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US oil and gas system emissions from nearly 
one million aerial site measurements

Evan D. Sherwin1,6 ✉, Jeffrey S. Rutherford1,7, Zhan Zhang1, Yuanlei Chen1, Erin B. Wetherley2, 
Petr V. Yakovlev2, Elena S. F. Berman2, Brian B. Jones2, Daniel H. Cusworth3, 
Andrew K. Thorpe4, Alana K. Ayasse3, Riley M. Duren3,4,5 & Adam R. Brandt1

As airborne methane surveys of oil and gas systems continue to discover large 
emissions that are missing from official estimates1–4, the true scope of methane 
emissions from energy production has yet to be quantified. We integrate 
approximately one million aerial site measurements into regional emissions 
inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas 
production over 15 aerial campaigns. We construct complete emissions distributions 
for each, employing empirically grounded simulations to estimate small emissions. 
Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 
0.84%) of covered natural gas production in a high-productivity, gas-rich region to 
9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region 
weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national 
government inventory estimate5. Only 0.05–1.66% of well sites contribute the majority 
(50–79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, 
including pipelines, contribute 18–57% of estimated regional emissions, similarly 
concentrated in a small number of point sources. Together, the emissions quantified 
here represent an annual loss of roughly US$1 billion in commercial gas value and a 
US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing 
surveys offer a path to detect these low-frequency, high-consequence emissions for 
rapid mitigation, incorporation into official emissions inventories and a clear-eyed 
assessment of the most effective emission-finding technologies for a given region.

Reduction in methane emissions from oil and gas systems is important 
in regard to climate change mitigation (https://www.globalmethane-
pledge.org/). However, technology limitations have hampered efforts 
to determine these emissions accurately on regional or national scales, 
with studies often producing divergent estimates7–11. Here we show that 
comprehensive aerial surveys, measuring most assets and hydrocarbon 
production in a region, can reliably estimate regional emissions by 
source. We integrate approximately one million aerial site measure-
ments into emissions inventories for six regions in the USA, comprising 
52% of onshore oil and 29% of gas production, over 15 aerial campaigns 
(https://www.enverus.com/solutions/energy-analytics/ep/). We con-
struct emissions distributions by employing empirically grounded sim-
ulations to estimate small emissions. Total estimated emissions range 
from 0.75% (95% CI 0.65%, 0.84%) of covered natural gas production in 
a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in 
an expanding, oil-focused region. The six-region weighted average is 
roughly three times the national government inventory estimate5. Only 
0.05–1.66% of well sites contribute the majority (50–79%) of well site 
emissions in 11 out of 15 surveys. A small fraction of ancillary midstream 
facilities contribute 18–57% of estimated regional emissions. The emis-
sions quantified represent about US$1 billion annual loss in commercial 

gas value and US$9.3 billion in annual social cost6. Our approach offers 
a path for detection of low-frequency, high-consequence emissions 
for rapid mitigation, incorporation into official emissions inventories 
and assessment of effective emission-finding technologies for a given 
region.

Ensuring swift reductions in methane emissions from oil and natural 
gas systems requires an accurate understanding of total emissions in 
a region and how they are distributed. Such regional estimates help 
shape national policy priorities and track climate progress. A detailed 
understanding of the distribution of emissions, including the relative 
sizes of underlying facility-level emissions and the types of facilities that 
emit most, helps ensure prudent regional deployment of appropriate 
emission-sensing and -mitigation technologies.

Current US government emissions estimates are generally based 
on coarse emission factors, often relying on incomplete data9,12. This 
approach has been found to undercount emissions by up to 40%, as 
estimated by ground measurement studies at up to around 1,000 sites11. 
However, recent remote-sensing surveys conducted aerially and by 
satellite, covering tens or hundreds of thousands of sites, have dis-
covered a substantial number of point-source methane emissions 
up to three orders of magnitude larger than those reported by the 
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aforementioned ground-based studies1–4,13–17. In at least some cases, 
these low-probability but high-consequence sources contribute most 
of the regional total3,14.

Historically, no method existed to integrate aerial measurements of 
large emission sources with inventory-derived smaller sources, such as 
those in the US Greenhouse Gas Inventory (GHGI), to form a complete 
estimate of all emissions. In this paper we estimate emissions across 
six comprehensively measured major producing regions by merging 
the results of approximately one million site visits with an empirically 
grounded statistical model of smaller emission sources7,11.

This approach leverages the ability of aerial surveys to rapidly screen 
vast areas for large emissions while simultaneously estimating emis-
sions too small for detection by aerial technology. We also avoid double 
counting in cases in which simulated and aerially measured emissions 
distributions overlap. In the process we construct a complete distri-
bution, from the smallest to the largest sources at the regional scale, 
leveraging comprehensive aerial surveys as well as a state-of-the-art, 
component-level emission simulation tool18. We define a comprehen-
sive survey as including measurements of at least 50% of well sites and 
80% of natural gas production in a region.

A previous study took steps in this direction, by combining aerial 
measurements with emissions simulation methods for 10% of well sites 
and 60% of midstream facilities in British Columbia, Canada10. Another 
recent study similarly estimated the emissions size distribution in the 
Permian, by joining comprehensive Carbon Mapper measurements 
with more sensitive aerial measurements at roughly 16% of well sites19. 
These studies advanced measurement-informed emissions estimation 
but require extrapolation to 84–90% of well sites and did not systemati-
cally measure pipeline infrastructure, as discussed in Supplementary 
Information 1.

Our method specifically facilitates evaluation of various use cases 
for the rapidly growing global fleet of commercial and government 
methane-sensing satellites and airborne systems20–22. Point-source 
methane detection satellite constellations, such as GHGSat and Carbon 
Mapper, could also comprehensively survey a selected region over time, 
generally with a lower level of detection sensitivity21,23,24. Furthermore, 
the distributions generated here can help assess multitiered methods 
of finding and mitigating methane emissions.

Combining measurements with simulations
We generate unified methane emissions distributions for surveyed 
oil and gas assets in six US oil- and gas-producing regions: the Per-
mian, San Joaquin, Denver-Julesburg, Uinta and Fort Worth basins and 
Appalachian Pennsylvania (PA; Fig. 1a). Of the 15 aerial surveys, 11 are 
comprehensive, with the Pennsylvania and Permian 2020 and 2021 
campaigns still covering at least 10% of well sites and 39% of natural 
gas production. These surveys include 986,238 well site measurements 
across all six regions, resulting from roughly 1,150 h of aerial data col-
lection (detailed in Supplementary Information 2 and Supplementary 
Table 9). We define a measurement as an instance in which an aircraft 
flew over a well site or other facility and collected data. The surveys 
also include measurements of midstream infrastructure, including 
compressor stations, gas processing plants and pipelines. Note that, 
because of the comprehensive flight pattern used in these surveys, 
the average hour of data collection measures hundreds of sites, often 
simultaneously. The surveyed areas within these regions comprise 29% 
of onshore US gas production and 52% of oil production. We combine 
15 large aerial surveys, conducted by Kairos Aerospace (Kairos) and 
researchers leading the Carbon Mapper project, with an empirically 
grounded emissions simulation method described previously18. We 
refine this model with input parameters based on regional charac-
teristics and estimate small-source midstream emissions based on 
state-level and national GHGI data5,14,18,25. We demonstrate that our com-
bined emissions distribution is consistent with major ground-based 

and aerial methane measurement studies, as shown in Supplementary  
Information 1.

For all oil- and gas-producing well sites covered in each surveyed 
region we first compute two site-level emissions inventories: one based 
on aerial measurements and the other using the emissions simula-
tion tool described previously18 to account for emissions we know are 
present but that aerial surveys probably would not see. We consider 
a well site to be a point location that may contain multiple wells and 
supplementary equipment such as liquids tanks, flares and separators. 
Figure 1c provides a high-level overview of the 1,000-realization Monte 
Carlo-based method we use to synthesize these two emissions inven-
tories into a unified estimate of the distribution of methane emissions 
across surveyed well sites, which allows estimation of total emissions.

In its lower detection range an aerial system may detect smaller emis-
sions only part of the time. This means that for every emission detected 
in this size range the survey may have missed other similar-sized emis-
sions. For example, if the probability of detecting an emission of size x 
is one in three and one such emission is detected, this implies that two 
similar emissions were probably missed, tripling the estimated contri-
bution of this detection to estimated campaign-wide emissions. For 
Kairos we use 234 controlled methane releases in the partial detection 
range to determine the probability of detecting emissions of varying 
size14,20, described further in Supplementary Information 4.7. We do 
not have commensurate peer-reviewed controlled methane release 
data for the Carbon Mapper system, and correct for partial detection 
only in Kairos campaigns.

Aerial surveys also cover midstream assets such as gathering and 
transmission pipelines, compressor stations and gas processing plants, 
as shown in Fig. 1b. We estimate aerially measured and partially detected 
midstream emissions using the same approach as above. We do not 
have sufficient asset location data or emissions simulation tools for 
midstream infrastructure to estimate site-level emissions below the 
aerial detection limit. Instead we estimate these emissions based on 
the Environmental Protection Agency (EPA) national and state-level 
GHGI, removing the fraction of emissions underlying those estimates 
that would be detectable by Kairos or Carbon Mapper5,25. Because Kai-
ros data used in this study are the product of proprietary commercial 
surveys, these data are fully anonymized and include no identifying 
information for covered operators or their assets (Supplementary 
Information 4).

Note that, in each Monte Carlo iteration for each of the 15 campaigns, 
we select only one emission value for each surveyed site, randomly 
choosing from all visits to that site, including those with and without 
aerial methane detections. Were we instead to treat each aerial site 
visit within a campaign as a completely independent measurement, 
this could introduce substantial bias if a subset of assets not repre-
sentative of the full survey area is disproportionately oversampled, as 
demonstrated in Supplementary Information 5. Note that we do not 
estimate methane emissions from local distribution, oil refining and 
transportation, or from liquefied natural gas operations, that occur at 
facilities largely outside the surveyed regions. The resulting inventory 
is valid for the surveyed assets only at the time(s) of measurement and 
cannot necessarily be extrapolated to the full region over an extended 
time period—for example, annual emissions from a complete oil- and 
gas-producing basin—because the surveyed region may not be repre-
sentative and emissions may change over time.

Estimated methane loss rates—the emitted fraction of methane 
produced from oil and natural gas activity in a given region—vary 
widely across the studied US regions. Estimated rates are as low as 
1.08% (95% CI 0.98%, 1.18%) in the Denver-Julesburg basin in Colorado 
in 2021 and 0.75% (95% CI 0.65%, 0.84%) in a high-productivity area of 
the Pennsylvania portion of the Appalachian basin, as shown in Fig. 2. 
By contrast, for the New Mexico Permian 2018–2020 campaign the loss 
rate is 9.63% (95% CI 9.04%, 10.39%), one order of magnitude higher. 
The remaining campaigns range from roughly 2 to 6% methane loss 
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rates. The production-weighted loss rate across the most comprehen-
sive campaign in each of the six regions is 2.95% (95% CI 2.79%, 3.14%),  
rising to 4.60% (95% CI 4.38%, 4.84%) when excluding the Pennsylvania 
campaign, which focuses on a high-productivity subregion. Note that 
the Pennsylvania and 2019 Carbon Mapper Permian campaigns have 
the highest natural gas production, equivalent to over 10,000 t CH4 
per hour each, as shown by the brown bars in Fig. 2. These loss rates 
and methane production levels assume a conservatively high methane 

fraction of 90% from ref. 11. If the actual methane fraction is lower, 
these loss rates would increase correspondingly, as discussed in Sup-
plementary Information 6. These loss rates should not be used directly 
in life-cycle assessment without first accounting for the oil produced 
alongside natural gas, as discussed in Supplementary Information 7.

Most of these estimates are far larger than the national EPA GHGI, 
which places the 2020 US-wide onshore methane loss rate at 1.01% (95% 
CI 0.81%, 1.22%), after exclusion of municipal distribution systems, 
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Fig. 1 | Survey maps and methods summary. a, Surveyed well sites. Remaining 
active US oil and gas wells coloured black. b, All aerially detected emissions 
from well sites (blue) and midstream infrastructure (red). Insets, visits denotes 
total count of well site visits (measurements) for each region, alongside  
counts of the number of emissions detected from well sites and midstream 
infrastructure. c, Site-level emissions estimation workflow. If emissions are 
detected during an aerial measurement at a well site, which may contain 
multiple wells and other equipment, or at a midstream asset, that emissions 
estimate is used directly after accounting for measurement uncertainty and 
partial detection probability (for smaller emissions that may not be detected 
by aerial systems in all instances). If no emission is detected at a well site, we 

estimate emissions using an emissions simulation tool described previously18. 
For midstream assets we use GHGI simulations to estimate aggregate regional 
midstream emissions below the aerial detection limit. We also use simulated 
emissions if an aerially measured emission is below the emission size at which 
simulated emissions dominate. To characterize uncertainty in total emissions 
in the surveyed region we repeat this stochastic process 1,000 times for each  
of the surveyed sites via Monte Carlo analysis, randomly drawing from all aerial 
measurements at each site with—and, for well sites—without aerially detected 
emissions. a,b, Note that Fort Worth coverage and emission data are not 
shown, to preserve anonymization. See Supplementary Information 3 for full 
map source information.
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crude oil transportation and refining and post-meter emissions for 
consistency with this study5. These loss rates also generally exceed 
state-specific EPA inventories, shown as dashed lines in Fig. 2, although 
these estimates roughly align for the Denver-Julesburg and the studied 
region of Pennsylvania and the EPA value actually exceeds our esti-
mate for four of the five San Joaquin campaigns25 (see Supplementary 
Information 4 for further description of our treatment of EPA GHGI 
estimates).

Excluding airborne measurements and using only the full simulated 
distribution, regional emission rates for well sites align with EPA esti-
mates to within plus or minus 50% for seven of the 15 campaigns. In the 
remaining eight campaigns simulated emissions reach a maximum 
of 68.0% higher than the GHGI in the Uinta and a minimum of 85.8% 
lower in the summer 2020 San Joaquin campaign (see Supplementary 
Information 2 and Supplementary Table 13 for further discussion of 
the reasons for these discrepancies).

Multiple surveys across the oil-focused San Joaquin basin demon-
strate substantial variation in loss rate over time. The five San Joaquin 
campaigns find loss rates as low as 2.54% (95% CI 2.20%, 2.91%) in fall 
2021, and as high as 5.64% (95% CI 5.04%, 6.34%) in 2017.

Even large surveys of the same region can produce divergent results 
if they cover different areas. Loss rates in the five Permian campaigns 
vary from 2.10% (95% CI 1.94%, 2.27%) in the fall 2021 campaign, focus-
ing on high-productivity areas, to 9.63% (95% CI 9.04%, 10.39%) in the 
New Mexico Permian for 2018–2020. The largely overlapping 2019 
survey of both Texas and New Mexico finds 5.29% (95% CI 5.08%, 5.53%; 
Supplementary Information 2 and 12).

This area-specific variation highlights the need to use comprehen-
sive, or at least representative, aerial surveys when estimating regional 
emissions. For this reason Fig. 2 uses semitransparent bars to represent 
methane loss rate estimates from the Permian 2020 and 2021 cam-
paigns, as well as from the Pennsylvania 2021 campaign, all of which 
disproportionately focus on high-productivity areas and cover less 
than 80% of natural gas production and less than 50% of well sites in 
the regions in question. For simulated well site emissions we account 

for the productivity of surveyed well sites, as described in Supplemen-
tary Information 4.4 and 14, but this simply improves the fidelity of 
simulated emissions within the region covered. As a result, our esti-
mates from these less comprehensive campaigns are accurate for the 
high-productivity regions surveyed but are probably a conservatively 
low estimate of loss rates from the full region (for example, the entire 
Permian basin or all of Pennsylvania, respectively). Given the widely 
observed inverse relationship between the productivity of a well site 
and its rate of methane loss26, these high-productivity surveys prob-
ably provide a lower bound on the corresponding regional methane 
loss rate. This is particularly the case in Pennsylvania, where site-level 
field measurements of low-producing wells suggest that our simulation 
may be systematically underestimating these emissions in this region 
(discussed further in Supplementary Information 1.2.2)26.

In all cases midstream emissions are a substantial fraction of the 
total, representing 42–57% of total estimated oil and gas emissions in 
the Permian basin and falling as low as 18% in the Uinta. Supplemen-
tary Tables 10–15 provide additional summaries of regional emissions 
estimates.

Most emissions can often be detected aerially
Aerially measured emissions play a major role in nearly all basins, con-
tributing 50–81% of the total in all 12 Permian, San Joaquin, Pennsylvania 
and Fort Worth campaigns. This rises as high as 84% in the New Mexico 
Permian after accounting for missed emissions in the partial detec-
tion range of the aerial system. The fraction of aerially measured emis-
sions falls to 41% in the Uinta and to 14–20% in the Denver-Julesburg. 
Considering only emissions at well sites, aerially measured emissions 
contribute 50–79% of the total in 11 campaigns.

Many new methane-sensing technologies have emerged in the past 
few years. To assess the fraction of total emissions detected by technol-
ogy with a given sensitivity in each region for a large campaign, Fig. 3 
shows the full well site-level emissions distribution for all actively pro-
ducing well sites covered in each of the 15 campaigns. Note that these 
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Fig. 2 | Estimated methane loss as a fraction of methane production. Data 
derived from oil and natural gas well sites and midstream assets (for example, 
pipelines and compressor stations) for all Kairos and Carbon Mapper (CM) 
campaigns in this study in the Permian, San Joaquin, Denver-Julesburg (DJ), 
Pennsylvania, Uinta (U) and Fort Worth (FW) regions. Colours represent 
aerially measured emissions (red), implied aerially detectable emissions in  
the partial detection range (teal, Kairos only) and estimated emissions from 
component-level simulation (black). Hatched bars represent midstream assets, 
and dashed lines are corresponding estimates from the EPA state-level GHGI, 
which form the basis for simulated midstream emissions estimates, with the 
2020 national estimate for production and midstream shown in full on the 

right5,25. Brown semitransparent bars represent methane production in each 
region covered (right y axis) except for the whole USA (https://www.enverus.
com/solutions/energy-analytics/ep/), assuming that natural gas is 90% 
methane11. The Kairos Permian campaign covers only the New Mexico Permian 
whereas Carbon Mapper extends into Texas. Whereas most campaigns cover 
over 80% of total gas production and at least 50% of regional well sites, 
semitransparent bars are focused disproportionately on high-production 
areas, which may not have the same emissions profile as the region as a whole. 
Error bars represent 95% CI, including multiple forms of uncertainty 
(Supplementary Information 4.2).

https://www.enverus.com/solutions/energy-analytics/ep/
https://www.enverus.com/solutions/energy-analytics/ep/
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distributions do not include midstream emissions, because we do not 
have site-level simulated emissions estimates in that case. Each point 
on these distributions represents a well site emission magnitude on the 
x axis, and the fraction of total estimated regional emissions coming 
from well sites emitting at least that amount on the y axis.

Despite their substantial contribution to the total in all cases, aerially 
detected emissions are present at only a small fraction of sites at any 
given time. In the Permian basin, an average of 0.86–1.66% of total well 
sites are emitting in a given Monte Carlo realization. This fraction falls 
to 0.05–0.09% of sites in the San Joaquin, with the remaining regions 
between the two. Furthermore, over 50% of well sites in the San Joaquin 
campaigns have zero simulated emissions. Thus, although previous 
literature focused on ground-based measurements found that 5% of 
measurements often contributed 50% of total emissions27, this study 
finds that less than around 1% of measurements contribute over 50% of 
total emissions in 12 of 15 cases. The relatively infrequent occurrence of 
disproportionately contributing methane sources, consistent across 
study regions, supports the notion that both sensor sensitivity and 
scalability must be considered together when optimizing for a given 
methane detection technology in a given region14. See Supplementary 
Information 8, Supplementary Table 25 and Supplementary Figs. 13–18 
for further discussion on the shape of the emissions distribution, which 

generally resembles a log-normal for simulated emissions and a power 
law for emissions measured aerially or by satellite.

The raw distributions of measured and simulated emissions often 
overlap for some ranges of emission size. To avoid double counting 
we designate a transition point between the measured and simulated 
distributions, defined as the site-level emission magnitude beyond 
which aerially measured emissions contribute more to the regional 
total than simulated emissions (Supplementary Information 4.8 and 
9). As a result, some small emissions detected in most campaigns are 
not included in the combined distribution. This is likely because they 
fall within the partial detection range of the system, which can vary 
depending on the sensitivity of the sensor, flight altitude, automated 
and manual quality control processes and local environmental condi-
tions including wind, sun angle, surface reflectance and vegetation 
cover. Whereas we correct for missed emissions in the partial detec-
tion range for Kairos surveys using the method described previously14, 
commensurate single-blind, controlled-release testing data for Carbon 
Mapper are unavailable. In addition, Carbon Mapper conducted flights 
at different altitudes across campaigns, as described in Supplementary 
Information 2, affecting the lower detection range.

The absence of a correction in the partial detection range for Carbon 
Mapper campaigns, coupled with variation in detection capabilities 
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surveyed well sites with relatively low emissions. For Kairos campaigns, aerial 

emissions estimates include a correction for partial detection (teal) for smaller 
emissions based on single-blind controlled methane release testing. A similar 
correction for CM is not possible because commensurate blinded and peer- 
reviewed test data are not yet available. Vertical lines represent the minimum 
detected emission for each technology in a given region. The transition point 
away from simulated emissions represents the size beyond which aerially 
detected emissions consistently dominate simulated emissions.
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introduced by flight altitude and other above-mentioned factors, 
probably explains the somewhat higher transition points observed 
compared with Kairos campaigns. In the San Joaquin and Pennsylvania 
distributions, relatively flat areas indicate a gap between the largest 
simulated and smallest measured emissions, suggesting that our esti-
mates of total emissions in these regions may be conservative, due in 
part to missing emissions in this middle size range that exist but that 
were not captured by our method. Carbon Mapper personnel believe 
that the gap for Pennsylvania is due in part to high vegetative cover. In 
probability density function form, shown in Supplementary Informa-
tion 8, this gap between simulated and measured emissions appears 
as a local minimum in emission frequency, generally ranging between 
10 and 100 kg h−1, followed by a local maximum for aerially measured 
emissions. It is unclear whether the underlying distribution has a true 
local minimum in this size range in some regions or whether this is 
entirely an artefact introduced by sensor minimum capabilities.

In some cases, aerially detectable emissions substantially exceed the 
aerially measured portion of the combined distribution. The vertical 
lines in Fig. 3 represent the minimum emission detected by each aerial 
technology in each region. In some instances this is close to the transi-
tion point, as in the Kairos New Mexico Permian campaign, which has 
a minimum detected emission of 5.9 kg h−1 and a transition point of 
24.4 kg h−1. This indicates that, although aerially measured emissions 
contribute 81% of total emissions, Kairos-detectable emissions con-
stitute 90%. The gap is larger for the Denver-Julesburg, where aerially 
measured emissions are 14% of the total and Carbon Mapper-detectable 
emissions are 45% of the total. Although some of these detectable emis-
sions may lie within an aerial technology’s partial detection range, this 
illustrates that the distributions given in this paper provide a conserva-
tive estimate of the fraction of emissions that these technologies will 
see when deployed in the field.

The surveyed regions in this study contribute an estimated 6.2 million 
t y−1 of methane emissions (extrapolated to an annual basis), equivalent 
to total carbon dioxide emissions from fossil fuel use in Mexico, using 
a 20-year global warming potential28,29. At US$3 per 1,000 standard 
cubic feet (about US¢1 kWh−1), this amounts to U$1.08 billion (95% CI 
US$1.02 billion, US$1.14 billion) in market value. The environmental 
damage from these emissions is roughly ten times higher, at US$9.3 
billion (95% CI US$8.8 billion, US$9.9 billion) assuming a US$1,500 t−1 
social cost of methane6 (discussed further in Supplementary Informa-
tion 10). These emissions, and thus their associated costs, are roughly 
three times the level predicted by the US GHGI5.

Reconciling past studies
Our study includes 986,238 well site measurements (aerial flights 
over individual well sites) and also captures substantial associated 
midstream infrastructure, representing a three-order-of-magnitude 
advance over the ground-based measurement literature30. The result 
is a transformed overall understanding of methane emissions from 
oil and natural gas systems that is simultaneously consistent with the 
bulk of the related peer-reviewed literature.

The primary reason we estimate higher emissions is that the vast 
spatial extent of our campaigns ensures we measure emissions at the 
small fraction of sites, 1.66% or less, responsible for the majority of 
total emissions in all but four of our 15 campaigns. This fraction falls to 
0.05–0.09% of sites in the San Joaquin. Across all 15 campaigns, aerially 
measured emissions average 74% of total estimated production and 
midstream emissions, as shown in Supplementary Information 2 and 
Supplementary Table 15.

Our regional estimates align closely with the most recent aerial mass 
balance flights and in situ sensor tower-based inversion methods in 
the Uinta, Denver-Julesburg and northeast Pennsylvania, and in a 
high-productivity area of the Permian31–36. This suggests that, despite 
disagreement with other site-level emissions estimation methods, we 

are accurately estimating total emissions to within statistical error. 
Furthermore, our results align with the estimates described previ-
ously3 for five of the six study regions after accounting for differences 
in treatment of intermittency, as shown in Supplementary Informa-
tion 1.4 and Supplementary Table 2. Our results do suggest that some 
regional flux estimates based on data from the TROPOMI satellite are 
probably conservative37,38. We discuss these and related studies further 
in Supplementary Information 1.

In addition, our emissions simulation tool aligns to within statistical 
error with site-level measurements of marginally producing oil and 
natural gas well sites in ref. 26 in four of the five overlapping regions, 
discussed further in Supplementary Information 1.2.2, Supplementary 
Table 1 and Supplementary Figs. 1–5 (ref. 26). This suggests that our 
simulated estimates for Pennsylvania may be conservative.

In other words, our study largely explains numerous apparently 
divergent results in the literature. ‘Top-down’ regional flux estimates 
based on in situ measurements from aircraft or ground-mounted 
towers match our numbers to within statistical error. Previous 
‘bottom-up’ methods, scaling up component-level (for example, GHGI) 
or vehicle-based site-level measurements (for example, ref. 11), tend to 
both undersample and underestimate the tiny fraction of sites respon-
sible, in many cases for the majority of total emissions5,11. The key to 
bridging this gap is measurement of the vast majority of total sites 
and accurate estimation of the largest emissions, supplementing this 
with best-in-class simulated estimates of the smaller emissions, as we 
do in this paper.

Illuminating the full extent of undercounting that may be occurring 
in official inventory estimates across the entire USA and internation-
ally will require additional comprehensive measurement campaigns. 
Given the regional variability in emission rates we show in this work, an 
accurate estimate of US emissions will require surveying a large fraction 
of the 48% of onshore oil and 71% of natural gas production not covered 
here. Correspondingly, the working assumption, until proven other-
wise, should be that aerially detectable sources contribute substantially 
to overall emissions for all global oil- and natural gas-producing regions 
and that these emissions can be quantified through comprehensive 
measurement campaigns.

In addition, national methane emissions estimates reported to 
the United Nations are probably conservative in many cases because 
countries often rely on GHGI emission factors12, as described in Sup-
plementary Information 11.

Keeping methane promises
This study hints at substantial methane emissions reductions, achiev-
able through highly targeted intervention approaches. This could be 
accomplished by focusing on the small fraction of sites that contribute 
a large proportion of overall emissions, and by modifying equipment 
or operations at those sites to reduce emissions. These sites can be 
effectively flagged across large geographic areas by aircraft or dedi-
cated satellites, such as those characterized in ref. 23. Future emissions 
modelling to assess the efficacy of such rapid screening methods in the 
six regions characterized here should use the distributions presented 
in this paper, or similar methods, at least for those campaigns with 
comprehensive spatial coverage. Furthermore, updated distributions 
can be fed into existing, peer-reviewed numerical models to generate 
more accurate estimates of field emissions and assess basin-specific 
efficacy of different leak detection and repair technologies and deploy-
ment strategies39,40. It should be stressed that achieving climate goals 
will also require substantial cuts in emissions below the detection limits 
of the aerial technologies used in this study.

Tracking of progress requires repeated surveys at regular inter-
vals. Aerial surveys present a unique opportunity for comprehensive, 
periodic measurement with reliable quantification and the ability to 
detect the majority of total emissions volume in many regions. The 
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appropriate survey frequency will depend on the particular applica-
tion. The US EPA draft methane rule for oil and gas well sites suggests 
monthly or bimonthly aerial survey frequency depending on instru-
ment sensitivity41. Empirically validated regional area flux estimates—
for example, relying on data from TROPOMI or MethaneSAT—can also 
help track regional emissions over time21.

As demonstrated here, the generation of accurate emissions invento-
ries will require fusing of datasets collected across scales. This becomes 
more important with the near-term deployment of a substantial fleet 
of dedicated point-source methane satellites, as well as the contin-
ued growth of commercial and public airborne data providers. Soon, 
measurement at a meaningful sensitivity may be possible anywhere 
on Earth. This will represent an enormous advance for understanding 
emissions in every hydrocarbon-producing country, with methane 
emissions detected at unprecedented accuracy, speed and scale. The 
method introduced in this study forms the basis for combining meas-
urements at multiple scales to produce usable emissions inventories 
that will enable reliable, timely tracking of the rapid, unambiguous 
reductions in global methane emissions to which so many countries 
have committed.
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Methods

We estimate the full distribution of the magnitude of well site methane 
emissions for 15 large-scale aerial surveys of at least 10% of well sites 
and at least 35% of natural gas production in each of six US regions. This 
includes campaigns by Kairos in the New Mexico Permian basin and the 
Fort Worth basin in Texas (focusing on the Barnett shale), alongside 
campaigns conducted by the Carbon Mapper-led team (including sci-
entists from Jet Propulsion Laboratory ( JPL), the University of Arizona 
and Arizona State University) in the Permian basin in New Mexico and 
Texas (four campaigns), California’s San Joaquin basin (five campaigns), 
the Denver-Julesburg basin (two campaigns) as well as the Uinta basin 
and a high-productivity portion of the Appalachian basin in Pennsylva-
nia (one campaign each)1,2,42,43. For midstream we show distributions 
of aerially measured emissions in Supplementary Information 9 and 
estimate emissions too small for reliable aerial detection based on  
the GHGI5,25.

All campaigns use hyperspectral infrared spectroscopy to detect and 
quantify methane emissions using the spectral signature of methane in 
reflected sunlight. The quantification accuracy and minimum detection 
capabilities of the Kairos technology were independently validated in 
single-blind, controlled-release testing20 (see ref. 44 for further detail 
surrounding the technology). The Carbon Mapper campaigns were 
conducted with the Airborne Visible-Infrared Imaging Spectrometer – 
Next Generation (AVIRIS–NG) spectrometer on a JPL-contract King Air 
B200 aircraft and an identical very-short-wavelength infrared imaging 
spectrometer on the Global Airborne Observatory (GAO) operated by 
Arizona State University, both described in ref. 2. The AVIRIS–NG and 
GAO systems have also undergone non-blinded, controlled-release 
testing for assessment of minimum detection limits and quantification 
accuracy45, and single-blind testing of the quantification accuracy of 
the GAO system is currently under peer review46.

Both teams use data from imaging spectrometers to estimate meth-
ane flux rates based on measured atmospheric methane enhancements 
retrieved from spectral radiances, combined with estimates of 10 m 
wind speeds from reanalysis products. For Kairos we combine reported 
wind-normalized emission rates with National Oceanic and Atmos-
pheric Administration High-Resolution Rapid Refresh hourly instanta-
neous wind speed estimates for the New Mexico Permian survey14, and 
using Dark Sky 1 min gust wind speed data for the Fort Worth survey 
(the two wind reanalysis products have a similar error profile20). Carbon 
Mapper uses the average High-Resolution Rapid Refresh wind speed 
estimate from the nearest nine reported grid values, averaged over the 
hour before, hour after and hour of a given measurement1.

Kairos flights were conducted at roughly 900 m above ground level, 
and Carbon Mapper flights range from 3,000 to 8,500 m (described 
in detail in Supplementary Table 4). Both systems estimate methane 
enhancements based on the relative prevalence of certain frequen-
cies of infrared light compared with other frequencies in reflected 
sunlight, described further in refs. 47,48. Supplementary Information 
4.1 provides further discussion of uncertainty in these estimates; Sup-
plementary Tables 2–9 and 24 and Supplementary Figs. 6–9 include 
additional summary statistics and figures describing the surveys.

Below we describe the steps taken to construct a complete emissions 
distribution from a comprehensive aerial measurement campaign 
through our quantitative approach, which we term the regional oil 
and gas aerial methane synthesis model.

Step 1: conduct a comprehensive aerial measurement campaign
To produce an aerial measurement-based regional emissions inventory 
for oil and natural gas production and midstream activity, one must 
first conduct a comprehensive aerial survey of the region in question. 
In this study we term a survey ‘comprehensive’ if it covers at least 50% 
of all active oil and natural gas well sites and at least 80% of natural 
gas production in the region in question, generally an oil- and natural 

gas-producing basin. Whereas future studies may use alternative defini-
tions of comprehensive, it is noteworthy that measurement campaigns 
focusing only on high- or low-productivity areas of a region can pro-
duce misleading estimates of the overall regional methane loss rate, 
as illustrated in Supplementary Information 12 and Supplementary 
Fig. 19. Supplementary Tables 3 and 5 show coverage information for 
each survey in this study.

Step 2: estimate regional aerially measured emissions using 
Monte Carlo analysis
We first estimate the distribution of measured emissions in each aeri-
ally surveyed region as a function of emission size, using each emis-
sion source as the unit of analysis. Each oil or natural gas well site is a 
potential emission source. In midstream, facilities such as compressor 
stations and gas processing plants are potential emission sources, as are 
pipelines. For pipelines, each detected emission location is considered 
an emission source.

In many instances an emission source was surveyed multiple times, 
with emissions detected during only a fraction of aerial measurements. 
To account for this we apply Monte Carlo simulation to characterize 
the emission profile of the surveyed region. We simulate emissions 
from each emission source with at least one detected emission, draw-
ing randomly from all aerial measurements at that location, including 
those with no detected emissions. We then randomly insert simulated 
error into each quantified emission based on estimates of quantifica-
tion uncertainty, discussed further in Supplementary Information 4.1. 
We repeat this stochastic process for 1,000 Monte Carlo realizations 
to capture uncertainty. This method yields an unbiased estimate of 
total well site emissions in the surveyed region, as described in ref. 14.  
By analogous logic, it also yields an unbiased estimate of the size 
distribution of aerially visible emissions from the surveyed assets at 
the time(s) of measurement, but not the variance of total emissions 
(Supplementary Information 2.2 and Supplementary Fig. 10). The 
resulting emissions inventory covers only aerially detected emis-
sions, treating emissions as zero at all sites at which emissions were  
not detected.

In the Kairos Fort Worth survey, 8.5% of detected emission plumes 
extended beyond the spectrometer’s field of view and were thus classi-
fied as ‘cutoff’ and not quantified. We estimate emission magnitude for 
these emissions by drawing randomly from the distribution of quanti-
fied emissions for well sites and midstream infrastructure, respectively. 
The number of emission source measurements is not reported for ten 
of 11 pipeline emission sources in the Kairos Fort Worth survey, out of 
72 identified emission sources. We assume these emissions are fully 
persistent, setting the number of measurements equal to the number 
of detected emissions at that source.

Note that campaigns in the same region with comparable well site 
coverage may cover different amounts of midstream infrastructure, 
which may affect estimated midstream emissions estimates. We do not 
have sufficient midstream asset location data to quantify this effect 
here. Supplementary Information 2 provides coverage information 
for each campaign.

Step 3: account for partial detection
For emissions approaching the minimum detection level of an aerial 
detection system, there may be a fractional probability of detection. If 
an aerial survey of a population of assets detects an emission of a size 
that corresponds to a known probability of detection of one in three, 
this implies that the survey probably missed two emissions of similar 
size. Thus, an aerial survey will tend to underestimate emissions in this 
partial detection range by a predictable amount.

We correct for this effect in the Kairos surveys in the New Mexico 
Permian and Fort Worth basins using probability of detection curves 
based on controlled-release testing14,20 (Supplementary Information 
4 and 4.7 and Supplementary Fig. 12).
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Note that, for the Kairos campaigns, the partial detection correc-

tion accounts for less than 3% of total estimated emissions in the New 
Mexico Permian and less than 10% in Fort Worth. This suggests that 
the partial detection correction is not a major source of upward bias 
in our emissions estimates.

Carbon Mapper has conducted internal controlled-release testing to 
characterize its minimum detection range45. However, we do not have 
sufficient single-blind, controlled-release data to apply a similar correc-
tion to Carbon Mapper surveys, many of which were also conducted at 
varying altitude, further changing lower detection characteristics. This 
introduces conservatism into estimates of aerially measured emissions 
from Carbon Mapper campaigns.

Step 4a: simulate well site emissions
We then produce a comprehensive well site-level emissions inven-
tory for the surveyed region as the basis for estimation of emis-
sions missed by the aerial survey. An equally valid interpretation of 
our method is that we begin with a simulated emissions inventory 
and update that using observational data from an aerial survey. 
We simulate emissions at all surveyed well sites using a basin-scale 
emissions simulation tool18. The bottom-up emissions simulation 
begins with field measurements of the prevalence and magnitude 
of emissions at the component level—for example, valves, flanges 
and open-ended lines. It then converts these into probabilistic 
equipment-level emission factors based on component counts for 
different types of equipment—for example, separators, meters and  
wellheads.

We update this simulation tool with basin-specific equipment activity 
data from the EPA’s Greenhouse Gas Reporting Program—for example, 
the number of wellheads and pneumatic controllers per site in a given 
productivity range, as well as production data, for probabilistic esti-
mation of emissions at each well site in a given basin. Supplementary 
Tables 17–20 and Supplementary Fig. 11 provide summaries of relevant 
input data, and Supplementary Table 26 and Supplementary Figs. 20–25 
include a summary of simulation results. This analysis thus estimates 
well site-level emission rates for all surveyed active oil and gas well 
sites in the six basins.

Simulated well site emissions are based on component-level measure-
ments of methane emission frequency and magnitude, combined with 
counts of the number of each relevant component (for example, valves, 
connectors and open-ended lines) per piece of well site equipment (as 
listed in the previous paragraph). Equations (1) and (2) summarize the 
underlying mathematics behind this probabilistic emissions estima-
tion method for a given basin, described in detail in Supplementary 
Information 4.4 and ref. 18.

Q Q a= Σ (1)i j
n

i j j=1 ,
equip

Q Q= Σ (2)i
n

ibasin =1
wells

where Qi is simulated emissions for a given simulated well, i, and Qbasin 
is methane emissions from all wells across the oil- and gas-producting 
basin in question (accounting for associated wellpad equipment). The 
i index iterates across all wells in the basin, totalling nwells. The j index 
iterates across equipment types, with a total of nequip types. Qi,j is a ran-
domly generated equipment-level emission factor for equipment type j 
at well i, drawing on empirical measurements of component counts per 
piece of equipment, the fraction of components emitting at a given time 
and component-level emission rates per emission, described further in 
ref. 18 and Supplementary Information 4.4; aj is an equipment activity 
factor (equipment count per well) drawn from EPA GHGRP data for the 
basin containing the simulated region. Finally, wells are translated into 
well sites using the spatial clustering algorithm introduced in ref. 11. The 
result is a distribution of well site-level emissions based on Qi values. 

Supplementary Information 13 shows simulated equipment-level emis-
sion factors across each study region.

We identify the number of wells surveyed in a given campaign by 
filtering the Enverus coordinates of all active wells in the relevant 
basin by each aerial survey area (https://www.enverus.com/solutions/ 
energy-analytics/ep/). Enverus does not divide wells into well sites. 
We convert this count of wells to a count of well sites, assuming the 
average number of wells per site for the basin, derived from the 2020 
basin-specific emissions simulation model results, which use the 
well-to-site clustering algorithm introduced in ref. 11. For the New 
Mexico Permian we rely on ref. 49 and for the San Joaquin 2016 and 
2017 campaigns we rely on ref. 30, both of which apply a similar method 
(Supplementary Information 4.6).

To account for differences in well site productivity between the 
surveyed area and the basin as a whole, for each campaign we draw 
simulated emissions for each surveyed well site from an example with 
similar natural gas productivity. This ensures that simulated emissions 
are representative of the surveyed area but does not guarantee that 
the overall emissions estimate from the surveyed area will be repre-
sentative of the basin as a whole, as illustrated in Supplementary Fig. 26 
(Supplementary Information 4.5 and 14). Supplementary Tables 27–32 
include productivity summary statistics by survey and basin. The result 
is simulated emission levels for all well sites covered by each aerial 
survey. Supplementary Table 16 gives additional details of uncertainty 
estimation in this approach.

Step 4b: Simulate midstream emissions
We do not have a site-level emissions simulation tool for midstream 
infrastructure that is comparable to the above well site emissions 
simulation method. Instead we rely on national and state-level GHGI 
estimates from EPA, which include reported annual values from 2016 
to 2020 (refs. 5,25). These estimates are based on similar emissions 
simulation methods. We describe our approach in detail in Supple-
mentary Information 4.9, and Supplementary Tables 22 and 23 provide 
additional summaries of our treatment of GHGI data.

Step 5a: combine aerially measured and simulated well site 
inventories
We then combine the generated well site-level inventories of aerially 
measured and simulated emissions from steps 2–4a. For each Monte 
Carlo realization we transition from simulated to measured emissions at 
the emission size at which measured emissions consistently dominate 
simulated emissions. This approach avoids double counting across 
aerial and simulated emissions inventories (Supplementary Informa-
tion 4.8 and 9).

Note that this transition point may be larger than the smallest emis-
sion detected in the corresponding aerial survey; this is because aerial 
emissions detection systems generally detect only a particular frac-
tion of emissions below a certain size. This partial detection range 
can vary depending on the technology, quality control processes and 
environmental conditions and thus raw aerial measurements may 
underestimate total emissions at the lower end of the detected range.

For Kairos we are able to correct the aerially measured emissions 
distribution for missed emissions in this partial detection range using 
results from single-blind, controlled-release testing20 (Supplemen-
tary Information 4.7). Although Carbon Mapper has conducted some 
controlled-release testing to characterize minimum detection capabili-
ties, we do not have sufficient data to apply similar correction factors, 
as discussed in Supplementary Information 4.1.

We therefore use measured emissions for all well sites with emissions 
larger than or equal to the transition point, after accounting for partial 
detection. We use simulated emissions for all other surveyed well sites.

Note that, if an aerial survey of a region detected no emissions, this 
method would simply reproduce the emissions simulation results with 
every surveyed site assigned comparatively small (sometimes zero) 

https://www.enverus.com/solutions/energy-analytics/ep/
https://www.enverus.com/solutions/energy-analytics/ep/


simulated emission values, described further in Supplementary Infor-
mation 8 and 13. This is because the method currently assumes that 
there is an emission size beyond which aerially measured emissions 
consistently dominate simulated emissions, which is the case in all 
campaigns in this study. As a result the emissions simulation forms 
a lower bound for our estimates, with aerially measured emissions 
only adding to (and not subtracting from) the simulated regional total. 
Future surveys with lower detection limits, alongside alternate methods 
of determining a transition point to allow for cases in which meas-
ured emissions in the full detection range are smaller than simulated 
emissions, should further reduce reliance on simulated emissions. 
See Supplementary Table 21 for the transition points computed for  
each survey.

Note that one could also employ a Bayesian approach to combining 
simulated and measured emissions distributions50. We do not do so 
here due to difficulties in combining nonparametric distributions in 
Bayesian updating, and because such Bayesian analysis would require 
subjective determination of the relative weight given to simulated and 
measured data.

Step 5b: combine aerially measured and simulated midstream 
inventories
Simulated midstream emissions inventories, derived from the EPA 
GHGI, are not disaggregated into site-level emissions. As a result we 
cannot directly apply the above method, removing all simulated emis-
sions above (and all aerially measured emissions below) a transition 
point emission size.

Instead we remove a fraction of simulated midstream emissions 
corresponding to aerially visible emissions from key field measure-
ments that underlie midstream emissions estimates from the GHGI, 
as described in Supplementary Information 4.9.

Step 6: estimation of methane fractional loss
We estimate campaign-specific fractional loss rate, Lc as follows:

L
E
P

= (3)c
c

c

where Ec is total estimated emissions from all well sites and midstream 
assets covered in the campaign, based on the combined distribution 
of aerially measured emissions, corrected for partial detection plus 
simulated emissions, as described in steps 1–5b. We then compute Pc, 
total methane production for all covered well sites, using the method 
described in Supplementary Information 4.5.

We then assume that this gas has a molar methane fraction of 90% 
in all basins11, probably a conservatively high estimate more repre-
sentative of transmission pipeline-ready natural gas than the gross 
gas production at the well site reported by Enverus (Supplementary 
Information 6). A lower molar methane fraction would reduce esti-
mated methane production, thus increasing the estimated methane 
fractional loss rate.

Data availability
Anonymized emission and source data from the Kairos Fort Worth cam-
paign are available at Zenodo https://doi.org/10.5281/zenodo.8302419 
(ref. 51), from the Kairos Permian at Zenodo https://doi.org/10.5281/
zenodo.10067753 (ref. 52). The remaining Kairos Aerospace data from 
this study are not available for open release due to confidentiality con-
cerns. Kairos Aerospace is committed to working with research groups 
studying methane emissions. Access may be granted, but must be done 
directly through Kairos Aerospace. Interested researchers should con-
tact research-collaborations@kairosaerospace.com. For sensitive 
Kairos and Enverus microdata, the published code contains aggregated 
summaries sufficient to reproduce key results in the paper: regional 

estimates of the magnitude and breakdown of methane emissions from 
oil and gas activity. In addition, our code repositories include all code 
used to aggregate these commercially sensitive microdata. All methane 
data from airborne campaigns led by the Carbon Mapper/JPL team since 
2016 are available at https://doi.org/10.3334/ORNLDAAC/1727 and 
from refs. 1,2,42,43. Data required to reproduce maps of national and 
state boundaries within the USA are available at https://www.census.
gov/geographies/mapping-files/time-series/geo/carto-boundary-file.
html and from Esri, with national boundaries for Canada and Mexico at 
http://www.naturalearthdata.com/downloads/, lakes and rivers from 
the United States Geological Survey at https://www.sciencebase.gov/
catalog/item/4fb55df0e4b04cb937751e02 and ocean boundaries from 
the Flanders Marine Institute at https://doi.org/10.14284/542. Source 
data are provided with this paper.

Code availability
The data and code required to reproduce the key results of this article, 
as well as 100,000 random samples from each simulated emissions 
distribution in this study, are available at Zenodo https://doi.org/ 
10.5281/zenodo.10064774 (ref. 53)  and https://doi.org/10.5281/
zenodo.10073882 (ref. 54).
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