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Abstract

This article explores best practices for conducting psychophysical experiments that investigate how
colour rendition influences the perception of architectural environments. We offer guidance that covers
all stages of research from preliminary development to publication, focusing especially on experiments
that investigate qualities such as perceived naturalness, vividness, preference, or acceptability in
response to changes in the spectral power distribution (SPD) of light sources. This article is intended to
be a consolidated guide for researchers and reviewers of this type of research. Key recommendations
include: 1) New work should be motivated by clearly expressed research questions and, when possible,
explicit hypotheses that build on the existing body of knowledge, 2) Visual stimuli comprising SPDs and
visual targets should be deliberately engineered to probe the research questions, 3) Experiments should
be designed to lessen potential biases, 4) Reporting of experimental conditions and statistical analyses
should be thorough, and 5) Results should be contextual, resisting overgeneralization that cannot be
supported by the data. Our motivation is to encourage high quality research that is credible and
discourage poor quality research that slows scientific progress and misuses resources.
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1. Introduction

Colour rendition describes the influence of light source spectrum on the colour appearance of objects.
The ability of a light source to render object colours in desirable ways has attracted much attention in
the lighting community. Efforts to quantify colour rendition can be traced to the work of Bouma,! who in
the 1930s proposed an eight-band method to characterize the similarity between a light sources’
spectral power distribution (SPD) and the SPD of a model of daylight. In the more than 80 years since
Bouma'’s first study, many others have endeavoured to advance the theory and practice of how light
source spectrum affects perceptions of object colour. Researchers have commonly employed
psychophysical experimental techniques where human participants are asked to evaluate various
subjective aspects of object colour appearance (e.g. colour preference, naturalness, vividness,
acceptability) when a laboratory setting is illuminated by light of different SPDs. This article provides
recommendations on the methods used in this type of research, although many of the
recommendations are applicable to other experimental paradigms, including field studies, meta
analyses, and the development of metrics that are intended to predict colour perceptions.

The number of articles reporting psychophysical experiments on subjective evaluations of colour
rendition has significantly increased in the last decade, with more than 49 articles published since
2010,%°° likely accounting for more than half of the published work of this nature. This intensifying
interest has at least two causes, both arising because LEDs can have different spectral features than
predecessor technologies and because the composite spectrum of an LED-based system can be
engineered with relative ease. First, the scientific community has recognized that the CIE general colour
rendering index R, (colloquially, “CRI”) is an inaccurate measure of colour fidelity and has limited utility
when used alone for characterizing other facets of colour rendition, such as colour preference or colour
naturalness.>¥™° Second, the availability of spectrally-tunable LED-based lighting systems has made it
practical to generate a wide variety of lighting conditions, allowing researchers to more easily explore
possibilities.

Increased interest in psychophysical experimentation on subjective evaluations of colour rendition and
the ease with which these experiments can now be performed has not necessarily translated into
improved research quality, a more diverse range of experiments, or more definitive findings. While the
growing volume of research has increased knowledge and acceptance of the most detectable effects,
the collective body of work has sometimes produced contradictory results, with widespread publication
of research that employed questionable methods (by current standards) and overgeneralized the
results.

A whirlwind of unfocused research activity leads to increased noise, not increased clarity. For example,
CIE R, has been reported to be a very good predictor of perceived naturalness (r > 0.9),'? but also very
poor for that purpose (r < 0.3).2* Between these two examples, there were substantial differences in the
colour rendition characteristics of the lighting stimuli, the objects viewed, the apparatus used, and
procedures followed, so it is not possible to isolate a single factor causing the discrepancy in findings.
Each of these important aspects of research design is discussed further in this article. Another contrast
can be observed in reports of the importance of chromaticity for subjective evaluations of colour
quality. Some studies*®*1%61 that have employed relatively short periods of adaptation (< 1 min)
coupled with variation in chromaticity between stimuli have reported chromaticity to be a significant or
even dominant factor, whereas others?”2%4* that have employed procedures with longer periods of
chromatic adaptation (> 3 mins) with stimuli grouped based on chromaticity have not—again, other
aspects varied as well. As a third example, the importance of gamut area as a predictor of colour
preference has been affirmed by some”®? but revealed to have limitations by others.182437 A key
methodological difference that may explain the different conclusions is how SPD was operationalized.
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The goal of this article is not to determine what is “correct,” and evaluation of experimental results is
not within the scope. Rather, these examples illustrate how research methods may affect experimental
results, research conclusions, and design practice.

We were motivated to write this paper to encourage exceptional practices in conceptualization, design,
implementation, analysis, and reporting of psychophysical experiments on light source colour rendition.
We hope this manuscript will be of value for those planning studies and for those interpreting the
results of others. We have tried to avoid duplicating general knowledge, such as best practices for
psychophysical experiments, statistical analysis methods, open science, or general research quality
considerations, as these topics are well covered by others, including specific treatment in lighting.®
Within the length and scope limits of a journal article, we describe what we believe to be the most
important methodological considerations specifically related to laboratory-based psychophysical
experiments on the subjective evaluation of scene colour appearance as influenced by light source
spectrum (i.e. colour rendition).

2. Conceptualizing Colour Rendition Experiments

There are many aspects of research conceptualization, including understanding the target audience,
need, relevance, required effort, available budget, and existing capabilities that are important but not
the focus of this article. Rather, here we limit our focus to three conceptualization topics: literature
review and contextualization, developing appropriate research questions, and the difference between
exploratory and confirmatory research.

2.1. Literature Review

To conceptualize new research, it is important to understand the context provided by prior work, and in
the case of subjective evaluations of colour rendition, there is an extensive body of literature. ?-°%-6264-81
A well-executed and reported literature review should support and justify an experiment by positioning
the research question(s) within an appropriate historical context and synthesizing past results within a
contemporary framework. The latter is important, and challenging, because the conclusions of older
work should not be blindly repeated, as subsequent research with modern methodologies may reveal
previously unseen issues. For example, previous research indicated that gamut area measures are
sufficient for capturing subjective qualities related to preference,®9 262808283 bt newer research has
shown that such hue-averaged measures are less informative when gamut shape®* is varied.®%
24,27,29,37,38,44 A similar issue has arisen with gamut area and colour discrimination.®>8® An incomplete
assessment of the body of colour rendition literature could lead to an experimental design that is
inadequate by today’s standards.

It is recommended that researchers conduct and report thorough literature reviews that connect the
present work to the lineage of preceding work, with an emphasis on contemporary work that is directly
applicable to the research question being posed. The citations included in this article—although not
exhaustive—were selected to provide a good basis for understanding the body of literature. Further, it is
recommended that authors scrutinize reviewed literature, including both the methods and results,
based on current understanding. It is the limitations of past work that often justify new work.

2.2. Research Questions

In conjunction with a literature review, experiment planning begins with a question. For example, Judd®’
asked whether some colour shifts are more preferred than others. Houser and colleagues® asked if a
light source with proportionally more radiation near the prime colour wavelengths enhances brightness
and colour perception. Several recent studies inquired about the relationship between colour rendition
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measures in ANSI/IES TM-30°%8%%0 and subjective evaluations of naturalness, preference, and
vividness.2427.29,37,44

As this article continues, we will consider an arbitrary example where a hypothetical research team has
identified the need to investigate the subjective evaluations of red tomatoes. Some specific research
guestions might be:

1. Do changes in SPD lead to changes in the preference for the colour of red tomatoes?

2. What level of chroma maximizes the colour preference of the tomatoes?

3. Do hue shifts affect the perceived ripeness of tomatoes?

4. s colour preference of the tomatoes related to other aspects of the visual appreciation of the
tomatoes, such as perceived naturalness or saturation?

5. In what manner does context, such as placing the red tomatoes adjacent to other foods or
objects, affect the subjective evaluations?

The choice of the specific questions depends on many of the factors previously mentioned, including
target audience, budget, and state of prior knowledge.

2.3. Research Types

There are two primary classes of research, exploratory and confirmatory,® each of which has
appropriate uses.®? Understanding their differences is important for deciphering and weighing the
results.®

When limited or no precedent exists, researchers may conduct exploratory research to investigate
relationships between variables. This may take the form of “If X changes, what happens to Y?” This type
of research is useful to gain a better understanding of a new or recently defined problem before a
hypothesis can be solidified. It does not lend itself to conclusive or generalizable results but instead
helps identify possible new relationships between variables and preliminary estimates of variance,
which are useful for power analyses for subsequent studies. Exploratory research is most appropriate
toward the beginning of a line of inquiry, as exemplified in the work of Judd®” and Thornton,** or the
early days of a research project, published as a “pilot study” (e.g. Houser et al.,”” Wang and Wei,* Yang
and Wei®®). It helps sharpen the focus of research questions for subsequent studies.

Exploratory methods could help answer a question such as, “Do changes in SPD lead to changes in the
preference for the colour of red tomatoes?” To probe this question, a handful of commercially available
lamps could be selected (or several could be mixed together) to alter the colour appearance of the red
tomatoes, the visual stimuli could then be shown to a sample of people, and their ratings of preference
in response to those changes could be recorded. If the chosen light sources happened to have changed
the tomatoes’ chroma, it would have provided early evidence that object chroma influences colour
preference.®9 57:6887.97.98 However, such results should not be interpreted to be predictive of what will
happen if the same variable is manipulated in a different way in the future.

Exploratory research might inspire the development of a confirmatory experiment to further investigate
the findings and establish a causal relationship. Confirmatory experiments typically utilize null-
hypothesis (Ho) significance testing and inferential statistics. Statistically, a hypothesis is a statement
about a probability distribution or a population parameter. Informally, a hypothesis is a statement that
is true in an alternate, imagined world (the alternate hypothesis, H,). Continuing the example with the
red tomatoes, an experimenter might test null and alternate hypotheses such as:

Null hypothesis, Ho: Red chroma shift is not related to the colour preference of red tomatoes
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Alternate hypothesis, Ha: Increased red chroma is positively correlated with the colour
preference of red tomatoes

The experimenter seeks data to support the alternative hypothesis (H.) and reject the null hypothesis.
Only through repeated and rigorous attempts to disprove the alternate hypothesis (H.), and failing to do
so, can we have confidence that the null hypothesis is likely untrue. It should be noted that a null
hypothesis (Ho) cannot be proven correct but can only be proven unlikely because hypothesis testing is
based on the falsification theory.®® An effect can only be confidently established within the range of
conditions studied. So, for example, given contemporary knowledge, we know that the alternative
hypothesis given above is true up to a specific red chroma level, after which preference will decline as
chroma shift oversaturates the red appearance of the tomatoes. Such nuance can be captured with
progressively refined alternate hypotheses, such as:

Alternative hypothesis, Hi: Decreased red chroma is negatively correlated with colour
preference of red tomatoes

Alternative hypothesis, H: Increased red chroma is positively correlated with colour
preference of red tomatoes, up to a limit

Alternative hypothesis, Hs: If red chroma is increased past a limit, colour preference of red
tomatoes will begin to decline

This sequence of alternative hypotheses progressively bracket expectations as knowledge of the
phenomenon grows. Further refinements of the hypotheses are possible by expressing them in
guantitative terms; for example, replacing the phrase “red chroma shift” with a measurable quantity
such as Resh1 from ANSI/IES TM-30-20, and the vague notion of “limit” can be replaced with
mathematical operators and values, such as:

Alternative hypothesis, Hi: Colour preference of red tomatoes will be most preferred if -1% <

Resp1 € 15%, if viewed within a polychromatic environment at an illuminance between 200 and

700 Ix
Depending on the complexity of the problem and available resources, it may take months, years, or
decades to defensibly advance the specificity of alternative hypotheses. Given the advanced state of
research on subjective evaluations of colour rendition, in most circumstances confirmatory research
should be pursued rather than exploratory research, although there are new branches just beginning to
be explored. In short, researchers should intentionally vary specific aspects of the visual stimulus based
on an anticipated effect on the subjective evaluation, rather than simply generating a collection of SPDs
and seeing what existing metrics best fit the response data.

3. Designing and Performing Colour Rendition Experiments

The primary goal of experimental design is to devise a way to answer the research question that is
credible, repeatable, and produces valuable results. Designing an experiment requires definition of the
variables, apparatus, procedures, participants, and statistical analyses to be conducted, all in order to
limit or counteract bias. Bias is the systematic error that causes distortions in the results of a study,
which can occur throughout the design, participant selection, data collection, measurement, analysis,
and publication processes.}?®1%2 Experimental design is often an iterative process; as such, the order in
which specific topics are presented in this section is not a recommended sequence and does not
indicate the level of importance.

For confirmatory research, we recommend developing and explicitly documenting an experimental
design and analysis plan prior to executing a study. This documentation may be internal (i.e. shared only
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among the research team), or external using a process known as preregistration,%1% but the key is to
differentiate between planned and unplanned research. There has been extensive discussion about
replication in scientific research,'®72%7 or the fact that many published results, perhaps even a majority,
are not replicated when the same experiment is repeated. It is evident that choices made by researchers
regarding the design, conduct, and analysis of experiments—sometimes called researcher degrees of
freedom—can influence the conclusions,'® for example, by increasing chances of false positive
findings or inflating effect sizes. Carefully designing and thoroughly documenting an experimental plan,
as well as following the plan exactly, is a strongly recommended practice that can help address the
replication crisis.

3.1. Defining and Operationalizing Variables

Operationalization is the process of defining the variables under investigation, accompanied by an
explicit method of measuring such variables. Variables fall into three major categories: independent (i.e.
the “causes”), dependent (i.e. the “effects”), and control. Independent variables are systematically
manipulated in controlled experiments or thoroughly measured and reported in field studies. Dependent
variables—also referred to as dependent measures—are the responses of interest, and may include
perceptual, behavioural, or physiological outcomes. Control variables are known sources of variation,
but of peripheral interest to the active study, and are intentionally fixed. They are held constant
because, if not, they could confound results and make it difficult or impossible to make credible
inferences between cause and effect. They can also help constrain the scope of a project. When a factor
is not well controlled and not systematically manipulated, it becomes an uncontrolled or nuisance
variable, which can harm the credibility of an experiment and the veracity of the results.

In the example of the red tomatoes, operationalization requires specifying the aspects of the SPD that
will be varied to form the independent variable, such as Resn1 according to the H, hypothesis. It also
requires precisely specifying the dependent measures, such as a numerical rating scale from 1 to 10
where 1 is least preferred and 10 is most preferred. Finally, it requires identifying lighting and non-
lighting aspects that must be held constant to avoid creating a confounding variable, such as
illuminance, gamut shape, or the tomatoes being evaluated (among others).

3.1.1. Types of Independent and Control Variables

In typical experiments on subjective evaluations of colour rendition, essentially all lighting-related
characteristics should be designated as independent or controlled variables—or as a last resort, as
uncontrolled variables. The large variety of lighting conditions that can be manipulated or controlled by
lighting researchers can be summarized in four major categories: spatial, temporal, intensity, and
spectral. Spatial relates to the geometric patterns of optical radiation in an observer’s field of view.
Temporal relates to the duration of exposure to optical radiation and the timing of that exposure.
Intensity relates to the quantity of optical radiation. Spectral factors, dominant in colour rendition
research, concern the wavelength distribution of optical radiation as described by a light source’s SPD.
Optical radiation is normally weighted by an appropriate spectral weighting function to convert
radiometric units to photometric, colorimetric, or physiological quantities intended to correlate with a
perceptual or biological response.

While this manuscript focuses on experimental design considerations related to spectral factors, this
does not diminish the importance of spatial, temporal, and intensity factors. We encourage review of
other sources that treat those variables with greater detail.®% 53112 A researcher may intend to vary only
one or a few aspects of the illumination, but because variables are related, care is needed to ensure that
intentional variation of one aspect does not produce unintentional variation in another. For example,
light source spectrum often varies with dimming state. If not controlled, spectrum and intensity may be
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confounded, making it impossible to make independent inferences about either. Therefore, mechanical

dimming is often employed in research where spectrum and light level must both be controlled.®¢
15,37,113

3.1.2. Quantifying Independent and Control Variables

Almost all research about perceptions of colour rendition involves varying the SPD of the light. While
readily measured, SPD is still an infinitely complex independent variable. SPD is not particularly useful as
a variable on its own because, for the purpose of operationalization, SPD must be reduced to a set of
numbers that are expected to relate to one or more human responses. We recommend the following
methods for characterizing many aspects of SPDs, which are rooted in the consensus recommendations
of the International Commission on lllumination (CIE from its French title, Commission Internationale de
I"Eclairage), Illumination Engineering Society (IES), and NEMA (National Electrical Manufacturers
Association) that follow either ISO (International Standards Organization) or ANSI (American National
Standards Institute) protocols and are recommended for scientific use:

e Chromaticity expressed with correlated colour temperature (CCT)** and the distance of the light
source chromaticity from the Planckian locus, D,.1*>'!® Chromaticity can be equivalently
expressed with CIE 1931 (x, y) or 1976 (u', v') chromaticity coordinates using the CIE 1931 2°
standard observer, though context may also make it more suitable to employ the CIE 1964 10°
standard observer or one of the CIE 2015 cone-fundamental-based tristimulus functions.''4

e An average measure of colour fidelity. For accurate scientific use as expected in a peer-reviewed
journal, Rs from CIE 224:2017 and ANSI/IES TM-30-20 should be employed.>6:>88%%0

e A measure of relative gamut area, such as Rg from ANSI/IES TM-30-20.°689%0

e Measures of chroma and hue shifts, such as Resnj and Risn from ANSI/IES TM-30-20,848° which
relate to gamut shape and have been shown to be crucial for predicting subjective evaluations
of colour rendition.&¢ 16182437

e An average measure of “red” fidelity, such as R¢n1 from ANSI/IES TM-30-20.

e A measure of the absolute quantity of illumination, such as luminance or illuminance. If this
varies spatially (across the scene) or temporally (across parts of the experiment), then such
variation should be documented. The specific measure of quantity may vary with application.
[lluminance is commonly used in laboratory-based colour rendition studies; luminance is
commonly used in exterior or roadway lighting studies.

e Measures of photopigment responses weighted by a-opic action spectra,!'” in accordance with
recent reporting guidance.!® There is emerging evidence that response of intrinsically-
photosensitive retinal ganglion cells, for example, may contribute to color perception.119120

Beyond these requisites, other measures that are applicable should be reported. For example, other
measures from ANSI/IES TM-30-20 may be relevant for specific objects, and reporting non-standardized
measures is important when experimenting on the performance of new methods for evaluating light
source colour rendition. Additionally, even though it is not recommended for scientific use, researchers
may want to report R, or other measures from CIE 13.3-1995 that are still used in professional practice.

Many SPD-derived quantities are documented in the scientific literature. The examples given below
have, to date, not been adopted through a consensus-based process, but they offer unique information
not currently covered with standardized measures and may have utility for research on subjective
evaluations of colour rendition. Therefore, we recommend using and reporting these measures as
appropriate:

e Alternative systems for quantifying light source chromaticity, based on a standard observer that
is more representative of the experimental conditions (i.e. larger field of view). &9 1217124
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Metrics quantifying metameric mismatch or metameric uncertainty. &9 125126

Metrics of colour discrimination. &9 8

Metrics of colour preference.®9 3>

Ability of the source spectrum to excite fluorescent whitening agents (FWAs). &9 113127128

We expect continued refinement and debate about how to reduce light source SPDs to a set of numbers
that correlate with human responses in laboratory and/or real-world settings, are simple to
communicate, and are valuable for lighting practice. That is, we anticipate new research will continue to
probe the effectiveness of existing and new non-standardized measures. We view this positively and are
optimistic for future innovation that builds upon present knowledge. That said, we believe it is prudent
to employ consensus-based measures as the building blocks for new understandings, which can provide
continuity and a solid foundation for design practice. For example, a subset of the measures from TM-30
were shown by three separate laboratories to correlate with salient aspects of colour rendering
perceptions,?#27:2%37.44 findings that were amalgamated into specification guidance (IES TM-30 Annex
E).®° The amalgamation of the findings from those five studies was possible because the different
laboratories operationalized SPD using common measures. New measures should be investigated within
the context of the many existing tools that are at the disposal of researchers, and we discourage a new
metric being proposed based on data-fitting to each new experimental result.

3.1.3. Operationalizing Independent Variables

In operationalizing the independent variable(s), a researcher must choose the assigned values, or levels,
of the variable(s). In the example of an experimenter studying the relationship between the colour
preference of red tomatoes and light spectrum, the experimenter should operationalize light source SPD
into a variable or variables that will, based on an a priori theory, be expected to relate to a subjective
quality of the colour appearance. The experimenter might choose Resn1 from TM-30, which characterizes
chroma shift in nominally “red” colour evaluation samples. In another scenario where a researcher is
trying to contrast the performance of existing and newly proposed evaluation methods, SPD can be
operationalized based on the difference between measures.

The levels of the independent variable(s) should relate to current scientific understanding. With respect
to the tomato example, if there was no prior knowledge about desirable colour appearance of red
objects, then an experimenter might choose a range of red chroma shift beyond what would be
expected in real settings, such as Resh1 = -25% to 25%. If substantive differences in perception were not
found within those two extremes, then it would be difficult to justify further study. Importantly, many
colour rendition perception phenomena are non-linear, and two SPDs inducing shifts in opposite
directions may be preferred equally, precluding the detection of an effect without an intermediate level.
If a substantive difference were found, the researcher would be empowered to continue the research
using more refined levels within a range of interest to real settings, such as Ren1 With levels of -5%, 0%,
5%, 10%, 15%, and 20%. Such a range should provide information about preference as a function of
Resni. In this example the levels were fixed at discrete intervals, but that is not a strict requirement. If an
adjustment task were employed (see Section 3.1.5), participants could be given freedom to set the level
of the independent variable within the range of an upper and lower bound.

Operationalization of independent variables and definition of their levels must be done with knowledge,
control, and characterization of other variables that may concurrently change and become sources of
confounding and experimental error. Figure 1 demonstrates the operationalization of SPD where gamut
shape is varied but average colour fidelity (Rf) and gamut area (R;) are constant, presenting a confound
that could be detrimental to external validity. In the hypothetical experiment studying subjective
evaluation of the colour appearance of red tomatoes, chromaticity and illuminance—through visual

p.9



adaptation mechanisms discussed in section 3.3.3—might also affect evaluations and should therefore
be controlled. An important concern for research on the subjective evaluation of colour rendition is that
it may be impractical or impossible to hold some other spectrally derived measures constant while
varying one specific parameter, since colour shifts occur in a pattern and measures of colour rendition
are not independent. In the case of the red tomatoes, all other aspects of colour rendition cannot be
held constant while varying red chroma; minimally, it would be important to maintain systematic
chroma shifts in other hue bins, which could be demonstrated graphically for all SPDs and by reporting
relevant covariates including average colour fidelity and gamut area.
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Figure 1. Four SPDs that are nearly identical on some spectrally derived quantities while being substantially
different on other spectrally derived quantities, illustrating the exquisite care that is needed to operationalize
SPD using derived measures. All four SPDs have IES TM-30-20 Rs = 80.4, Rz = 100 + 0.5, and CCT = 3492 + 3 K. SPDs
(A) and (B) also have equivalent Du, making them metameric to the CIE 1931 Standard Observer, but they vary
in gamut shape: Resh1 for (A) is -10% and Res,h1 for (B) is +10%. SPDs (B), (C), and (D) all have Resh1 = +10%, but
they vary in Dw: (B) is nearly on the Planckian locus with Duw = 0.0001, (C) is markedly above the Plankian locus
with Du = 0.025, and (D) is markedly below the Plankian locus with Du = -0.025. The melanopic efficacy of
luminous radiation (kmel,v) for SPD (D) is 49% greater than for SPD (C); thus, for this pair, melanopic content is
confounded with Duw. SPDs were generated using an array of ten commercially available LED emitters. The SPDs
shown have been scaled to 1000 lumens.

We emphasize that there is a serious risk of confounding, or even the creation of nonsensical variables,
when operationalizing SPDs using derived measures. For example, two sources may have the same CCT,
but very different chromaticity. Further, neither CCT nor chromaticity offers much insight about a
source’s colour rendition. Even when chromaticity is controlled, two sources may have the same
average colour fidelity and gamut area but render objects very differently. This could occur if one source
increases red chroma and the other source decreases red chroma, for example, like the SPDs in Figure 1.
These examples suggest the need for meticulous care when manipulating and operationalizing SPDs
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using derived measures as independent variables. At a minimum, colour fidelity, gamut area, gamut
shape, and illuminance should be specified. This expectation is likely to change as science progresses.
Modern colour rendering research requires experimenters to employ optimization software to generate
SPDs that simultaneously satisfy multiple criteria, after which the spectra can be physically realized, then
carefully calibrated, measured, and monitored throughout the experiment.

The process of operationalizing SPDs using derived measures also establishes the limits of
generalization, or the applicability of the results to situations outside the experiment. When the
operationalization requires a narrow range of conditions, as may be necessitated by a budget- or time-
constrained study, the results should not be generalized outside the range examined. Sometimes these
limits are obvious; for example, if a study only presents R, values between 90 and 110, it should be clear
that the results may not apply for a light source with R; of 120. Sometimes, generalization can be limited
even within the range of the variable tested. For example, if only colour fidelity or only colour gamut are
varied, no generalized conclusion can be drawn beyond the specific SPDs used because there are
substantial differences in colour shifts that lead to the same average value. For these reasons, sampling
colour rendition space by considering—at a minimum—average color fidelity, gamut area, and gamut
shape, is recommended. Future work may reveal that additional parameters are necessary, as being
equal in those three aspects may not always lead to equal perceptions.

3.1.4. SPD, Visual Targets, and the Visual Stimulus

While SPD is most often the manipulated factor in subjective evaluations of colour rendition, the visual
stimulus being evaluated is a result of the interaction between the light source, the experimental object
set, and the receiver. The source is characterized with a light source SPD. Objects modify a source SPD
through reflection, transmission, scattering, and/or fluorescing. This spectrally modified light becomes
the actual visual stimulus of the receiver, the human visual system of the experimental participant(s).
The human visual system takes optical radiation as input and constructs colour perceptions based on
complex neurological responses that include photopigment responses, photoreceptor signals, brain
processing, experience, adaptation, and contextual factors. Each of these can be characterized to a
certain degree, but with increasing uncertainty in the transmission from sources, to objects, to the
human visual system, to perception. Complexity and uncertainty also increase as the experimental
setting approaches naturalistic viewing conditions.

The proliferation of portable spectroradiometers has made it relatively easy to measure and report light
source SPDs and the spectral reflectance functions (SRFs) of objects. Characterization of real-world
scenes is complicated by the fact that real environments are not monochromatic and gaze direction is
constantly changing. Thus, even if the SRF of all surfaces in an experimental setting were to be
characterized, the composite visual stimulus will still vary with gaze direction. Hyperspectral imaging has
the potential to better characterize the visual stimulus experienced by research participants,®% 12° but it
has not been widely applied in research about colour rendition.

Researchers often quantitatively ignore SRFs even while acknowledging the relevance of spectral
interactions between objects and light sources on perceptions of colour—which can have real
implications for experiments.’*® The argument in favour of making inferences based directly on light
source SPDs is a desire to be able to relate perceptions of colour quality directly to light sources
independent of the end-use application. If typical polychromatic environments are considered that are
not too different from the environment employed in an experimental study, then this approach has
ecological validity. However, it is important to refrain from overgeneralizing. For example, if a
researcher studies colour preference of paintings, the hue, chroma, subject matter, and genre of the
paintings studied, as well as the illuminance and surround conditions of the painting, should all be
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expected to influence perceptions—this will constrain the ability to apply conclusions to other paintings
in other contexts. Finally, using object sets that are not polychromatic, such as only skin tone, or do not
have context (such as an X-rite Colour Checker Chart), may limit the general applicability of the results,

even if they are informative for a specific scenario. Object selection is discussed further in Section 3.2.2.

3.1.5. Dependent Measures

Psychophysics aims to measure perception and performance by linking perceptual experiences with
physical stimuli using psychometric scales. There are several important concepts. Validity concerns
whether the measurement tool captures the concept intended, without unintentionally overlapping
with other concepts. Face validity concerns whether the measurement looks like it ought to measure
what is intended. For example, evaluating colour perception in the absence of coloured objects does not
have face validity. Face validity is a necessary first step, but it is inadequate on its own. A psychometric
scale should also exhibit convergent validity (i.e. it should correlate with other concepts to which it is
logically related) and discriminant validity (i.e. it should not correlate with other concepts to which it is
not logically related). Reliability concerns both the internally consistency of the psychometric scale and
its repeatability—if the same person responds repeatedly to the same conditions using the same scale,
the responses should be the same. Refer to Ghiselli et al.*3! for a more thorough treatment of these
concepts.

For experiments on the subjective evaluation of colour rendition, the dependent measures are
perceived attributes of the visual environment. The most studied attributes have been preference and
naturalness, but others include vividness, colourfulness, saturation, normalness, fidelity, acceptability,
attractiveness, pleasantness, and suitability. These adjectives can anecdotally be divided into three
categories: desirability, vibrancy, and similarity to a reference. However, a lack of consistent terminology
between studies, and no concerted effort to understand if terms are truly interchangeable or valid—
with some evidence against'*>—has introduced uncertainty when trying to make inferences from the
larger body of literature. We recommend more research explicitly aimed at understanding the
relationships between these constructs.

The subjective experience attributed to each iteration of the independent variable(s) can be obtained
with passive judgements and active adjustments. Classical psychophysical methods can be grouped
depending on the stimulus-participant interaction and the presence of a reference stimulus, as shown in
Figure 2. In a judgment task participants are asked to classify the stimulus with a reference condition
(e.g. two-alternative forced-choice®9- 1#1316:28303943) or without a reference condition (e.g. rating scale®%
29.3237.4%) "Forced choice and rating scales are the two most common methods used in experiments on
the subjective evaluation of colour rendition. In an adjustment task, participants actively adjust the
stimulus to satisfy a criterion, but experiments on the subjective evaluation of colour rendition have
almost exclusively relied on judgment tasks, given the difficulty in parameterizing SPD to allow easy
adjustment.

Both rating scale and forced choice tasks have unique considerations in terms of their precision,
efficiency, and biases. The choice between them requires simultaneous attention to the apparatus and
procedures to be followed, as discussed in subsequent sections.

The precision of ratings scales can be affected by the difficulty and interpretation of the task and the
measurement scale, especially in the absence of a reference condition.!*® Addressing this requires
emphasis on carefully constructing and conveying to participants how to employ the scale, particularly
the endpoints or individual categorical descriptors. Anchoring with visual examples can help.3*3° There
has been considerable research on the development of effective rating scales, covering topics such as
the number of points, the order of verbal labels, and the availability of a neutral response.’**13° Choices
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in scale development can also influence how the data should be analysed, as subsequently discussed. In
general, we recommend presenting ratings scales such that they are interpreted as interval, including at
least five values®3® (or using a continuous slider scale) and avoiding assigning words to intermediate
points on the scale. This approach is more conducive to the use of parametric statistics—assuming all
other statistical assumptions are met—which can be controversial for rating scale data (see Section 4.1).

Absolute Evaluation Relative Evaluation
Stimulus viewed alone with no other point | Stimulus viewed along with a point of
of comparison comparison (temporal or spatial

separation)

Passive | Rating Discrimination
No interaction with stimulus Examples: Likert scale, semantic Examples: Forced choice, difference rating
differential, magnitude estimation, yes/no
response
Active | Magnitude Production Matching
Interaction with stimulus Example: Adjust meet to threshold along a | Examples: Adjust stimuli to equal colour
colour percept percept, matching null conditions

Figure 2. Examples of psychophysical methods that could be employed in experiments on the subjective
evaluation of colour rendition. This figure is not exhaustive of all possible methods.

Rating scales can be used for independent presentation of stimuli, or with paired/simultaneous viewing
of stimuli where one stimulus serves as a reference against which the other stimulus is rated. Even when
faced with the same pair of lighting conditions, variance in the responses can be affected by the
presentation format, such as rapid sequential presentation or simultaneous side-by-side
presentation.#%1%! A forced choice task always requires the presentation of at least two stimuli. By
having participants repeatedly making choices about different combinations of stimuli, a rating or
ranking of the perceived attribute can be obtained. However, the analysis is more involved than simply
converting the categorical judgements to scale data (see Section 3.4). While using a binary choice may
ease the cognitive load of the task, simultaneous viewing of stimuli further reduces tolerances for
controlled variables and creates a situation with mixed adaptation of the visual system (see Section
3.3.3).

3.2. Apparatus

3.2.1. Physical space

Colour rendition experiments are typically conducted in controlled, confined spaces, such as a booth or
a room. Both can be used to present simultaneous or individual stimuli, but they have important
differences. Booths accommodate a smaller number of objects and result in a less immersive
experience. Rooms usually provide a larger field of view, greater freedom of gaze direction, the potential
for more objects, and increased spatial complexity, so they may be better suited for investigating
contextual factors. Either booths or rooms can be an effective tool, depending on the specific research
guestion being asked, so we do not universally recommend one over the other. Although no
experiments have been completed that directly compare the two apparatus styles, there is some
evidence to suggest they provide compatible results when other factors are similar.9- 2437135
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Beyond the physical size of the apparatus, the configuration of the apparatus into one, two, or more
individual spaces is an important factor that intersects with other key procedural details. Both single-
scene and side-by-side viewing have been widely used. Direct comparison of the configuration is
challenging because they are often used with different procedures (e.g. rating versus choice, as
described in Figure 2), and simultaneous viewing of multiple scenes can create a different adaptation
condition (see Section 3.3.3).

In the case of the red tomatoes, either a booth or a room could be a suitable apparatus. A booth would
allow narrower focus on one or a small number of tomatoes, whereas a room filled with a variety of
vegetables simulating a supermarket might offer a more contextualized stimulus. If the study is targeting
sales or appreciation in a supermarket context, then it would be worth considering running the
experiment in an appropriate vignette.

3.2.2. Objects

In colour rendition research, all physical entities in an architectural space, including people and the
walls, should be considered as objects being evaluated. The objects are integral part of the visual
stimulus (see Section 3.1.4) and thus require careful consideration during experimental design.!*
Objects contribute to a simple or complex stimulus and an experiment can contain only a limited
number of them. Therefore, selecting a sample that is representative of the population of object
characteristics in a target application is necessary to answer the primary research question. Choosing
objects that span the colour volume, or at least the hue-chroma plane, is often useful when attempting
to develop generalized recommendations for architectural lighting practice.

It is also recognized that no one set of objects or colours is a definitive representation of a particular
lighting application. Thus, any one set of objects is insufficient to make generalized colour rendition
recommendations for a specific application. Because there is limited ability to create visual scenes of
different application but equivalent colour composition, it is difficult to conclusively demonstrate
application specificity in subjective evaluations of colour rendition. Nonetheless, it is evident that
subjective evaluations can vary from one scene to the next, even within a given application. For
example, the appearance of different paintings may be viewed most favourably with different colour
rendition,® even though they would both fall under the application of museum lighting.

Colour psychology can play an important role in colour rendition research, with different hues carrying
different meaning and importance.'*? Several colour rendition experiments have confirmed the weight
placed on nominally red objects.>6182427.44143 |f rad objects are omitted or are used exclusively,
however, the results may not be applicable to general architectural lighting applications, because while
red tends to be dominant, it is not the exclusive driver of perception. Attention should also be paid to
the chroma of objects, balancing across hues and potentially varying within hues. In the case of the red
tomatoes, any results about the significance of a particular colour rendition measure as a predictor, or
establishment of desirable levels of a given measure, should not be suggested to have validity for other
applications—and may have little benefit for lighting practice.

Another important consideration in the creation of a sample of objects, particularly for a small number
of objects, is metamerism. Any single object may not represent the central tendency of shift for a group
of objects with the same nominal hue, or even the same colour coordinates. This may influence the
external validity of an experiment. For example, the colour shift of a red tomato is unlikely to be
identical to the shift of one or more standardized colour samples used to calculate a measure of red
chroma shift, such as Reh1 in TM-30 (which is an average of several colour evaluation samples with
similar hue angles). Depending on the degree of mismatch, the standardized calculation may not
represent the change in the visual stimulus. Further, two similarly coloured objects, represented by the
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same standardized measure, could shift in opposite directions, potentially leading to undesirable
mismatch that is not effectively characterized with typical measures of colour rendition; this is a topic of
current research.12>144145

We recommended carefully measuring SRFs and documenting the expected visual stimulus. Custom
versions of familiar measures of colour rendition can be calculated by swapping the standardized colour
evaluation samples for the SRFs of experimental objects (or another set of colour samples), as
exemplified by Royer and Wei.?*® Alternatively, it is possible to report individual shifts in the appearance
of objects using colorimetric tools, such as colour difference or chroma shift formulae.®8 2126303470 Thjg
practice can help identify unusual behaviours—or a mismatch between the experimental stimulus and
standardized characterization of the stimulus—before an experiment begins, and is generally valuable
when reporting the results. If the customized measures are substantially different from the standardized
measures, using the experimental results to establish generalized criteria with the standardized
measures is less reliable.

For red tomatoes, it would be important to consider the specific type of tomato being evaluated, as
there are many varieties. There are also concerns about freshness or ripeness, as colour is an important
indicator of state for fresh foods.'*® Further, it is important to reiterate that average measures, like R¢
and Rg, have little predictive power for the colour appearance of specific objects.

In past research, the objects have included standardized colour swatches (e.g. X-rite Colour Checker),
packaged goods, fresh produce, clothing, artwork, and human skin complexion. For some objects that
people have frequently seen in the past (i.e. familiar objects), participants have an internal memory that
helps establish expectations for the appearance and makes the object carry more subjective meaning
and have more influence on overall scene evaluation.?*?” Evaluation of familiar objects may also reduce
variability and thus provide a more conclusive result. However, sometimes particular objects can have a
substantial colour shift or notable contrast with its surround that can elevate its importance in
subjective evaluations.** Nonetheless, memory colours can be shifted in time even for familiar
objects.¥1%8 Therefore, solely depending on long-term memory may not be appropriate. For unfamiliar
objects without an internal memory reference, as with colour samples, evaluators must rely on
contextual factors alone to make judgements. In most cases, subjective evaluations of context-less
objects (e.g. colour swatches in isolation) will not produce meaningful data about percepts such as
colour preference or naturalness, though they may be used to probe vividness and colour
discrimination. While specific situations may vary, we recommended inclusion of familiar objects, in an
appropriate context, whenever possible.

The colour appearance of the objects in a scene may not be the same as when the objects are viewed in
isolation. The human visual system determines colour appearance using the complexities of the
environment—Ilocal surrounds and backgrounds, distant surrounds, patterns, mean colour, etc.—both
for local areas and across the entire scene.'*%! For example, objects may appear more vivid against a
grey background than a multi-coloured, high-variance one,'* which could influence the subjective
evaluation of a scene. Thus, the visual stimulus in experiments is not the average spectral power
reaching the eye, nor is it the aggregate of individual colour shifts calculated for individual items. It is the
entirety of the complex scene. This suggests value in presenting scenes that mimic real environments
when the goal is to understand perception in real environments. Nonetheless, there is little evidence
that carefully contrived experimental environments produce results that are not applicable to real
scenes, and there is some evidence that a small number of objects (e.g. Esposito and Houser*’) can
produce a similar result to a large number of objects (e.g. Royer et al.?*) when similar lighting conditions
are used. The effect of colour rendition may be large enough to overwhelm other factors influencing
colour appearance.
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3.3. Procedures

Experimental procedures may introduce several forms of systematic error that can greatly reduce the
internal and external validity of results.2?? This section provides a brief overview of important biases and
other procedural considerations important to research on colour rendition.

3.3.1. Observer, Investigator, and Response Considerations

Recruiting people to participate in research studies is a familiar part of human subject research. It is
important to remember that research participants are a sample of a population that is being
investigated, and most statistical tests rely on the assumption that this sample is randomly selected
from the population, with participants acting independently. In most cases, it is accepted that the
sample is not strictly random, because of proximity, availability, or other convenience factors. However,
obviously skewed samples (e.g. only 18-22 years old, substantial imbalance between males and females,
racial or cultural homogeneity) should not be used to draw conclusions about the full adult population
unless there is strong evidence that the factor sampled with bias plays no role on subjective evaluations
of colour rendition. Furthermore, there is both considerable constancy and considerable variation in
human colour vision, making a broad, and moderately large sample recommended. Beyond vision, there
can be variations in the likes and dislikes of individuals, which may or may not be influenced by
CUItUre.6’38'152’153

Another important decision is whether to include participants with colour vision deficiencies, which
constitute about 8% of men and 0.4% of women of European Caucasian descent.’® We are not aware of
work examining colour perceptions as a function of light source SPD among people with colour vision
deficiencies, although there are bodies of research about colour vision anomalies'>>**” and adjusting
images for observers with abnormal colour vision.'®®1% Chroma-enhancing glasses have been developed
that can change colour perception for dichromats or anomalous trichromats.®*

Generally, a sample size of 30 is considered moderately large for psychophysical experiments, satisfying
the central limit theorem and making violations of important statistical assumptions about normality®?
less prone to causing errors. Therefore, we recommend this as a minimum target sample size, unless a
power analysis—a recommended practice—suggests a greater number is necessary for the anticipated
effect size. If fewer than 30 participants are included, extra care should be taken during statistical
analysis.

Lay (agnostic to lighting and colour science) and naive (agnostic to the purpose of the study)
participants’ responses may differ from expert participants or participants who are informed of the
purpose of the study (i.e. not naive). Since expertise and naivete are not mutually exclusive, it is possible
to run experiments with expert and naive participants (i.e. lighting/colour science experts who do not
know the purpose of the study). Naivete and expertise of the participants should be reported.
Experiments about colour and brightness perceptions using both naive and expert participants suggest
that expertise might”” or might not®6 influence participant responses.

Beyond selecting an appropriate sample of a population, the actions of the participants are important to
consider. Participants’ inaccurate or false responses to research questions can impact the validity of the
results. An observer’s response to rating questions can be skewed due to response contraction bias
(overestimating small and underestimating large values), centring bias (tendency to choose middle
values in a scale), stimulus-equalizing bias (tendency to use the full range of responses regardless of the
actual physical spacing), and stimulus-spacing bias (responding as if the stimuli are equally spaced
regardless of the actual physical spacing).100.101,164-166
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The participants may sometimes modify their responses to meet experimenters’ expectations, when
they consciously or subconsciously introduce bias by providing too much or little information to the
participants or asking leading questions. An infamous example is the Hawthorne effect (also known as
the observer effect), where factory workers’ productivity increased regardless of the change in
illumination levels (until the illumination levels were reduced to moonlight illumination level) because
factory workers were aware that their performance was being recorded.'®” Double-blind techniques
(hiding the order/properties of test conditions from both participants and experimenters) or blind
analysis can minimize the effect of researchers’ expectations on study outcomes. % For the visually-
based assessments made in experiments on the subjective evaluation of colour rendition, complete
blinding is often impractical. Standardizing interaction with participants using scripts is another way to
reduce investigator bias.

Inter- and intra- observer differences can be checked using the standardized residual sum of squares
(STRESS)Y’° to report variation in participant responses and to account for observer variations in colour
perception.®% 1737173 Previous colour rendition studies suggest that inter-observer variations can be
similar'’* or slightly larger than intra-observer variations.}”>'® The observer variations can also be
affected by the dependent measures. For example, it is possible that intra-observer differences in
preference judgments can outweigh inter-observer differences, while the relationship could be inverted
for naturalness judgments.?® In general, a lower variability in inter and intra-observer judgments indicate
higher reliability of the experimental results.

3.3.2. Stimulus Presentation Considerations

Numerous biases can be introduced based on the stimulus presentation procedures, including position
bias, order bias, and range bias. Position bias can occur due to asymmetry in the stimuliin a
simultaneous comparison task (e.g. differences in chromaticity, booth size and shape, non-uniform paint
finish, unbalanced object positions) or due to unequal tendencies of observers. Precise calibration,
counterbalancing the position of the stimuli (between or within subjects), randomization of the stimuli
order, and testing null conditions (i.e. a trial where both stimuli are identical) can help address some of
these biases.!”’

The order of the stimuli can affect participants’ judgment relative to previous trials.'®* This is of
particular concern for colour perception studies due to adapting and memory effects of human colour
perception. Because the visual system is constantly adapting at a variety of timescales (see Section
3.3.3), the visual experience preceding an evaluation can influence how a given stimulus is rated (or
chosen), regardless of the apparatus and other procedures.

Randomization of stimuli or use of specific designs that allow for counterbalancing the order of
presentation are basic requirements that can prevent order bias. Other recommended mitigation efforts
include ensuring the transition of visible stimuli is not visible to observers—potentially introducing a null
or dark stimulus between test cases—or introducing long periods away from the experiment between
evaluations (e.g. one stimulus evaluated per day®’). Sometimes randomizing blocks of stimuli is prudent;
for example, when chromaticity and colour rendition are both varied.

Randomization does not eliminate order effects, but simply spreads the added variance across the levels
of the independent variable This reduces correlation when evaluating the individual data, but not when
evaluating the mean response data for each condition. The latter may give a better indication of the size
of the effect of a variable on the dependent measure.

Stimulus range bias describes the effect of the extents of the stimuli performance characteristics on the
evaluations. Range bias has been studied and thoroughly documented for the field of discomfort glare,
where it is hypothesized to be a substantial contributor to inconsistencies between studies.'’® Others
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have examined how it affects preferred illuminance.}”®!8 Range bias has also been demonstrated to be
in effect in an experiment related to CCT preferences.'® To our knowledge, no experiments have been
conducted to explicitly examine how the range of stimuli presented may affect subjective evaluations of
colour rendition with all other factors held constant. However, some anecdotal evidence from similar
studies suggests that the stimulus range bias can affect the optimum range of performance, if not the
factors (e.g. red chroma) that are most strongly correlated with perceptions. We recommend
confirmatory research on this topic.

Returning to the tomatoes experiment, let us say the experimenter has reason to hypothesize that
preference will be maximal near Resn1 = 15%. One set of participants might then evaluate conditions with
Reshi = 0%, 5%, 10%, 15%, and 20%. A second set of participants might evaluate conditions with Reshi =
10%, 15%, 20%, 25%, and 30%. If there is a stimulus range bias in the form of a centring bias, the first
group might select a preferred level near the centre of their range, at 10%, whereas the second group
might select the preferred level near the centre of their range, at 20%. That result would indicate that
participants responses were likely driven more by the range of conditions presented rather than by a
true visual preference. If instead both groups demonstrated a preference at 15%, which would be away
from the centre point for both groups, then the results are much more likely free of a centring bias.

Training that anchors the stimulus range can reduce range effects,°*3* but probably not eliminate
them. Like order bias, range bias is a particularly important concern for colour rendition experiments
because of the visual adaptation that occurs over various time scales. As an example of this effect, it has
been observed anecdotally that studies employing shorter durations of adaptation to a new stimulus
have often found an effect that the preferred or most natural chromaticity, in the context of colour
appearance evaluation, is at the centre of the range shown,®9 40416061 corresponding to the average
state of adaptation—this effect is often not present in experiments using longer adaptation
periods.27:29:44

3.3.3. Adaptation

The visual experience is heavily dependent on adaptation to accommodate the vast range of visual
stimuli. Several distinct but related adaptive processes (e.g. light adaptation, dark adaptation, chromatic
adaptation, contrast adaptation) follow different timescales—from nearly instantaneous to weeks or
months—and rely on a variety of mechanisms in the eye-brain system.'82 Adaptation state is critical to
understanding colour perception, and can greatly influence the results of psychophysical experiments
on colour rendition via the apparatus and experimental procedures. The consequence of not addressing
adaptation can mean the results lack external validity and have minimal value for advancing lighting
practice.

Light and dark adaptation refer to adjustments of the visual system in response to the intensity of
light.18%18% | ight adaptation generally occurs rapidly (within seconds), whereas dark adaptation can take
minutes and full dark adaptation can take an hour or longer. Light and dark adaptation help to facilitate
brightness constancy,'® whereby a wide range of intensities appear neutral brightness, but as with
other adaptive processes, there are limits. Light and dark adaptation are important to colour rendition
experiments, even though they are often conducted at constant luminance. Colour perception varies
with lighting intensity,'®® and care should be taken to ensure that experiment participants have had
sufficient time to adapt to the intensity of the viewed conditions, especially if they have come from
daytime outdoor conditions (i.e. high illumination levels).

The processes of chromatic and colour contrast adaptation are both highly relevant to colour rendition
experiments. These forms of adaptation help the visual system have nominal colour constancy,*7188
meaning that objects’ colour appearance stays (almost) the same over time and across a wide range of
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illumination. However, there are limitations to the ability of the visual system to adapt and produce
constancy,°0185187.189-191 \ith different time courses and different mechanisms of adaptation, which
enables changes to the colour appearance of a scene through colour rendition. For example, colour
constancy varies with context and spatial characteristics®*>'#” and is relational.**® Colour constancy
varies with hue®®® and can be attenuated by high-chroma objects,**?> which tend to be less constant. It is
not entirely clear what objects in a scene are most important for establishing colour constancy;*®” colour
constancy likely depends on multiple cues and mechanisms.

Chromatic adaptation, studied for well over 100 years, is the change in the visual system’s sensitivity in
response to the changes in the average chromaticity of the visual scene, according to the prevalent
illumination. There is a cognitive (cortical) component that occurs very rapidly, potentially accounting
for up to 60% of the visual change;*%*'% it is potentially influenced by colour contrasts within the scene
and contextual factors.?%>1% The sensory component is slower, with existing evidence suggesting two
stages of what is effectively gain control of the three cone photoreceptors. An initial rapid mechanism
lasts up to a few seconds,?®*19>1%7 and may be asymmetric (i.e. adaptation to middle-wavelength light is
faster than adaptation to short and long-wavelength light) in the presence of complex viewing
conditions.'®® This initial phase of sensory adaptation may account for about 50% of the adaptive
change. For constant-luminance changes, chromatic adaptation is 90% complete between 60 s and 310
5194195197719 There can be substantial differences between observers'** and the time course can be
longer if light-dark adaptation is also involved.?®?°! Changes in colour appearance tend to be part of the
slower stages of chromatic adaptation, and contextual effects have a relatively greater effect over
time.'®” In some cases, chromatic adaption may never be complete, leaving residual bias.18>190.1%

Beyond the initial short-term adaptation, there are long-term adaptation and aftereffects than can occur
on a timescale of days, months, or longer 187191202208 | ong_term and short-term chromatic adaptation
effects are cumulative, despite some differences in mechanisms, but long-term effects are generally
weaker.2% Long-term effects are less asymptotic, however, and decay slower.

The visual system also adapts to the colour contrast within a scene, with both retinal and cortical
processes;?% enabling the visual system to adapt to variations in chromaticity (and luminance) around a
fixed average.?! This adaptation occurs for individual scenes and overall environments due to variation
in chromaticity,?%?'2 and can vary with illumination.?*® There is some evidence for long-term contrast
adaptation effects,?'* but other work does not support that conclusion.%?

In short, visual adaptation takes several forms, relies on several mechanisms, and occurs over multiple
time scales. Thus, it is important to understand the visual state of the participants in experiments on
colour rendition, so the results can be related to their intended practical use. In this regard, it is
important to consider if the primary concern is occupants’ initial impression, long-term impression, or
relative impression of a space.

In general, we recommend a minimum of two minutes of adaptation if the chromaticity must change
within a sequence of lighting conditions. (If possible, it would be better to avoid changes in chromaticity
within an experimental session altogether.) If chromaticity change is necessary, we recommend
following procedures that reduce or eliminate the ability of participants to detect chromaticity changes
or that result in mixed adaptation, which may include:

1. Eliminate any sources of stray light, such as from windows without blackout curtains that
provide a contextual clue about the chromaticity of the experimental condition.

2. Ensure that auxiliary light sources, such as computer screens, are not seen by observers. If
unavoidable, adjust the colour appearance as the chromaticity of the lighting being evaluated
changes.
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3. Use an auxiliary space, outside of the experimental space, to adapt participants to a new
chromaticity.

4. Show all conditions with the same nominal chromaticity in a block.

5. Avoid visible transitions in lighting conditions, even if the specified chromaticity is the same,
because the chromaticity cannot precisely match for all observers (even if all conditions could
have a perfect match in calculated chromaticity).

For colour rendition research—and perhaps more broadly—we recommend being cautious with
scenarios where mixed chromatic adaptation is elicited, such as side-by-side viewing conditions. This is
especially true when chromaticity does not match but may also be a concern when chromaticity is
specified to match (for a standard observer), because observer variability will mean chromaticity is not
matched for all participants. Avoiding mixed adaptation might be safer (with the notable exception of
research investigating mixed adaptation itself)®8 21>216 hecause existing standardized measures of colour
rendition assume complete chromatic adaptation to the illuminant. In cases of mixed adaptation, the
visual stimulus will not be characterized by the standardized measures. If mixed adaptation is elicited,
extra care should be taken to understand the visual stimulus and researchers should use relevant
colorimetric tools to characterize stimuli.

It is true that many lighting scenarios involve lights with different chromaticities, such as adjacent retail
establishments, different spaces within a restaurant, or daylit offices. However, real environments are
complex and usually feature blended illumination. It would be rare (outside a laboratory) to see identical
objects illuminated in two different ways, whether differences in chromaticity or colour rendition. This
contrived situation may confuse cortical adaptation mechanisms—for chromaticity or contrast—and at
the very least means the visual system, no matter the duration of exposure, cannot adapt to each local
scene. Mixed adaptation scenarios may compromise external validity because the appearance of each
stimulus is relative, and the same relative reference will not be present in architectural lighting
applications. To be clear, being cautious does not mean probing the effects of mixed adaptation on
subjective evaluations of colour rendition is not warranted, but that the presentation of such a visual
stimulus should be intentional and the effects accounted for when assessing the validity of the results.

3.4. Statistical Planning

Planning and documenting data analysis is important because the statistical analysis is related to all
other aspects of the experimental design, including the design of the response instruments and the
stimuli presentation. It is also important to determine the statistical tests that will be conducted a priori
to avoid “fishing” for significant results, which can lead to false positive findings.1%819%:111 |t js useful to
indicate if the study is exploratory, so the methods and analyses can be appropriately interpreted.

In addition to identifying appropriate statistical analysis techniques, it is important in the experimental
design phase to understand the assumptions of those tests, anticipate if the assumptions will be met,
and have a plan of action if they are not met. For example, repeated measures analysis of variance
(ANOVA) assumes homogeneity of variance across the conditions (i.e. assumption of sphericity),?’
among other assumptions. The assumption of sphericity, which results in an inflated Type 1 error rate if
violated, can be tested in several ways (e.g. Mauchly’s test?®), and if not met, alternative analysis
approaches should be used to avoid a positively biased F statistic (e.g. the Huynh-Feldt or Greenhouse-
Geisser corrections). See Wei et al.*® for an example of how this was employed in an experiment on
colour preference.
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Statistical planning should also include a power analysis?'° to ensure the planned sample size is
appropriate to detect an effect of a given size at a desired level of statistical significance, typically a <
0.05.

4. Reporting and Analysis

Properly analysing and reporting an experiment is a critical part of the research enterprise and, like all
aspects of research, must be done ethically.®® Common reporting practices in this field of research often
result in omission of valuable information. At a minimum, we recommend a measure(s) of central
tendency and variation to be reported for all independent, dependent, and controlled variables. In the
case of independent and controlled variables, this provides information about the temporal and spatial
variability, which is a way to document careful execution of the experiment. Where applicable,
measurements should be taken with a calibrated meter, with the exact procedures carefully
documented to ensure repeatability.

Because colour rendition experiments usually rely on operationalized variables that are derived from
SPDs, and because knowledge changes over time, we join others??%2?! in recommending the reporting
the SPD of each lighting condition, preferably in tabular format. To the extent possible, providing
complete results to beyond central tendency and variation is also valuable. Extensive data can be
included in supplemental files and made available through (preferably open source) online repositories.

To help contribute to replicable science, authors should be fully transparent in reporting the study
design and results, including both significant and not significant findings of any statistical tests
conducted. Best practices dictate that the statistical tests to be performed should be identified a priori—
and perhaps pre-registered—and only those tests should be performed after data collection is complete,
or according to plan. Choices associated with reporting contribute to researcher degrees of freedom, the
mistreatment of which induces bias.'® Authors should also report information related to the population
of interest, how it was sampled (including any inclusion/exclusion criteria), and descriptive statistics
about the sample. Any manipulation, cleaning, or exclusion of data should be clearly identified and
justified, along with the relationship of the reported data to any larger dataset or other publication (if
applicable).

In general, we recommend providing as much of the underlying data and computational workings as is
practical and possible. Online repositories now easily facilitate the posting and tracking of data for all
types of variables as well as data analyses.

4.1. Statistical Analysis

Rather than attempting to provide a complete overview of potential statistical analysis techniques, here
we address a few key concerns relevant to the most common techniques used to date in this genre of
research. Regardless of the technique, the specific methods used should be reported, including the
treatment of each factor in the model(s)—which should have been determined before the experiment.
For confirmatory research, the finding related to each previously identified hypothesis should be
explicitly stated, with reporting of both statistical significance and effect size. In addition to the main
statistical analysis, it is recommended to report results related to tests of the underlying assumptions. At
a minimum, it should be verified in the report that these assumptions were examined and met.

Uttley?!® examined, among other research practices, the prevalence of assessment of statistical
assumptions in lighting research. As with the general and glare-specific datasets generated by Uttley,
our preliminary survey completed during preparation of this article suggests that more thorough
reporting of statistical tests and evaluation of assumptions is warranted in colour rendition research. A
full review is planned as future work.
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Experiments on the subjective evaluation of colour rendition often involve multiple dependent
measures. For example, participants may rate naturalness, preference, vividness, acceptability, or
appreciation of the colour appearance of objects in a scene. Guidelines for quality and replicability
recommend disclosure of all variables, using language that conveys that the reported variables were the
only variables.'® Adjustments to significance criteria may also be necessary if multiple dependent
measures are not independent (e.g. ratings of naturalness and normalness). In some cases, multivariate
statistical methods can help address this situation.

As previously discussed, rating scales are the predominant psychophysical procedure used to
subjectively evaluate light source colour rendition, and a wide variety of specific assessment tools have
been used. To properly analyse scale data, it is important to identify whether the data is ordinal data
(having an order but not defined increment) or interval data (having both an order and an
increment)?2—nominal and ratio data types also exist, but are not common in colour rendition
research. Some hold the view that ordinal data, such as generated from individual Likert items, should
be analysed with non-parametric statistics?22-222—thus excluding regression analysis, ANOVA, factor
analysis, etc. Others have found that parametric statistics are robust and acceptable for use with ordinal
scale data, at least under some circumstances.'3¢229238 The |atter viewpoint aligns with the approach of
a vast majority of researchers investigating light source colour rendition; however, it is not clear if the
researchers are aware of the underlying assumptions and debate among methodologists when treating
the data in this way. In general, anchored numerical rating scales with five or more values or continuous
line marking scales are recommended for treatment as interval data, and are most likely an
improvement over the use of individual Likert items (using the traditional Likert format outside of the
original Likert scale framework).!3¢

Forced choice data has its own unique set of analysis considerations.?** Foremost, the choices should
not simply be summarized as percentages and assumed to be on an interval scale. Instead, evaluation
frameworks such as Item Response Theory,?° relying on Thurstone’s law of comparative judgement,?*
may be considered, but are also subject to important assumptions that should be checked.

4.2. Model Fitting and Implications

It has become increasingly common in colour rendition experiments to fit numerous regression models
that combine multiple measures of colour rendition, chromaticity, and sometimes other lighting
parameters to compare the ability of various measures to explain the visual response. This analysis
technique can be useful in exploratory work but is not a substitute for null-hypothesis significance
testing in confirmatory research because a relatively small SPD set that is not intentionally designed to
test the difference between two or more measures may not be suitable for comparing performance in a
generalized fashion. Rather, it is better to design a specific set of SPDs to compare performance,
exploring specific differences in characterization of colour rendition.

Even when appropriate, searching for best-fit models should be undertaken with care. For example,
increasing the number of parameters will increase the correlation, but at some point, the data will be
over fit.2*2243 This can lead to failures to replicate and make the models less useful in predictive
applications. When comparing models, additional statistics, such as Mallow’s C,2** or the Akaike
Information Criterion,?* should be used to guide selection. Adjusted or predicted r?values can be more
informative than standard r? values, compensating for the number of terms in the model. Beyond
statistics, the terms included in the model should have a strong theoretical basis that justifies their
inclusion.

When fitting linear regression models, reporting should include the statistical significance of the factors,
not just the overall statistic on correlation. Additionally, the statistical significance of the difference in
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correlation coefficients can be determined, instead of just investigating the rank order.?*® It should be
noted that it is possible to have a high coefficient of determination r? value with a not significant p-
value.

Even if comparing measures is not the purpose, regression models can be prone to overgeneralization,
especially for studies with insufficient variation of SPDs and their derived colour rendition metrics that
seek to support specification guidance for a wide range of architectural lighting applications. That is, the
model should only be applied to the population that was sampled and may not be useful for establishing
performance criteria that are applicable to all possible lighting conditions if only a small range were
examined.

While a small number of targeted SPDs can be appropriate for testing a specific hypothesis, it can be
difficult or impossible to sample the range of possible colour rendition solutions—varying at least
average colour fidelity, gamut area, and gamut shape, which are all known to influence colour rendition
perceptions in polychromatic environments—using only a few SPDs. The problem of using few SPDs
selected for convenience to examine the performance of colour rendition measures is not new.
Ouweltjes?*” wrote in 1960: “...most authors compare a few commercial fluorescent lamps, mainly of the
Standard type, with those of the de Luxe type. The difference between Standard fluorescent lamps and
the de Luxe lamps is so pronounced that any method having a more or less sound background will show
de Luxe lamps to be better than the Standard lamps.” However, many colour rendition studies have
continued to include few SPDs, while seeking to establish generalized relationships or
recommendations. The median number of SPDs presented in the 49 studies reported since 2010 is 12. A
small sample of SPDs may result in an incomplete test of the relationship between measures of colour
rendition and subjective evaluations of scene colour appearance. Notwithstanding the above, if an
experimenter is testing a specific hypothesis rather than probing a general trend, it may be suitable to
employ a small number of SPDs that are explicitly engineered to probe the hypothesis under study.

It has been shown that if only limited aspects of colour rendition are varied (e.g. colour fidelity) and
others excluded (e.g. gamut shape), subjective evaluations of colour rendition (e.g. colour preference)
can be explained with average measures of colour rendition, even though these measures have far less
ability to predict the same perception across a wide range of SPDs.?* Likewise, if the range of possible
values is limited (e.g. Rg < 115 and Rcsh1 < 15%), a linear model can show strong correlation without
accounting for nonlinearity in the relationship (e.g. colour preference can decrease when chroma
enhancement becomes too great). Therefore, regression can be internally valid without being externally
valid due to insufficient sampling. Further, conglomerating and averaging correlation coefficients for
measures of colour rendition across multiple studies using small numbers of SPDs does not address
external validity. Correlation can be high for many small SPDs sets, but low for a wider range of SPDs.

Regression models fit to one dataset often do not show high correlation for other datasets, even if the
same factors have a statistically significant relationship. In other words, the coefficients of the model
can vary substantially. This could at least partially be the result of range bias (i.e. the type and extents of
SPDs included), with additional effects potentially arising from other variable factors, such as the
objects, questionnaire, or participant demographics. For these reasons, it is generally not recommended
to use regression modelling to derive single-number metrics from experimental data that are intended
for general use.

It is important that all articles include an honest reflection on the limited inference that can be gained
from a single experiment, without attempting to justify methodological flaws. Most of the
methodological considerations discussed in this article can be addressed with proper experimental
planning. Given the advanced stage of colour rendition research, there is unlikely to be sufficient
justification for publication of results arising from experiments conducted that do not follow good
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practices. The processes that were followed in the past cannot be assumed to be appropriate given
today's understandings.

5. Discussion

Much has been learned from more than 60 years of research on subjective evaluations of colour
rendition. This period has included plenty of exploratory, pre-hypothesis research (e.g. observational
studies), with a slowly increasing presence of hypothesis-driven confirmatory research. Though some
field studies of lighting have employed colour as one of the independent variables, further field studies
in varied settings may help validate the results of additional confirmatory research. Still, the mixture of
high-quality and questionable research that forms the body of research on colour rendition quality has
likely slowed progress, with assertions from past work often being contradicted with later studies—in
hindsight, more rigorous experimental methods could have avoided the need for so many iterative
experiments. Some of the most common quality concerns include:

1. Failing to control for all lighting variables, such as chromaticity, D, and gamut shape, resulting
in confounded data

2. Compounding poor control of chromaticity with insufficient chromatic adaptation, resulting in a
visual stimulus that may be perceived differently from its numerical characterizations

3. Exploratory research with insufficient sampling of the range of possible colour rendition
characteristics, with results that should not be extended and used for guiding architectural
lighting practice, but for which authors sometimes use to justify generalized recommendations

4. Small sample sizes and poor reporting on statistical power

5. Failing to establish clear research hypotheses, design experiments that will test them, and
perform appropriate statistical analyses.

These concerns all leave a large portion of the available data unsuitable for establishing generalized
recommendations on the quantification and specification of light source colour rendition. A precise
critical review of this entire body of literature, using guidance established in this manuscript, will be the
focus of future work.

To establish a solid foundation for future research on subjective evaluations of colour rendition, we
recommend a collective, convergent research effort to directly investigate how common experimental
methods may be biasing results or limiting external validity. The following research questions are a
starting point, but not all are equally worthwhile:

1. How does mixed adaptation (which could be spatial if presented with two scenes
simultaneously, or temporal if presented with two scenes in sequence) influence the subjective
evaluation of colour rendition compared to complete adaptation? How long of an adaptation
period is necessary?

2. Does inclusion of a simultaneously appearing reference illuminant influence the subjective
evaluation of colour rendition compared to judging each condition individually?

3. What are the relationships between similar words (e.g. preference, pleasantness, attractiveness,
or acceptability) that are employed as dependent measures? Is it desirable and possible to
adopt consistent language to guide future research on perceptions of colour rendition?

4. How does the quantity and type of visual targets influence colour rendition perception?

How does the range and quantity of SPDs affect subjective evaluation of colour rendition?

6. What is the role of colour contrast adaptation in short-term laboratory-based experiments and
how does it affect the application of knowledge to real architectural environments?

4
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7. Canthe results from rating scales be corroborated with other measurement tools, particularly
ones that rely more on physiological measurements (e.g. heart-rate variability,
electroencephalogram, or behavioural patterns like sales)?

8. How do subjective evaluations change over short (i.e. minutes) and long (i.e. days or months)
periods?

In addition to initiating a line of research on experimental methods, we recommend an increase in
hypothesis-driven research—which in some cases could be done concurrently. Some important inquiries
include deeper investigation of the role of gamut shape in driving subjective evaluations, interactive
effects of objects and light source colour rendition characteristics, and the role of illuminance level in
assessing colour rendition quality—all of which have downstream implications for specification targets.
The best practices identified in this article, summarized for easy reference in Figure 3, can help
researchers address these objectives. This could be used as a checklist by researchers or reviewers,
potentially in conjunction with the more general STrengthening the Reporting of OBservation studies in
Epidemiology (STROBE) Statement.?* Figure 3 focuses on issues related to subjective evaluations of
colour rendition, and is not a comprehensive record of good research practices.

While there is already some anecdotal experiential evidence, field studies are needed to determine the
external validity of laboratory-based research on colour rendition. In this process, we encourage use of
measures that go beyond self-reports to include objective measures such as sales, employee turnover,
and student performance. Such dependent measures make the most use of the real setting and cannot
be easily administered in a laboratory.

6. Conclusions

This article provides methodological recommendations to increase the evidential value of laboratory-
based psychophysical experiments investigating the effect of light source spectral power distribution on
the subjective evaluation of the colour appearance of scenes, and it is intended to serve as a resource
for researchers, reviewers, and readers. There are many ways to conduct excellent research, and there
is no single prescription for quality.

Research in this field has proliferated in the past decade, but a lack of methodological rigor has made
deciphering and applying the results difficult. This article identifies a range of issues that can (and have)
reduced the credibility and usability of published results on colour preference, colour naturalness, and
other subjectively evaluated aspects of colour rendition. A renewed focus on how research is conducted
in this field, rather than simply adding new data to an already crowded collection, can help resolve
pressing questions about perceptions of colour rendition, and will hopefully inspire new research.
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Conceptualization

e Establish and justify research questions through literature review
e Document specific, testable hypotheses or exploratory research aims

Experimental Design

o Clearly identify independent, controlled, uncontrolled, and dependent variables that are suitable for the planned
research

e At a minimum, illuminance (or luminance), chromaticity, colour fidelity, gamut area, and gamut shape should be
independent or control variables

e Report standardized measures of colour rendition from ANSI/IES TM-30-20 and/or CIE 224:2017, as well as CIE S026:
2018, and additional measures as appropriate

e Sample objects (and the visual scene) so that appropriate conclusions can be made regarding a situation of interest

e Determine the visual stimulus that results from the interaction of the SPDs and objects and how it relates to the
quantification of the visual stimulus with measures of colour rendition.

e Sample the range of possible colour rendition characteristics in a manner appropriate to address the research question

e Sample the population of people of interest. A minimum sample size of 30 is recommended to address typical statistical
assumptions, but power analyses should be used to determine the appropriate sample size.

e Measure all variables at sufficient granularity in space and time to fully document the photometric and colorimetric
conditions experienced by participant, including the stability (or variation) in those conditions

Procedures
e Report exact procedures in detail to enable replication and state if they did or did not follow an a priori plan (or pre-
registration, if applicable)

o Develop a plan to mitigate biases
e Document the attempts to mitigate the following biases (if applicable): Observer, Investigator, Position, Order, Stimulus
Range including centring

e Determine how the experimental procedures will influence the adaptation state of the observer and how that relates to
the intended external use and quantification of the visual stimulus

Results

e Report measures of central tendency and variance for all dependent measures
e Consider providing all raw data, in as much detail as possible (e.g., individual response data), and SPDs as supplemental
files. In some cases, computational notebooks may also add value.

Analysis
o Perform statistical analyses according to an a priori plan (or pre-registration, if applicable), and explicitly state if
analyses were not planned

e Use statistical analysis techniques appropriate for the data type

e Report details of all statistical models

e Check (and report) all relevant assumptions for each statistical test performed
e Report (all) tests of statistical significance and effect size

Discussion

e Contextualize the results and analysis within the existing body of related work
o |dentify limitations without justifying methodologically unsound work

Conclusions

e Succinctly report the key findings from the study, and explicitly address the research question(s)
e Ensure conclusions are supported by the experimental results and avoid overgeneralization

Supplemental Material

e Provide spectral data for all stimuli in tabular format.

e Provide instructions to participants and other experimental details that are too expansive for body of manuscript
Figure 3. Summary of recommended practices relevant to performing research on subjective evaluations of color
rendition. This may be used as checklist by researchers, reviewers, and readers, although it is not exhaustive of
all best practices in research.

p. 26



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bouma PJ. Colour reproduction in the use of different sources of ‘white’ light. Philips Technical
Review 1937; 2: 1-7.

Rea MS, Freyssinier JP. Color rendering: Beyond pride and prejudice. Color Research and
Application 2010; 35: 401-4009.

Smet KAG, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P. Memory colours and colour
quality evaluation of conventional and solid-state lamps. Optics Express 2010; 18: 26229.

Baniya RR, Dangol R, Bhusal P, Wilm A, Baur E, Puolakka M, et al. User-acceptance studies for
simplified light-emitting diode spectra. Lighting Research and Technology 2015; 47: 177-191.

Bodrogi P, Briickner S, Khanh TQ, Winkler H. Visual assessment of light source color quality. Color
Research and Application 2013; 38: 4-13.

Liu A, Tuzikas A, Zukauskas A, Vaicekauskas R, Vitta P, Shur M. Cultural preferences to color quality
of illumination of different artwork objects revealed by a color rendition engine. IEEE Photonics
Journal 2013; 5: 6801010.

Tsukitani A. Optimization of colour quality for landscape lighting based on feeling of contrast
index. In: CIE Centenary Conference ‘Towards a New Century of Light’. Paris, France: Commission
Internationale de I'Eclairage, 2013, pp. 68—71.

Vick K, Allen G, Lighting GE. Quantifying Consumer Lighting Preference. In: 14th International
Symposium on the Science and Technology of Lighting (LS14). Como, Italy, 2014.

Szabd F, Kéri R, Schanda J, Csuti P, Mihalyké-Orban E. A study of preferred colour rendering of
light sources: Home lighting. Lighting Research and Technology 2016; 48: 103—125.

Wei M, Houser KW, Allen GR, Beers WW. Color preference under LEDs with diminished yellow
emission. Leukos 2014; 10: 119-131.

Lin Y, Wei M, Smet KAG, Tsukitani A, Bodrogi P, Khanh TQ. Colour preference varies with lighting
application. Lighting Research and Technology 2017; 49: 316—328.

Jost-Boissard S, Avouac P, Fontoynont M. Assessing the colour quality of LED sources: Naturalness,
attractiveness, colourfulness and colour difference. Lighting Research and Technology 2015; 47:
769-794.

Ohno Y, Fein M, Miller C. Vision experiment on chroma saturation for colour quality preference.
In: 28th CIE Session. Manchester, UK: Commission Internationale de I'Eclairage, 2015.

Smet K, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P. Colour appearance rating of familiar
real objects. Color Research and Application 2011; 36: 192—-200.

Wei M, Houser KW, David A, Krames MR. Perceptual responses to LED illumination with colour
rendering indices of 85 and 97. Lighting Research and Technology 2015; 47: 810-827.

Wei M, Houser KW. Systematic Changes in Gamut Size Affect Color Preference. Leukos 2017; 13:
23-32.

Lin'Y, He J, Tsukitani A, Noguchi H. Colour quality evaluation of natural objects based on the
Feeling of Contrast Index. Lighting Research and Technology 2016; 48: 323—-339.

Wei M, Houser KW, David A, Krames MR. Colour gamut size and shape influence colour
preference. Lighting Research and Technology 2017; 49: 992-1014.

p. 27



19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Khanh TQ, Bodrogi P, Vinh QT, Stojanovic D. Colour preference, naturalness, vividness and colour
quality metrics, Part 1: Experiments in a room. Lighting Research and Technology 2017; 49: 697—
713.

Khanh TQ, Bodrogi P, Vinh QT, Stojanovic D. Colour preference, naturalness, vividness and colour
quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset.
Lighting Research and Technology 2017; 49: 714-726.

Khanh TQ, Bodrogi P. Colour preference, naturalness, vividness and colour quality metrics, Part 3:
Experiments with makeup products and analysis of the complete warm white dataset. Lighting
Research and Technology 2018; 50: 218-236.

Khanh TQ, Bodrogi P, Vinh QT, Guo X, Anh TT. Colour preference, naturalness, vividness and
colour quality metrics, Part 4: Experiments with still life arrangements at different correlated
colour temperatures. Lighting Research and Technology 2018; 50: 862—-879.

Khanh TQ, Bodrogi P, Guo X, Vinh QT, Fischer S. Colour preference, naturalness, vividness and
colour quality metrics, Part 5: A colour preference experiment at 2000 Ix in a real room. Lighting
Research and Technology 2019; 51: 262-279.

Royer MP, Wilkerson A, Wei M, Houser K, Davis R. Human perceptions of colour rendition vary
with average fidelity, average gamut, and gamut shape. Lighting Research and Technology 2017;
49: 966—991.

Zukauskas A, Vaicekauskas R, Shur M. Color-dulling solid-state sources of light. Optics Express
2012; 20: 9755.

Bieske K, Hartwig UM, Schierz C, Wilm A, Horst C. TM-30-15 and CIE-CRI-RA: Investigation of
colour rendering of white PC LEDs. Light and Engineering 2018; 26: 81-87.

Royer MP, Wilkerson A, Wei M. Human perceptions of colour rendition at different chromaticities.
Lighting Research and Technology 2018; 50: 965—994.

Durmus D, Davis W. Object color naturalness and attractiveness with spectrally optimized
illumination. Optics Express 2017; 25: 12839.

Zhang F, Xu H, Feng H. Toward a unified model for predicting color quality of light sources. Applied
Optics 2017; 56: 8186.

Kawashima Y, Ohno Y. Vision experiment on verification of hunt effect in lighting. In: 29th CIE
Session. Washington, D.C.: CIE, 2019, pp. 496-504.

He J, LinY, Yano T, Noguchi H, Yamaguchi S, Matsubayashi Y. Preference for appearance of
Chinese complexion under different lighting. Lighting Research and Technology 2017; 49: 228—
242.

Zhai Q, Luo MR. Colour quality assessment under LED tuneable sources with varying gamut sizes
and shapes. In: CIE Midterm Meeting. Jeju, South Korea: Commission Internationale de I'Eclairage,
2018, pp. 47-52.

Revantino, Mangkuto RA, Enge A, Munir F, Soelami FXN, Faridah. The effects of illuminance,
colour temperature, and colour rendering of various existing light-emitting diode lamps on
subjective preference and performance in Indonesia. Journal of Building Engineering 2018; 19:
334-341.

p. 28



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Huang Z, Liu Q, Liu Y, Pointer MR, Luo MR, Wang Q, et al. Best lighting for jeans, part 1: Optimising
colour preference and colour discrimination with multiple correlated colour temperatures.
Lighting Research and Technology 2019; 51: 1208—-1223.

Khanh TQ, Bodrogi P, Guo X. Towards a user preference model for interior lighting, Part 3: An
alternative model. Lighting Research and Technology 2020; 52: 189-201.

Spaulding JM. Evaluation of desirability assessment techniques for tunable solid state lighting
applications. In: Human Factors and Ergonomics Society Annual Meeting. 2012, pp. 643—647.

Esposito T, Houser K. Models of colour quality over a wide range of spectral power distributions.
Lighting Research and Technology 2019; 51: 331-352.

Tang X, Teunissen C. The appreciation of LED-based white light sources by Dutch and Chinese
people in three application areas. Lighting Research and Technology 2019; 51: 353-372.

Wei M, Bao W, Huang HP. Consideration of light level in specifying light source color rendition.
Leukos 2020; 16: 55-65.

Liu Q, Huang Z, Pointer MR, Luo MR, Xiao K, Westland S. Evaluating colour preference of lighting
with an empty light booth. Lighting Research and Technology 2018; 50: 1249-1256.

Huang Z, Liu Q, Westland S, Pointer MR, Luo MR, Xiao K. Light dominates colour preference when
correlated colour temperature differs. Lighting Research and Technology 2018; 50: 995-1012.

Acosta |, Ledn J, Bustamante P. Daylight spectrum index: A new metric to assess the affinity of
light sources with daylighting. Energies 2018; 11: 2545.

Bao W, Wei M. Change of gamut size for producing preferred color appearance from 20 to 15000
lux. Leukos 2021; 17: 21-42.

Royer MP, Wei M, Wilkerson A, Safranek S. Experimental validation of colour rendition
specification criteria based on ANSI/IES TM-30-18. Lighting Research and Technology 2020; 52:
323-349.

Teunissen C, Van Der Heijden FHFW, Poort SHM, De Beer E. Characterising user preference for
white LED light sources with CIE colour rendering index combined with a relative gamut area
index. Lighting Research and Technology 2017; 49: 461-480.

Imai Y, Kotani T, Fuchida T. A Study of Color Rendering Properties based on Color Preference of
Objects in Adaptation to LED Lighting. In: CIE Centenary Conference “Towards a New Century of
Light”. Vienna, Austria: Commission Internationale de I'Eclairage, 2013: 62-67.

Islam MS, Dangol R, Hyvarinen M, Bhusal P, Puolakka M, Halonen L. User preferences for LED
lighting in terms of light spectrum. Lighting Research and Technology 2013; 45: 641-665.

Dangol R, Islam M, Lisc MH, Bhusal P, Puolakka M, Halonen L. Subjective preferences and colour
quality metrics of LED light sources. Lighting Research and Technology 2013; 45: 666—688.

Veitch JA, Whitehead LA, Mossman M, Pilditch TD. Chromaticity-matched but spectrally different
light source effects on simple and complex color judgments. Color Research and Application 2014;
39: 263-274.

Dangol R, Islam MS, Hyvarinen M, Bhushal P, Puolakka M, Halonen L. User acceptance studies for
LED office lighting: Preference, naturalness and colourfulness. Lighting Research and Technology
2015; 47: 36-53.

p. 29



51.
52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Davis W. Color quality scale. Optical Engineering 2010; 49: 033602.

Davis W, Ohno Y. Approaches to color rendering measurement. Journal of Modern Optics 2009;
56:1412-1419.

Commission Internationale de I'Eclairage. Colour Rendering of White Led Light Sources. CIE
177:2007. Vienna, Austria: Commission Internationale de |'Eclairage, 2007.

Van Trigt C. Color rendering, a reassessment. Color Research and Application 1999; 24: 197-206.

Houser K, Mossman M, Smet K, Whitehead L. Tutorial: Color rendering and its applications in
lighting. Leukos 2016; 12: 7-26.

David A, Fini PT, Houser KW, Ohno Y, Royer MP, Smet KAG, et al. Development of the IES method
for evaluating the color rendition of light sources. Optics Express 2015; 23: 15888.

Commission Internationale de I’Eclairage. Method of measuring and specifying colour rendering
properties of light sources. CIE 13.3-1995. Vienna, Austria: Commission Internationale de
I'Eclairage, 1995.

Commission Internationale de I'Eclairage. CIE 2017 colour fidelity index for accurate scientific use.
CIE 224:2017. Vienna, Austria: Commission Internationale de I'Eclairage, 2017.

De Beer E, Van Der Burgt P, Van Kemenade J. Another color rendering metric: Do we really need it,
van we live without it? Leukos 2016; 12: 51-59.

Bodrogi P, Lin Y, Xiao X, Stojanovic D, Khanh TQ. Intercultural observer preference for perceived
illumination chromaticity for different coloured object scenes. Lighting Research and Technology
2017; 49: 305-315.

Huang Z, Liu Q, Pointer MR, Luo MR, Wu B, Liu A. White lighting and colour preference, Part 1:
Correlation analysis and metrics validation. Lighting Research and Technology 2020; 52: 5-22.

Rea MS, Freyssinier-Nova JP. Color rendering: A tale of two metrics. Color Research and
Application 2008; 33: 192-202.

Veitch JA, Fotios SA, Houser KW. Judging the scientific quality of applied lighting research. Leukos
2019; 15: 97-114.

Sanders CL. Colour preferences for natural objects. Journal of the Illuminating Engineering Society
1959; 54: 452-456.

Sanders CL. Assessment of color rendition under an illuminant using color tolerances for natural
objects. Journal of the Illuminating Engineering Society 1959; 54: 640-646.

Aston SM, Bellchambers HE. lllumination, colour rendering and visual clarity. Lighting Research
and Technology 1969; 1: 259-261.

Jerome CW. Flattery vs color rendition. Journal of the llluminating Engineering Society 1972; 1:
208-211.

Thornton WA. A validation of the color-preference index. Journal of the llluminating Engineering
Society 1974; 4: 48-52.

Siple P, Springer RM. Memory and preference for the colors of objects. Perception and
Psychophysics 1983; 34: 363—370.

p. 30



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Boray PF, Gifford R, Rosenblood L. Effects of warm white, cool white and full-spectrum fluorescent
lighting on simple cognitive performance, mood and ratings of others. Journal of Environmental
Psychology 1989; 9: 297-307.

Boynton RM, Fargo L, Collins BL. Categorical color rendering of four common light sources. Color
Research and Application 1990; 15: 222-230.

Rea MS, Robertson AR, Petrusic WM. Colour rendering of skin under fluorescent lamp
illumination. Color Research and Application 1990; 15: 80-92.

Yano T, Hashimoto K. Preference for Japanese complexion color under illumination. Color
Research and Application 1997; 22: 269-274.

Veitch JA, Tiller DK, Pasini |, Arsenault CD, Jaekel RR, Svec JM. The effects of fluorescent lighting
filters on skin appearance and visual performance. Journal of the llluminating Engineering Society
2002; 31: 40-60.

Quellman EM, Boyce PR. The light source color preferences of people of different skin tones.
Journal of the Illuminating Engineering Society 2002; 31: 109-118.

Narendran N, Deng L. Color rendering properties of LED light sources. In: Fergusen |, Narendran N,
DenBaars S, et al. (eds) SPIE 4776, Solid State Lighting Il. International Society for Optics and
Photonics, 2002, p. 61.

Tiller DK, Hu X, Houser KW. Tuning the fluorescent spectrum for the trichromatic visual response:
A pilot study. Leukos 2005; 1: 7-23.

Szabé F, Schanda J, Bodrogi P, Radkov E. A comparative study of new solid state light sources.
Proceedings of the 26th Session of the CIE 2007; 5: 4-5.

Boissard S, Fontoynont M. Optimization of led-based light blendings for object presentation. Color
Research and Application 2009; 34: 310-320.

Jost-Boissard S, Fontoynont M, Blanc-Gonnet J. Perceived lighting quality of LED sources for the
presentation of fruit and vegetables. Journal of Modern Optics 2009; 56: 1420-1432.

Szabé F, Bodrogi P, Schanda J. A colour harmony rendering index based on predictions of colour
harmony impression. Lighting Research and Technology 2009; 41: 165—180.

Smet K, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P. Correlation between color quality
metric predictions and visual appreciation of light sources. Optics Express 2011; 19: 8151.

Hashimoto K, Yano T, Shimizu M, Nayatani Y. New method for specifying color-rendering
properties of light sources based on feeling of contrast. Color Research and Application 2007; 32:
361-371.

Royer MP, Houser KW, David A. Chroma shift and gamut shape: Going beyond average color
fidelity and gamut area. Leukos 2018; 14: 149-165.

Royer MP, Houser KW, Wilkerson AM. Color discrimination capability under highly structured
spectra. Color Research and Application 2012; 37: 441-449.

Esposito T, Houser K. A new measure of colour discrimination for LEDs and other light sources.
Lighting Research and Technology 2019; 51: 5-23.

Judd D. A flattery index for artificial illumiants. les Transactions 1967; 593.

p.31



88.

89.

90.

91.

92.
93.

94.

95.

96.

97.

98.

99.

100.

101.
102.
103.

104.

105.

106.

107.

Houser KW, Hu X. Visually matching daylight fluorescent lamplight with two primary sets. Color
Research and Application 2004; 29: 428-437.

llluminating Engineering Society. IES Method for Evaluating Light Source Color Rendition. ANSI/IES
TM-30-20. New York, NY: Illuminating Engineering Society, 2020.

Royer MP. Tutorial: Background and guidance for using the ANSI/IES TM-30 method for evaluating
light source color rendition. Leukos 2021; Online Bef: 1-41.

Jaeger RG, Halliday TR. On confirmatory versus exploratory research. Herpetologica 1998; 54:
S64-S66.

Tukey JW. We need both exploratory and confirmatory. American Statistician 1980; 34: 23-25.

Kimmelman J, Mogil JS, Dirnagl U. Distinguishing between Exploratory and Confirmatory
Preclinical Research Will Improve Translation. PLoS Biology 2014; 12: e1001863.

Thornton WA. Color-discrimination index. Journal of the Optical Society of America 1972; 62: 191—
194.

Wang Y, Wei M. Preference among light sources with different Duv but similar colour rendition: A
pilot study. Lighting Research and Technology 2018; 50: 1013-1023.

Yang B, Wei M. Road lighting: A pilot study investigating improvement of visual performance using
light sources with a larger gamut area. Lighting Research and Technology 2020; 52: 895-905.

Thornton WA, Jerome CW. The Flattery Index. Journal of the Illuminating Engineering Society
1973; 2: 351-354.

Einhorn HD, Naudé DEH. Colour-rendering preferences for lighting the face. Lighting Research and
Technology 1963; 28: 149-154.

Popper K. The logic of scientific discovery. Routledge, 2005.

Poulton EC. Quantitative subjective assessments are almost always biased, sometimes completely
misleading. British Journal of Psychology 1977; 68: 409-425.

Poulton EC. Biases in quantitative judgements. Applied Ergonomics 1982; 13: 31-42.
Smith J, Noble H. Bias in research. Evidence-Based Nursing 2014; 17: 100-101.

Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proceedings of the
National Academy of Sciences of the United States of America 2018; 115: 2600—2606.

Nosek BA, Beck ED, Campbell L, Flake JK, Hardwicke TE, Mellor DT, et al. Preregistration is hard,
and worthwhile. Trends in Cognitive Sciences 2019; 23: 815-818.

Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, et al. Estimating the
reproducibility of psychological science. Science 2015; 349: aac4716.

Camerer CF, Dreber A, Holzmeister F, Ho TH, Huber J, Johannesson M, et al. Evaluating the
replicability of social science experiments in Nature and Science between 2010 and 2015. Nature
Human Behaviour 2018; 2: 637—-644.

loannidis JPA. Why most published research findings are false. Getting to Good: Research Integrity
in the Biomedical Sciences 2018; 2: 2-8.

p. 32



108.

109.

110.

111.

112.

113.

114.

115.
116.

117.

118.

119.

120.

121.

122.

123.

124.

Wicherts JM, Veldkamp CLS, Augusteijn HEM, Bakker M, van Aert RCM, van Assen MALM. Degrees
of freedom in planning, running, analyzing, and reporting psychological studies: A checklist to
avoid P-hacking. Frontiers in Psychology 2016; 7: 1832.

Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking
in science. PLoS Biology 2015; 13: €e1002106.

Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as significant. Psychological Science 2011; 22:
1359-1366.

Kerr NL. HARKing: Hypothesizing after the results are known. Personality and Social Psychology
Review 1998; 2: 196-217.

Commission Internationale de I’Eclairage. Guide to protocols for describing lighting. CIE 213:2014.
Vienna, Austria: Commission Internationale de I'Eclairage, 2014.

Houser KW, Wei M, David A, Krames MR. Whiteness perception under LED illumination. Leukos
2014; 10: 165-180.

Commission Internationale de I'Eclairage. Colorimetry, 4th Edition. CIE 15:2018. Vienna, Austria:
Commission Internationale de I'Eclairage, 2018.

Ohno Y. Practical use and calculation of CCT and Duv. Leukos 2014; 10: 47-55.

National Electrical Manufacturers Association. American National Standard for Electric Lamps-
Specifications for the Chromaticity of Solid-State Lighting Products National Electrical
Manufacturers Association. ANSI/NEMA C78.377-2017. Rosslyn, Virginia: National Electral
Manufacturers Association, 2017.

Commission Internationale de L’Eclairage. CIE System for Metrology of Optical Radiation for
ipRGC-Influenced Responses to Light. CIE S 026/E:2018. Vienna, Austria: Commission
Internationale de I'Eclairage, 2018.

Commission Internationale de I'Eclairage. What to document and report in studies of ipRGC-
influenced responses to light. CIE TN 011:2020. Vienna, Austria: Commission Internationale de
I’'Eclairage, 2020.

Cao D, Chang A, Gai S. Evidence for an impact of melanopsin activation on unique white
perception. Journal of the Optical Society of America A 2018; 35: B287.

Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A color vision circuit for non-image-
forming vision in the primate retina. Current Biology 2020; 30: 1269-1274.e2.

CIE. Fundamental chromaticity diagram with physiological axes - Part 1. Commission
Internationale de I'Eclairage, 2006.

Commission Internationale de I’Eclairage. Fundamental Chromaticity Diagram with Physiological
Axes - Part 2: Spectral Luminous Efficiency Functions and Chromaticity Diagrams. CIE 170-2:2015.
Vienna, Austria: Commission Internationale de I'Eclairage, 2015.

Royer M, Whitehead L, Smet K, Murdoch MJ, David AA, Houser K, et al. Improved system for
evaluating and specifying the chromaticity of light sources. In: IES Annual Conference. New
Orleans, Louisiana: Illuminating Engineering Society, 2020.

Hu X, Houser KW. Large-field color matching functions. Color Research and Application 2006; 31:
18-29.

p. 33



125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

David A, Esposito T, Houser K, Royer M, Smet KAG, Whitehead L. A vector field color rendition
model for characterizing color shifts and metameric mismatch. Leukos 2020; 16: 99-114.

Mirzaei H, Funt B. Metamer mismatching as a measure of the color rendering of lights. In: AIC2015
Color and Image. Tokyo, Japan, 2015, pp. 1001-1006.

David A, Krames MR, Houser KW. Whiteness metric for light sources of arbitrary color
temperatures: proposal and application to light-emitting-diodes. Optics Express 2013; 21: 16702.

Ma S, Wei M, Liang J, Wang B, Chen Y, Pointer M, et al. Evaluation of whiteness metrics. Lighting
Research and Technology 2018; 50: 429-445.

Foster DH, Amano K. Hyperspectral imaging in color vision research: tutorial. Journal of the Optical
Society of America A 2019; 36: 606.

Royer MP, Wei M. The role of presented objects in deriving color preference criteria from
psychophysical studies. Leukos 2017; 13: 143-157.

Schmitt N, Ghiselli EE, Campbell JP, Zedeck S. Measurement Theory for the Behavioral Sciences.
WH Freeman, 1983.

Delaney WB, Hughes PC, McNelis JF, Sarver JF, Soules TF. An examination of visual clarity with high
color rendering fluorescent light sources. Journal of the llluminating Engineering Society 1978; 7:
74-84.

Huber VL. Effects of task difficulty, goal setting, and strategy on performance of a heuristic task.
Journal of Applied Psychology 1985; 70: 492-504.

Fotiosand SA, Houser KW. Research methods to avoid bias in categorical ratings of brightness.
Leukos 2009; 5: 167—-181.

Commission Internationale de I'Eclairage. Guidance towards best practice in psychophysical
procedures used when measuring relative spatial brightness. CIE 212:2014. Vienna, Austria:
Commission Internationale de I’Eclairage, 2014.

Harpe SE. How to analyze Likert and other rating scale data. Currents in Pharmacy Teaching and
Learning 2015; 7: 836—-850.

Nadler JT, Weston R, Voyles EC. Stuck in the middle: The use and interpretation of mid-points in
items on questionnaires. Journal of General Psychology 2015; 142: 71-89.

Matell MS, Jacoby J. Is there an optimal number of alternatives for Likert-scale items? Effects of
testing time and scale properties. Journal of Applied Psychology 1972; 56: 506—509.

Chan JC. Response-Order effects in Likert-Type scales. Educational and Psychological
Measurement 1991; 51: 531-540.

Foster DH, Amano K, Nascimento SMC. How temporal cues can aid colour constancy. Color
Research and Application 2001; 26: S180-5185.

Foster DH, Amano K, Nascimento SMC. Colour constancy from temporal cues: Better matches with
less variability under fast illuminant changes. Vision Research 2001; 41: 285—-293.

Elliot AJ, Maier MA. Color psychology: Effects of perceiving color on psychological functioning in
humans. Annual Review of Psychology 2014; 65: 95-120.

p.34



143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

Wei M, Houser K, David A, Krames M. Effect of gamut shape on colour preference. In: CIE 2016
Lighting Quality and Energy Efficiency. Melbourne, Australia: Commission Internationale de
I’Eclairage, 2016, pp. 32—-41.

Zhang X, Funt B, Mirzaei H. Metamer mismatching in practice versus theory. Journal of the Optical
Society of America A 2016; 33: A238.

Logvinenko AD, Funt B, Mirzaei H, Tokunaga R. Rethinking colour constancy. PLoS ONE 2015; 10:
e0135029.

Lee SM, Lee KT, Lee SH, Song JK. Origin of human colour preference for food. Journal of Food
Engineering 2013; 119: 508-515.

Pérez-Carpinell J, De Fez MD, Baldovi R, Soriano JC. Familiar objects and memory color. Color
Research and Application 1998; 23: 416-427.

Olkkonen M, Hansen T, Gegenfurtner KR. Color appearance of familiar objects: Effects of object
shape, texture, and illumination changes. Journal of Vision 2008; 8: 13—13.

Brown RO, MacLeod DIA. Color appearance depends on the variance of surround colors. Current
Biology 1997; 7: 844-849.

Shevell SK, Kingdom FAA. Color in complex scenes. Annual Review of Psychology 2008; 59: 143—
166.

Luo MR, Gao XW, Scrivener SAR. Quantifying colour appearance. part V. simultaneous contrast.
Color Research and Application 1995; 20: 18-28.

Smet KAG, Lin Y, Nagy B V., Németh Z, Duque-Chica GL, Quintero JM, et al. Cross-cultural variation
of memory colors of familiar objects. Optics Express 2014; 22: 32308.

Smet KAG, Hanselaer P. Impact of cross-regional differences on color rendition evaluation of white
light sources. Optics Express 2015; 23: 30216.

Birch J. Worldwide prevalence of red-green color deficiency. Journal of the Optical Society of
America A 2012; 29: 313.

JUDD DB. The color perceptions of deuteranopic and protanopic observers. Journal of the Optical
Society of America 1949; 39: 252-256.

Smith VC, Pokorny J. Large-field trichromacy in protanopes and deuteranopes. Journal of the
Optical Society of America 1977; 67: 213-220.

Neitz M, Neitz J. Molecular genetics and the biological basis of color vision. Color Vision:
Perspectives from Different Disciplines 2011; 101: 101-120.

Hassan MF, Paramesran R. Naturalness preserving image recoloring method for people with red—
green deficiency. Signal Processing: Image Communication 2017; 57: 126-133.

Ching SL, Sabudin M. A study of color transformation on website images for the color blind. World
Academy of Science, Engineering and Technology 2010; 62: 808—811.

Yang S, Ro YM. Visual contents adaptation for color vision deficiency. In: 2003 International
Conference on Image Processing. Barcelona, Spain: IEEE, 2003, pp. 453—456.

Gbémez-Robledo L, Valero EM, Huertas R, Martinez-Domingo MA, Hernandez-Andrés J. Do
EnChroma glasses improve color vision for colorblind subjects? Optics Express 2018; 26: 28693.

p. 35



162.

163.

164.
165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

Ghasemi A, Zahediasl S. Normality tests for statistical analysis: A guide for non-statisticians.
International Journal of Endocrinology and Metabolism 2012; 10: 486—489.

Houser KW, Fotios SA, Royer MP. A Test of the S/P ratio as a correlate for brightness perception
using rapid-sequential and side-by-side experimental protocols. Leukos 2009; 6: 119-137.

Gescheider GA. Psychophysical scaling. Annual review of psychology 1988; 39: 169—-200.

Fotios SA, Cheal C. The effect of a stimulus frequency bias in side-by-side brightness ranking tests.
Lighting Research and Technology 2008; 40: 43-50.

Fotios SA, Cheal C. Evidence for response contraction bias in side-by-side matching tasks. Lighting
Research and Technology 2007; 39: 159-167.

Wickstrom G, Bendix T. The “Hawthorne effect” - What did the original Hawthorne studies actually
show? Scandinavian Journal of Work, Environment and Health 2000; 26: 363-367.

Hrébjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Hilden J, Boutron |, et al. Observer bias in
randomized clinical trials with measurement scale outcomes: A systematic review of trials with
both blinded and nonblinded assessors. Cmaj 2013; 185: E201.

Burghardt GM, Bartmess-Levasseur JN, Browning SA, Morrison KE, Stec CL, Zachau CE, et al.
Perspectives - Minimizing observer bias in behavioral studies: A review and recommendations.
Ethology 2012; 118: 511-517.

Kruskal JB. Nonmetric multidimensional scaling: A numerical method. Psychometrika 1964; 29:
115-129.

Garcia PA, Huertas R, Melgosa M, Cui G. Measurement of the relationship between perceived and
computed color differences. Journal of the Optical Society of America A 2007; 24: 1823.

Melgosa M, Garcia PA, Gdmez-Robledo L, Shamey R, Hinks D, Cui G, et al. Notes on the application
of the standardized residual sum of squares index for the assessment of intra- and inter-observer
variability in color-difference experiments. Journal of the Optical Society of America A 2011; 28:
949.

Melgosa M, Huertas R, Berns RS. Performance of recent advanced color-difference formulas using
the standardized residual sum of squares index. Journal of the Optical Society of America A 2008;
25:1828.

Wei M, Royer M, Huang HP. Perceived colour fidelity under LEDs with similar Rf but different Ra.
Lighting Research and Technology 2019; 51: 858—869.

Jost S, Cauwerts C, Avouac P. CIE 2017 color fidelity index Rf: a better index to predict perceived
color difference? Journal of the Optical Society of America A 2018; 35: B202.

Gu HT, Luo MR, Liu XY. Testing different colour rendering metrics using colour difference data.
Lighting Research and Technology 2017; 49: 539-560.

Fotios SA, Houser KW, Cheal C. Counterbalancing needed to avoid bias in side-by-side brightness
matching tasks. Leukos 2008; 4: 207-223.

Kent MG, Fotios S, Cheung T. Stimulus range bias leads to different settings when using luminance
adjustment to evaluate discomfort due to glare. Building and Environment 2019; 153: 281-287.

Fotios SA, Cheal C. Stimulus range bias explains the outcome of preferred-illuminance
adjustments. Lighting Research and Technology 2010; 42: 433-447.

p. 36



180.

181.

182.

183.
184.
185.

186.

187.
188.
189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

Logadottir A, Christoffersen J, Fotios SA. Investigating the use of an adjustment task to set the
preferred illuminance in a workplace environment. Lighting Research and Technology 2011; 43:
403-422.

Logaddttir A, Fotios SA, Christoffersen J, Hansen SS, Corell DD, Dam-Hansen C. Investigating the
use of an adjustment task to set preferred colour of ambient illumination. Color Research and
Application 2013; 38: 46-57.

Rushton W. Visual adaptation. Proceedings of the Royal Society of London Series B, Containing
papers of a biological character 1965; 162: 20—46.

Reuter T. Fifty years of dark adaptation 1961-2011. Vision Research 2011; 51: 2243-2262.
Barlow HB. Dark and light sdaptation: Psychophysics. Springer, Berlin, Heidelberg, pp. 1-28.

Fotios SA. Chromatic adaptation and the relationship between lamp spectrum and brightness.
Lighting Research and Technology 2006; 38: 3—17.

Hunt RW. Light and dark adaptation and the perception of color. Journal of the Optical Society of
America 1952; 42: 190-199.

Foster DH. Color constancy. Vision Research 2011; 51: 674-700.
Goldstein E, Brainard DH. Color Constancy. John Wiley and Sons, 2013.

Worthey JA. Limitations of color constancy. Journal of the Optical Society of America A 1985; 2:
1014.

Arend LE. How much does illuminant color affect unattributed colors? Journal of the Optical
Society of America A 1993; 10: 2134.

Werner A. Spatial and temporal aspects of chromatic adaptation and their functional significance
for colour constancy. Vision Research 2014; 104: 80—-89.

Morovic J, Morovic¢ P. Can highly chromatic stimuli have a low color inconstancy index? In: 13th
IS&T/SID Color Imaging Conference. Scottsdale, Arizona: Society for Imaging Science and
Technology, 2005, pp. 321-325.

Fernandez-Maloigne C, Trémeau A. Color Appearance Models. In: Digital Color. Chichester, UK:
Wiley, 2013, pp. 65-92.

Fairchild MD, Reniff L. Time course of chromatic adaptation for color-appearance judgments.
Journal of the Optical Society of America A 1995; 12: 824.

Rinner O, Gegenfurtner KR. Time course of chromatic adaptation for color appearance and
discrimination. Vision Research 2000; 40: 1813-1826.

Webster MA, Wilson JA. Interactions between chromatic adaptation and contrast adaptation in
color appearance. Vision Research 2000; 40: 3801-3816.

Shevell SK. The time course of chromatic adaptation. Color Research and Application 2001; 26:
$170-5173.

Werner A, Sharpe LT, Zrenner E. Asymmetries in the time-course of chromatic adaptation and the
significance of contrast. Vision Research 2000; 40: 1101-1113.

p. 37



199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

Spieringhs RM, Murdoch MJ, Vogels IMLC. Time course of chromatic adaptation under dynamic
lighting. In: 27th IS&T/SID Color Imaging Conference. Paris, France: Society for Imaging Science
and Technology, 2019, pp. 13-18.

Hunt RWG. The effects of daylight and tungsten light-adaptation on color perception. Journal of
the Optical Society of America 1950; 40: 362.

Jameson D, Hurvich LM, Varner FD. Receptoral and postreceptoral visual processes in recovery
from chromatic adaptation. Proceedings of the National Academy of Sciences of the United States
of America 1979; 76: 3034—3038.

Tregillus K, Webster MA. Dynamics of color contrast adaptation. Journal of the Optical Society of
America A 2014; 31: A314.

Delahunt PB, Webster MA, Ma L, Werner JS. A long-term chromatic adaptation mechanism.
Journal of Vision 2002; 2: 31.

Belmore SC, Shevell SK. Very-long-term and short-term chromatic adaptation: Are their influences
cumulative? Vision Research 2011; 51: 362—366.

Webster MA, Mizokami Y, Webster SM. Seasonal variations in the color statistics of natural
images. Network: Computation in Neural Systems 2007; 18: 213-233.

Cockram AH, Collins JB. A study of user preferences for fluorescent lamp colours for daytime and
night-time lighting. Lighting Research and Technology 1970; 2: 249-256.

Belmore S, Shevell S. Very-long-term chromatic adaptation and short-term chromatic adaptation:
Are their influences cumulative? Journal of Vision 2010; 10: 392—-392.

Belmore SC, Shevell SK. Very-long-term chromatic adaptation: Test of gain theory and a new
method. Visual Neuroscience. 2008; 25: 411-414.

Kohn A. Visual adaptation: Physiology, mechanisms, and functional benefits. Journal of
Neurophysiology 2007; 97: 3155-3164.

Webster MA, Mollon JD. The influence of contrast adaptation on color appearance. Vision
Research 1994; 34: 1993-2020.

Webster MA, Mollon JD. Adaptation and the color statistics of natural images. Vision Research
1997; 37: 3283-3298.

Webster MA, Malkoc G, Bilson AC, Webster SM. Color contrast and contextual influences on color
appearance. Journal of Vision 2002; 2: 505-519.

Webster MA, Mollon JD. Colour constancy influence by contrast adaptation. Nature 1995; 373:
694-698.

Kwon MY, Legge GE, Fang F, Cheong AMY, He S. Adaptive changes in visual cortex following
prolonged contrast reduction. Journal of Vision 2009; 9: 1-16.

Sueeprasan S, Luo R. Incomplete chromatic adaptation under mixed illuminations. In: 9th IS&T/SID
Color Imaging Conference. Scottsdale, Arizona: Society for Imaging Science and Technology, 2001,
pp. 316-320.

Commission Internationale de I'Eclairage. Chromatic Adaptation Under Mixed lllumination
Condition When Comparing Softcopy and Hardcopy Images. CIE 162:2010. Vienna, Austria:
Commission Internationale de I'Eclairage, 2004.

p. 38



217.

218.

219.

220.

221.

222.
223.
224.

225.

226.
227.

228.
229.

230.

231.

232.

233.
234.

235.

236.

237.

Lane DM. The assumption of sphericity in repeated-measures designs: What it means and what to
do when it is violated. The Quantitative Methods for Psychology 2016; 12: 114-122.

Mauchly JW. Significance test for sphericity of a normal n-variate distribution. The Annals of
Mathematical Statistics 1940; 11: 204-209.

Uttley J. Power analysis, sample size, and assessment of statistical assumptions—Improving the
evidential value of lighting research. Leukos 2019; 15: 143-162.

Knoop M, Broszio K, Diakite A, Liedtke C, Niedling M, Rothert |, et al. Methods to describe and
measure lighting conditions in experiments on non-image-forming aspects. Leukos 2019; 15: 163—
179.

Spitschan M, Stefani O, Blattner P, Gronfier C, Lockley S, Lucas R. How to report light exposure in
human chronobiology and sleep research experiments. Clocks and Sleep 2019; 1: 280-289.

Stevens SS. On the theory of scales of measurement. Science 1946; 103: 677—680.
Jamieson S. Likert scales: How to (ab)use them. Medical Education 2004; 38: 1217-1218.

Kuzon WM, Urbanchek MG, McCabe S. The seven deadly sins of statistical analysis. Annals of
Plastic Surgery 1996; 37: 265-272.

Knapp TR. Treating ordinal scales as interval scales: An attempt to resolve the controversy.
Nursing Research 1990; 39: 121-123.

Salkind N. Nonparametric Statistics for the Behavioral Sciences. McGraw-hill New York, 2012.

Cohen L, Manion L, Morrison K. Research Methods in Education. 8th ed. London, UK: Routledge,
2017.

Miller DC, Salkind N. Handbook of Research Design and Social Measurement. 6th ed. Sage, 2002.

Norman G. Likert scales, levels of measurement and the ‘laws’ of statistics. Advances in Health
Sciences Education 2010; 15: 625-632.

Anderson NH. Scales and statistics: Parametric and nonparametric. Psychological Bulletin 1961,
58: 305-316.

Carifio J, Perla RJ. Ten common misunderstandings, misconceptions, persistent myths and urban
legends about Likert scales and Likert response formats and their antidotes. Journal of Social
Sciences 2007; 3: 106—116.

Carifio J, Perla R. Resolving the 50-year debate around using and misusing Likert scales. Medical
Education 2008; 42: 1150-1152.

Boone HN, Boone DA. Analyzing Likert data. Journal of Extension 2012; 50: 1-5.

Willits F, Theodori G, Luloff A. Another look at Likert scales. Journal of Rural Social Sciences 2016;
31: 6.

Desselle SP. Construction, implementation, and analysis of summated rating attitude scales.
American Journal of Pharmaceutical Education 2005; 69: 97.

Armstrong GD. Methodology comer parametric statistics and ordinal data: A pervasive
misconception. Nursing Research 1981; 30: 60-62.

Pell G, Jamieson S. Use and misuse of Likert scales. Medical Education 2005; 39: 970.

p. 39



238.

239.

240.

241.
242,

243,

244,
245,

246.

247.

248.
249.

Gaito J. Measurement scales and statistics: Resurgence of an old misconception. Psychological
Bulletin 1980; 87: 564-567.

Brown TC, Peterson GL. An enquiry into the method of paired comparison: Reliability; scaling; and
thurstone’s law of comparative judgment, http://www.fs.fed.us/rm/publications (2009, accessed
23 October 2020).

Brown A, Maydeu-Olivares A. Item response modeling of forced-choice questionnaires.
Educational and Psychological Measurement 2011; 71: 460-502.

Thurstone LL. A law of comparative judgment. Psychological Review 1927; 34: 273-286.

Babyak MA. What you see may not be what you get: A brief, nontechnical introduction to
overfitting in regression-type models. Psychosomatic Medicine 2004; 66: 411-421.

Hawkins DM. The problem of overfitting. Journal of Chemical Information and Computer Sciences
2004; 44: 1-12.

Mallows CL. Some comments on CP. Technometrics 1973; 15: 661.

Bertrand P V., Sakamoto Y, Ishiguro M, Kitagawa G. Akaike Information Criterion statistics. Journal
of the Royal Statistical Society Series A, Statistics in Society 1988; 151: 567.

Steiger JH. Tests for comparing elements of a correlation matrix. Psychological Bulletin 1980; 87:
245-251.

Ouweltjes JL. The specification of colour rendering properties of fluorescent lamps. Die Farbe
1960; 4: 207-246.

Royer MP. Comparing measures of average color fidelity. Leukos 2018; 14: 69—85.

von EIm E, Altman DG, Egger M, Pocock SJ, Ggtzsche PC, Vandenbroucke JP. The Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting
observational studies. Preventive Medicine 2007; 45: 247-251.

p. 40



	Abstract
	1. Introduction
	2. Conceptualizing Colour Rendition Experiments
	2.1. Literature Review
	2.2. Research Questions
	2.3. Research Types

	3. Designing and Performing Colour Rendition Experiments
	3.1. Defining and Operationalizing Variables
	3.1.1. Types of Independent and Control Variables
	3.1.2. Quantifying Independent and Control Variables
	3.1.3. Operationalizing Independent Variables
	3.1.4. SPD, Visual Targets, and the Visual Stimulus
	3.1.5. Dependent Measures

	3.2. Apparatus
	3.2.1. Physical space
	3.2.2. Objects

	3.3. Procedures
	3.3.1. Observer, Investigator, and Response Considerations
	3.3.2. Stimulus Presentation Considerations
	3.3.3. Adaptation

	3.4. Statistical Planning

	4. Reporting and Analysis
	4.1. Statistical Analysis
	4.2. Model Fitting and Implications

	5. Discussion
	6. Conclusions
	References



