuli presentation. It is also important to determine the statistical tests that will be conducted a priori 
to avoid “fishing” for significant results, which can lead to false positive findings.108,109,111 It is useful to 
indicate if the study is exploratory, so the methods and analyses can be appropriately interpreted.  

In addition to identifying appropriate statistical analysis techniques, it is important in the experimental 
design phase to understand the assumptions of those tests, anticipate if the assumptions will be met, 
and have a plan of action if they are not met. For example, repeated measures analysis of variance 
(ANOVA) assumes homogeneity of variance across the conditions (i.e. assumption of sphericity),217 
among other assumptions. The assumption of sphericity, which results in an inflated Type 1 error rate if 
violated, can be tested in several ways (e.g. Mauchly’s test218), and if not met, alternative analysis 
approaches should be used to avoid a positively biased F statistic (e.g. the Huynh-Feldt or Greenhouse-
Geisser corrections). See Wei et al.18 for an example of how this was employed in an experiment on 
colour preference. 
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Statistical planning should also include a power analysis219 to ensure the planned sample size is 
appropriate to detect an effect of a given size at a desired level of statistical significance, typically α ≤ 
0.05. 

4. Reporting and Analysis 
Properly analysing and reporting an experiment is a critical part of the research enterprise and, like all 
aspects of research, must be done ethically.63 Common reporting practices in this field of research often 
result in omission of valuable information. At a minimum, we recommend a measure(s) of central 
tendency and variation to be reported for all independent, dependent, and controlled variables. In the 
case of independent and controlled variables, this provides information about the temporal and spatial 
variability, which is a way to document careful execution of the experiment. Where applicable, 
measurements should be taken with a calibrated meter, with the exact procedures carefully 
documented to ensure repeatability. 

Because colour rendition experiments usually rely on operationalized variables that are derived from 
SPDs, and because knowledge changes over time, we join others220,221 in recommending the reporting 
the SPD of each lighting condition, preferably in tabular format. To the extent possible, providing 
complete results to beyond central tendency and variation is also valuable. Extensive data can be 
included in supplemental files and made available through (preferably open source) online repositories. 

To help contribute to replicable science, authors should be fully transparent in reporting the study 
design and results, including both significant and not significant findings of any statistical tests 
conducted. Best practices dictate that the statistical tests to be performed should be identified a priori—
and perhaps pre-registered—and only those tests should be performed after data collection is complete, 
or according to plan. Choices associated with reporting contribute to researcher degrees of freedom, the 
mistreatment of which induces bias.108 Authors should also report information related to the population 
of interest, how it was sampled (including any inclusion/exclusion criteria), and descriptive statistics 
about the sample. Any manipulation, cleaning, or exclusion of data should be clearly identified and 
justified, along with the relationship of the reported data to any larger dataset or other publication (if 
applicable). 

In general, we recommend providing as much of the underlying data and computational workings as is 
practical and possible. Online repositories now easily facilitate the posting and tracking of data for all 
types of variables as well as data analyses. 

4.1. Statistical Analysis 
Rather than attempting to provide a complete overview of potential statistical analysis techniques, here 
we address a few key concerns relevant to the most common techniques used to date in this genre of 
research. Regardless of the technique, the specific methods used should be reported, including the 
treatment of each factor in the model(s)—which should have been determined before the experiment. 
For confirmatory research, the finding related to each previously identified hypothesis should be 
explicitly stated, with reporting of both statistical significance and effect size. In addition to the main 
statistical analysis, it is recommended to report results related to tests of the underlying assumptions. At 
a minimum, it should be verified in the report that these assumptions were examined and met.  

Uttley219 examined, among other research practices, the prevalence of assessment of statistical 
assumptions in lighting research. As with the general and glare-specific datasets generated by Uttley, 
our preliminary survey completed during preparation of this article suggests that more thorough 
reporting of statistical tests and evaluation of assumptions is warranted in colour rendition research. A 
full review is planned as future work. 
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Experiments on the subjective evaluation of colour rendition often involve multiple dependent 
measures. For example, participants may rate naturalness, preference, vividness, acceptability, or 
appreciation of the colour appearance of objects in a scene. Guidelines for quality and replicability 
recommend disclosure of all variables, using language that conveys that the reported variables were the 
only variables.110 Adjustments to significance criteria may also be necessary if multiple dependent 
measures are not independent (e.g. ratings of naturalness and normalness). In some cases, multivariate 
statistical methods can help address this situation. 

As previously discussed, rating scales are the predominant psychophysical procedure used to 
subjectively evaluate light source colour rendition, and a wide variety of specific assessment tools have 
been used. To properly analyse scale data, it is important to identify whether the data is ordinal data 
(having an order but not defined increment) or interval data (having both an order and an 
increment)222—nominal and ratio data types also exist, but are not common in colour rendition 
research. Some hold the view that ordinal data, such as generated from individual Likert items, should 
be analysed with non-parametric statistics222–228—thus excluding regression analysis, ANOVA, factor 
analysis, etc. Others have found that parametric statistics are robust and acceptable for use with ordinal 
scale data, at least under some circumstances.136,229–238 The latter viewpoint aligns with the approach of 
a vast majority of researchers investigating light source colour rendition; however, it is not clear if the 
researchers are aware of the underlying assumptions and debate among methodologists when treating 
the data in this way. In general, anchored numerical rating scales with five or more values or continuous 
line marking scales are recommended for treatment as interval data, and are most likely an 
improvement over the use of individual Likert items (using the traditional Likert format outside of the 
original Likert scale framework).136  

Forced choice data has its own unique set of analysis considerations.239 Foremost, the choices should 
not simply be summarized as percentages and assumed to be on an interval scale. Instead, evaluation 
frameworks such as Item Response Theory,240 relying on Thurstone’s law of comparative judgement,241 
may be considered, but are also subject to important assumptions that should be checked. 

4.2. Model Fitting and Implications 
It has become increasingly common in colour rendition experiments to fit numerous regression models 
that combine multiple measures of colour rendition, chromaticity, and sometimes other lighting 
parameters to compare the ability of various measures to explain the visual response. This analysis 
technique can be useful in exploratory work but is not a substitute for null-hypothesis significance 
testing in confirmatory research because a relatively small SPD set that is not intentionally designed to 
test the difference between two or more measures may not be suitable for comparing performance in a 
generalized fashion. Rather, it is better to design a specific set of SPDs to compare performance, 
exploring specific differences in characterization of colour rendition. 

Even when appropriate, searching for best-fit models should be undertaken with care. For example, 
increasing the number of parameters will increase the correlation, but at some point, the data will be 
over fit.242,243 This can lead to failures to replicate and make the models less useful in predictive 
applications. When comparing models, additional statistics, such as Mallow’s Cp

244 or the Akaike 
Information Criterion,245 should be used to guide selection. Adjusted or predicted r2 values can be more 
informative than standard r2 values, compensating for the number of terms in the model. Beyond 
statistics, the terms included in the model should have a strong theoretical basis that justifies their 
inclusion. 

When fitting linear regression models, reporting should include the statistical significance of the factors, 
not just the overall statistic on correlation. Additionally, the statistical significance of the difference in 
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correlation coefficients can be determined, instead of just investigating the rank order.246 It should be 
noted that it is possible to have a high coefficient of determination r2 value with a not significant p-
value. 

Even if comparing measures is not the purpose, regression models can be prone to overgeneralization, 
especially for studies with insufficient variation of SPDs and their derived colour rendition metrics that 
seek to support specification guidance for a wide range of architectural lighting applications. That is, the 
model should only be applied to the population that was sampled and may not be useful for establishing 
performance criteria that are applicable to all possible lighting conditions if only a small range were 
examined. 

While a small number of targeted SPDs can be appropriate for testing a specific hypothesis, it can be 
difficult or impossible to sample the range of possible colour rendition solutions—varying at least 
average colour fidelity, gamut area, and gamut shape, which are all known to influence colour rendition 
perceptions in polychromatic environments—using only a few SPDs. The problem of using few SPDs 
selected for convenience to examine the performance of colour rendition measures is not new. 
Ouweltjes247 wrote in 1960: “…most authors compare a few commercial fluorescent lamps, mainly of the 
Standard type, with those of the de Luxe type. The difference between Standard fluorescent lamps and 
the de Luxe lamps is so pronounced that any method having a more or less sound background will show 
de Luxe lamps to be better than the Standard lamps.” However, many colour rendition studies have 
continued to include few SPDs, while seeking to establish generalized relationships or 
recommendations. The median number of SPDs presented in the 49 studies reported since 2010 is 12. A 
small sample of SPDs may result in an incomplete test of the relationship between measures of colour 
rendition and subjective evaluations of scene colour appearance. Notwithstanding the above, if an 
experimenter is testing a specific hypothesis rather than probing a general trend, it may be suitable to 
employ a small number of SPDs that are explicitly engineered to probe the hypothesis under study. 

It has been shown that if only limited aspects of colour rendition are varied (e.g. colour fidelity) and 
others excluded (e.g. gamut shape), subjective evaluations of colour rendition (e.g. colour preference) 
can be explained with average measures of colour rendition, even though these measures have far less 
ability to predict the same perception across a wide range of SPDs.248 Likewise, if the range of possible 
values is limited (e.g. Rg < 115 and Rcs,h1 < 15%), a linear model can show strong correlation without 
accounting for nonlinearity in the relationship (e.g. colour preference can decrease when chroma 
enhancement becomes too great). Therefore, regression can be internally valid without being externally 
valid due to insufficient sampling. Further, conglomerating and averaging correlation coefficients for 
measures of colour rendition across multiple studies using small numbers of SPDs does not address 
external validity. Correlation can be high for many small SPDs sets, but low for a wider range of SPDs.  

Regression models fit to one dataset often do not show high correlation for other datasets, even if the 
same factors have a statistically significant relationship. In other words, the coefficients of the model 
can vary substantially. This could at least partially be the result of range bias (i.e. the type and extents of 
SPDs included), with additional effects potentially arising from other variable factors, such as the 
objects, questionnaire, or participant demographics. For these reasons, it is generally not recommended 
to use regression modelling to derive single-number metrics from experimental data that are intended 
for general use. 

It is important that all articles include an honest reflection on the limited inference that can be gained 
from a single experiment, without attempting to justify methodological flaws. Most of the 
methodological considerations discussed in this article can be addressed with proper experimental 
planning. Given the advanced stage of colour rendition research, there is unlikely to be sufficient 
justification for publication of results arising from experiments conducted that do not follow good 
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practices. The processes that were followed in the past cannot be assumed to be appropriate given 
today's understandings.  

5. Discussion  
Much has been learned from more than 60 years of research on subjective evaluations of colour 
rendition. This period has included plenty of exploratory, pre-hypothesis research (e.g. observational 
studies), with a slowly increasing presence of hypothesis-driven confirmatory research. Though some 
field studies of lighting have employed colour as one of the independent variables, further field studies 
in varied settings may help validate the results of additional confirmatory research. Still, the mixture of 
high-quality and questionable research that forms the body of research on colour rendition quality has 
likely slowed progress, with assertions from past work often being contradicted with later studies—in 
hindsight, more rigorous experimental methods could have avoided the need for so many iterative 
experiments. Some of the most common quality concerns include: 

1. Failing to control for all lighting variables, such as chromaticity, Duv, and gamut shape, resulting 
in confounded data 

2. Compounding poor control of chromaticity with insufficient chromatic adaptation, resulting in a 
visual stimulus that may be perceived differently from its numerical characterizations 

3. Exploratory research with insufficient sampling of the range of possible colour rendition 
characteristics, with results that should not be extended and used for guiding architectural 
lighting practice, but for which authors sometimes use to justify generalized recommendations 

4. Small sample sizes and poor reporting on statistical power 
5. Failing to establish clear research hypotheses, design experiments that will test them, and 

perform appropriate statistical analyses. 

These concerns all leave a large portion of the available data unsuitable for establishing generalized 
recommendations on the quantification and specification of light source colour rendition. A precise 
critical review of this entire body of literature, using guidance established in this manuscript, will be the 
focus of future work.  

To establish a solid foundation for future research on subjective evaluations of colour rendition, we 
recommend a collective, convergent research effort to directly investigate how common experimental 
methods may be biasing results or limiting external validity. The following research questions are a 
starting point, but not all are equally worthwhile: 

1. How does mixed adaptation (which could be spatial if presented with two scenes 
simultaneously, or temporal if presented with two scenes in sequence) influence the subjective 
evaluation of colour rendition compared to complete adaptation? How long of an adaptation 
period is necessary?  

2. Does inclusion of a simultaneously appearing reference illuminant influence the subjective 
evaluation of colour rendition compared to judging each condition individually? 

3. What are the relationships between similar words (e.g. preference, pleasantness, attractiveness, 
or acceptability) that are employed as dependent measures? Is it desirable and possible to 
adopt consistent language to guide future research on perceptions of colour rendition? 

4. How does the quantity and type of visual targets influence colour rendition perception? 
5. How does the range and quantity of SPDs affect subjective evaluation of colour rendition? 
6. What is the role of colour contrast adaptation in short-term laboratory-based experiments and 

how does it affect the application of knowledge to real architectural environments? 
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7. Can the results from rating scales be corroborated with other measurement tools, particularly 
ones that rely more on physiological measurements (e.g. heart-rate variability, 
electroencephalogram, or behavioural patterns like sales)?  

8. How do subjective evaluations change over short (i.e. minutes) and long (i.e. days or months) 
periods? 

In addition to initiating a line of research on experimental methods, we recommend an increase in 
hypothesis-driven research—which in some cases could be done concurrently. Some important inquiries 
include deeper investigation of the role of gamut shape in driving subjective evaluations, interactive 
effects of objects and light source colour rendition characteristics, and the role of illuminance level in 
assessing colour rendition quality—all of which have downstream implications for specification targets. 
The best practices identified in this article, summarized for easy reference in Figure 3, can help 
researchers address these objectives. This could be used as a checklist by researchers or reviewers, 
potentially in conjunction with the more general STrengthening the Reporting of OBservation studies in 
Epidemiology (STROBE) Statement.249 Figure 3 focuses on issues related to subjective evaluations of 
colour rendition, and is not a comprehensive record of good research practices. 

While there is already some anecdotal experiential evidence, field studies are needed to determine the 
external validity of laboratory-based research on colour rendition. In this process, we encourage use of 
measures that go beyond self-reports to include objective measures such as sales, employee turnover, 
and student performance. Such dependent measures make the most use of the real setting and cannot 
be easily administered in a laboratory. 

6. Conclusions 
This article provides methodological recommendations to increase the evidential value of laboratory-
based psychophysical experiments investigating the effect of light source spectral power distribution on 
the subjective evaluation of the colour appearance of scenes, and it is intended to serve as a resource 
for researchers, reviewers, and readers. There are many ways to conduct excellent research, and there 
is no single prescription for quality. 

Research in this field has proliferated in the past decade, but a lack of methodological rigor has made 
deciphering and applying the results difficult. This article identifies a range of issues that can (and have) 
reduced the credibility and usability of published results on colour preference, colour naturalness, and 
other subjectively evaluated aspects of colour rendition. A renewed focus on how research is conducted 
in this field, rather than simply adding new data to an already crowded collection, can help resolve 
pressing questions about perceptions of colour rendition, and will hopefully inspire new research.   
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Conceptualization 
• Establish and justify research questions through literature review 
• Document specific, testable hypotheses or exploratory research aims 

Experimental Design 
• Clearly identify independent, controlled, uncontrolled, and dependent variables that are suitable for the planned 

research 
• At a minimum, illuminance (or luminance), chromaticity, colour fidelity, gamut area, and gamut shape should be 

independent or control variables 
• Report standardized measures of colour rendition from ANSI/IES TM-30-20 and/or CIE 224:2017, as well as CIE S026: 

2018, and additional measures as appropriate 
• Sample objects (and the visual scene) so that appropriate conclusions can be made regarding a situation of interest 
• Determine the visual stimulus that results from the interaction of the SPDs and objects and how it relates to the 

quantification of the visual stimulus with measures of colour rendition. 
• Sample the range of possible colour rendition characteristics in a manner appropriate to address the research question 
• Sample the population of people of interest. A minimum sample size of 30 is recommended to address typical statistical 

assumptions, but power analyses should be used to determine the appropriate sample size. 
• Measure all variables at sufficient granularity in space and time to fully document the photometric and colorimetric 

conditions experienced by participant, including the stability (or variation) in those conditions 
Procedures 
• Report exact procedures in detail to enable replication and state if they did or did not follow an a priori plan (or pre-

registration, if applicable) 
• Develop a plan to mitigate biases 

• Document the attempts to mitigate the following biases (if applicable): Observer, Investigator, Position, Order, Stimulus 
Range including centring 

• Determine how the experimental procedures will influence the adaptation state of the observer and how that relates to 
the intended external use and quantification of the visual stimulus 

Results 
• Report measures of central tendency and variance for all dependent measures 
• Consider providing all raw data, in as much detail as possible (e.g., individual response data), and SPDs as supplemental 

files. In some cases, computational notebooks may also add value. 
Analysis 
• Perform statistical analyses according to an a priori plan (or pre-registration, if applicable), and explicitly state if 

analyses were not planned 
• Use statistical analysis techniques appropriate for the data type 
• Report details of all statistical models 
• Check (and report) all relevant assumptions for each statistical test performed 
• Report (all) tests of statistical significance and effect size 

Discussion 
• Contextualize the results and analysis within the existing body of related work 
• Identify limitations without justifying methodologically unsound work 

Conclusions 
• Succinctly report the key findings from the study, and explicitly address the research question(s) 
• Ensure conclusions are supported by the experimental results and avoid overgeneralization 

Supplemental Material 
• Provide spectral data for all stimuli in tabular format. 
• Provide instructions to participants and other experimental details that are too expansive for body of manuscript 

Figure 3. Summary of recommended practices relevant to performing research on subjective evaluations of color 
rendition. This may be used as checklist by researchers, reviewers, and readers, although it is not exhaustive of 
all best practices in research. 
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