Onboard Damage Detection in Carbon Fiber Composites in Hydrogen Storage Tanks

Dr. Joshua R. Biller Principal Scientist, TDA Research, Inc.

May 2024 Long Beach, CA

Who is Talking to You?

- Dr. Josh Biller
 - TDA Research
 - Principal Scientist

- Physical Chemist, Physicist, and a passable impersonation of an electrical engineer.
- If it involves electromagnetic frequencies (DC to 18 GHz), magnetism or magnetic resonance, I'm likely developing a sensor around it.
- U. Denver (2009 2015), NIST-Boulder (2015-2018), TDA (2018-

Composite Overwrap Pressure Vessels (COPV)

Reducing thick carbon fiber overwrap (25 – 40 mm) directly supports \$266/kgH₂ target

700 bar Type 4 Hydrogen Storage System Projected Costs Frame-Mounted Class 8 Truck with 60 kgH₂ Usable Capacity

Credit: (2022) Cassidy Houchins, Strategic Analysis

Inc. Sampe Conference & Exhibition

Carbon Fiber Failure Mode

Matrix cracking

Fiber failure

Bui, T. & Hu, X. *Engineering Fracture Mechanics* 248(8):107705

Delamination

- Carbon fiber failure modes are not yet as well characterized as metals
- There is a fear that failure under pressure could be catastrophic
- Safety margins of 2.5x are recommended

Structural Health Monitoring

If a real-time monitoring system existed – could you relax carbon fiber thickness requirements?

Practical Considerations –

- Low profile
- Can't require change to manufacturing "recipe" (i.e. embedded sensors)
- Can't take much power
- Needs to interface with vehicle computer
- Needs to convince DOT ...

Structural Health Monitoring

Structural Health Monitoring

Bode 3

Mission Accomplished?

- No
- Totally unproven new approach
 - Unlike ultrasound, eddy current testing or Xray CT
- There's no safety data or context for this new technique
- "If I put something on, I have to take something off"
- Without DOT blessing, there is no thinning the carbon fiber on COPV

How Do You Build the Convincing Dataset?

- Understand the nature of electromagnetic field in carbon fiber laminate (It's extremely complicated. <u>Run away!</u>)
- Make "standard" laminate samples with known defects at specific locations and calibrate (Works pretty well, metrology for the win)
- Make "standard" COPV with known defects (thank you Steelhead) and calibrate.
- Compare standard samples with a "gold standard" NDE (thanks to LM)

Electromagnetic Field in Carbon Fiber

TDA & Alta Sim Technologies

- You can force a simulation, but our best determined operating conditions site between two modules in COMSOL
- Your CF can't be very thick, or complicated
- You can't simulate the spread of EMF along and through the carbon fiber laminate

Electromagnetic Fields in Carbon Fiber

Electromagnetic Fields in Carbon Fiber

Standard Laminate Panels

pe

Standard Laminate Panels – Penetration Depth

60

80

-0.95

USPTO # 18/222,249, filing date 07/14/2023

0.9

Penetration Depth at a Single Frequency

De

Standard COPV

Conference & Exhibition

Standard COPV

Can't show the wrap angle date we can extract – send us your tank and we'll tell you all about

it ...

EMICA vs. XrayCT

With current state-of-the art, can see down 12-15 mm into carbon fiber laminate on COPV (due to spread of EMF along COPV)

Can see deeper in laminate samples (especially with aluminum backing)

Imaging through 12-15 mm CF thickness is a useful milestone (even though we're working towards 30-40 mm)

EMICA Imaging Form Factors

320 L COPV

Wiring Chassis Coiled Sensor

VNA Module

Elastic Harness

86 L COPV

15 L COPV

EM Vision Currently In Use by Industry Partner

Summary

- Electromagnetic Inductive Coupling Analysis (EMICA) is a new imaging technique for defect detection in carbon fiber
 - Works on pressurized or unpressurized tanks
 - No gels or coupling liquids
 - Imaging of full 86 L COPV in ~2 hrs (currently working to drive that down)
 - Detection of defects
 - Identification of wrap angles
 - Interrogation of CF + aluminum liner, or aluminum liner only depending on frequency selection

Outlook

- EMICA 2024 V1 is ready for sales
 - Build and calibrate scanner
 - Designed and built custom GUI for data collection and processing
- The EMICA technique has so many different directions to go
 Driving towards 30 40 mm to complete original DOE goal
 - ≤ 15 mm thickness is applicable to lots of carbon fiber applications
 - Regulatory work to provide confidence that with EMICA SHM installed, DOT could drop safety factor of COPV and help get to 266 kgH₂ target

Thank You!

jbiller@tda.com

DOE DE-SC0019981 <u>The HFTO</u> Mr. Zeric Hulvey & Ms. Asha Dee Celestine Jesse Adams (prior) Bahman Habibzadeh (prior)

Brad Spatafore, MS Mechanical Engineering In-Field Device Design

Kevin Finch, PhD (Analytical Chemistry) Integrate data collection and software design

David Long, EE, ME Circuit board design and construction Precision machining Support with data collection and software design

