Frontiers in Energy Storage: Next Generation Al Workshop

EAC June 2024

Benjamin Shrager Storage Strategy Engineer Office of Electricity

Frontiers in Energy Storage Workshop

Hosted at Lawrence Berkeley National Laboratory on April 16, 2024

(hybrid format, 59 in-person and 189 virtual attendees)

• Agenda highlights:

- Invited talks on national lab capabilities
- Invited talks from industry and consultants
- Panel discussion on markets and deployment
- "Lightning talks" on technical topics
- Breakout discussions and report-outs

Future of Energy Storage – Key Questions

- How can AI accelerate the discovery of new energy storage materials?
- What role can AI play in managing and optimizing energy storage systems?
- How can AI influence policy and market decisions in energy storage?

AI for Storage Materials Development

- Challenge: Finding and optimizing new materials for energy storage is slow and labor-intensive.
- Solution: AI models analyze vast datasets to predict the properties of new materials quickly and accurately.
- Examples: AI-accelerated design of new battery materials and rapid validation frameworks that can predict long-term performance.

ROVI modeling of redox flow batteries

AI for Grid Operations

- **Challenge:** Managing complex energy systems with many distributed resources (like solar panels and electric vehicles).
- **Solution:** Al-driven models improve the efficiency and lifespan of storage assets through predictive maintenance and operational optimization.
- **Example:** Digital twins simulate and optimize real-time grid operations.

Urban digital twins

Digital twins for building and integrated energy systems

Al for Policy and Valuation

- Challenge: Making informed decisions in a complex and rapidly changing market.
- **Solution:** Al provides insights into market trends, informs regulatory strategies, and helps evaluate the economic viability of new technologies.
- Example: AI models forecast energy market dynamics and optimize investment strategies.

U.S. DEPARTMENT OF ELECTRICITY ENERGY STORAGE STSTEM

Workshop Findings

- Data is foundation for all AI/ML models
 - Enhance data availability, ensure interoperability, and establish secure data-sharing protocols.
- Collaboration between sectors is necessary for innovation
 - Foster partnerships between academia, industry, and government to share knowledge and resources.
- **Trust** in AI systems must be established before implementation
 - Develop explainable AI tools, ensure transparency in decision-making, and address security concerns.
- Education of all stakeholders is necessary for adoption
 - Educate the public, policymakers, and industry stakeholders about Al's potential and limitations in energy storage.