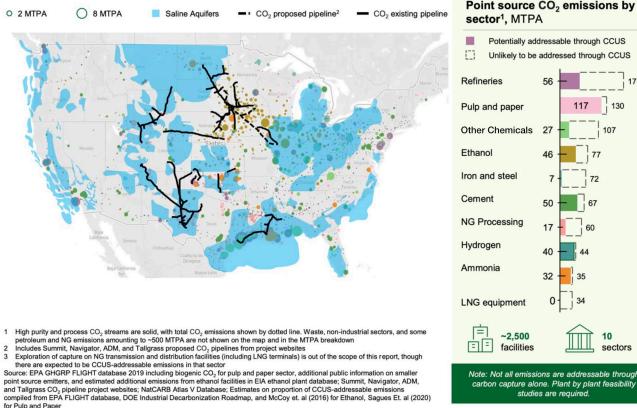


## **Cross-Cutting Strategies Breakout Sessions**





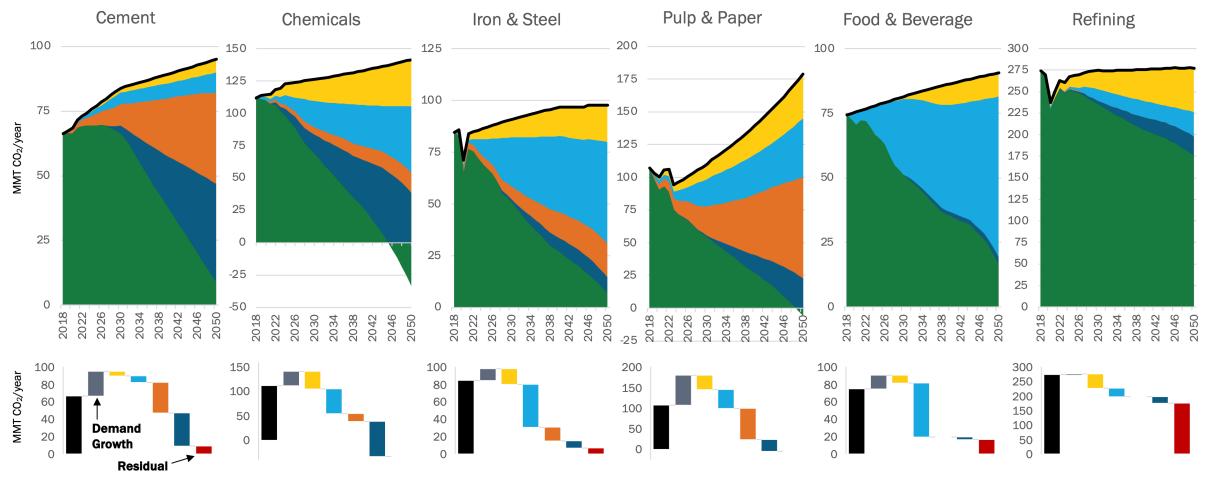
## Carbon Capture, Utilization, & Storage


Industrial Efficiency and Decarbonization Office

May 14, 2024

# CCUS may be necessary in a significant capacity to achieve net-zero emissions in industry

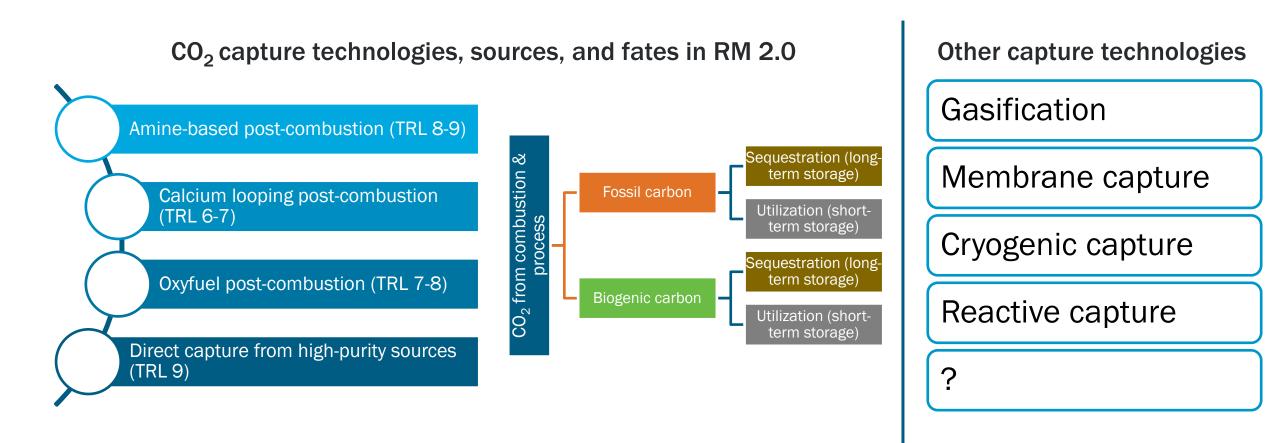
Point sources that offer higher purity streams of CO<sub>2</sub> are the lowest hanging fruit


- Nearly 400 MMT CO<sub>2</sub>/yr of industrial carbon capture potential identified.
- Only a fraction of higher purity industrial point sources currently capture their  $CO_2$ .
- The vast majority of captured CO<sub>2</sub> is expected to be sequestered in geologic storage and a small fraction will likely need to be utilized in developing sustainable fuels, chemicals, and other relevant industrial products.
- Carbon capture will likely come with significantly higher cost, energy, land, water, and other burdens in many facilities.



Adapted from: U.S. Department of Energy, Pathways to Commercial Liftoff: Carbon Management, 2023.

# **Projections for CCUS in decarbonizing major energy and emissions-intensive industries**


Uptake of CCUS projected to vary considerably across industries



Source: IEDO Decarbonization Roadmap Extension & Expansion (RM 2.0) Analysis

# Our models looked primarily at carbon capture technologies with higher commercial maturity

Significant RD&D opportunities exist at the lower end of the TRL spectrum

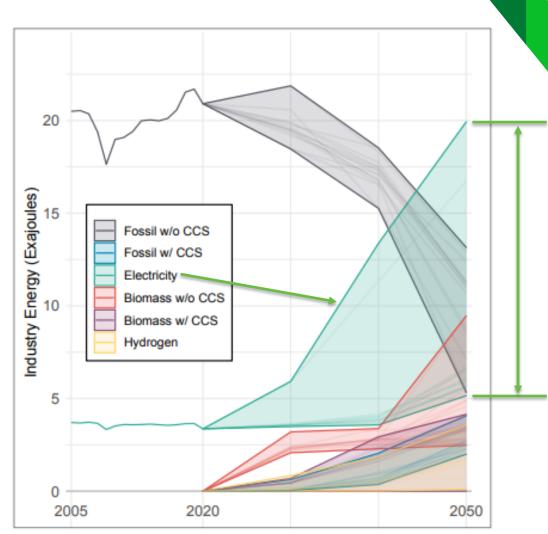


## **Challenges and barriers for CCUS**

Understanding technical and engineering challenges outside of the well-established ones around energy and cost penalties may help guide future RD&D focus areas

- Considerations outside of cost may determine the viability of CCUS as a decarbonization approach, including considerations outside of the industrial sector.
- Metrics for determining the applicability of CCUS technologies, particularly given significant variability in capture plant design across facilities within an industry.
- Emissions verification programs and carbon accounting guidelines may be insufficient for companies to consider CCUS and have several pitfalls that need to be addressed.
- Uncertainties around markets, infrastructure, and related supply chains for end use of captured CO<sub>2</sub> (whether geological sequestration or utilization).

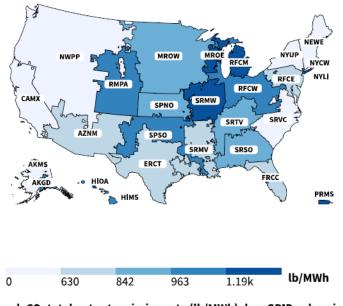



## Industrial Electrification and the Grid

Industrial Efficiency and Decarbonization Office

May 14, 2024

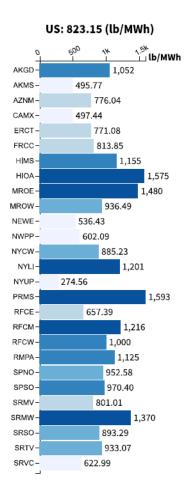
## **Context of Industrial Electrification**


- Industrial Electrification, by energy end-use, from MECS 2018 survey
  - ~15% of energy end-use
  - ~1000 TWh of consumption (out of 4000 TWh supplied by the grid, AEO 2023)
- According to recent strategies
  - LTS GCAM modeling shows range from 400 -4000 TWh increase by 2050. Note high-end accounts for electrolytic hydrogen production with industry end-use.
- Current analyses supporting this vision study anticipate 500 – 1000 TWh of additional manufacturing industrial electrification by 2050 for manufacturing
  - With assumption that for many mid- to hightemperature processes, electrification is not considered a viable, cost-effective solution

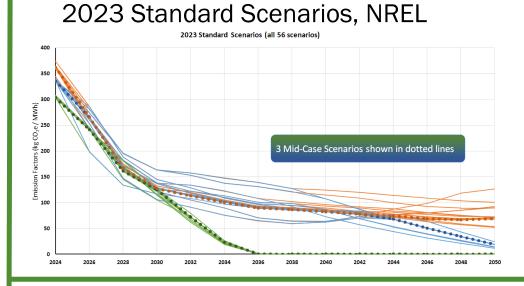


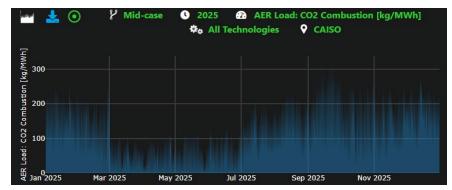
The Long-Term Strategy of the United States

## **High Variability in Grid Emission Factors**

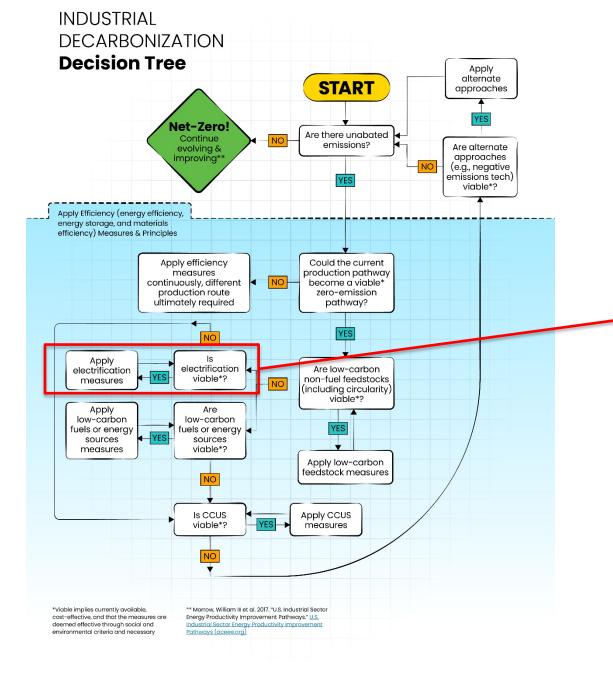

CO2 total output emission rate (lb/MWh) by eGRID subregion, 2022




Trend, CO<sub>2</sub> total output emission rate (lb/MWh), by eGRID subregion,


2018-2022 Select an eGRID subregion in the map above or the graphs at the right to see its trend here.

## **Regional Variability**




## **Uncertainty in Projections**





### **Temporal Variability** NREL Scenario Viewer, Cambium 2023



Industrial Electrification is a fundamental pillar in decarbonization strategies, often viewed in parallel with low-carbon fuels or energy sources opportunities

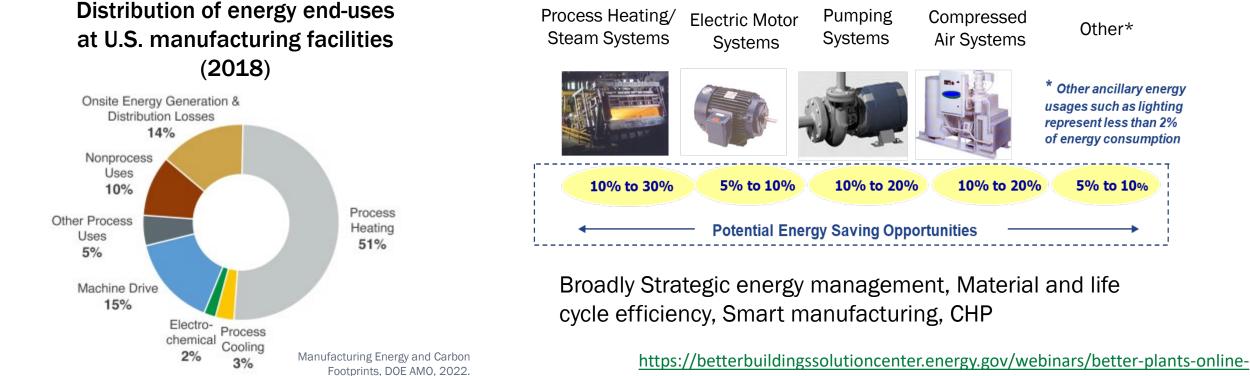
## **Challenges and Barriers**

Key challenges and barriers to broadly implement industrial electrification

- R&D for process specific systems-level technologies
- Grid emission factors
  - Forecasts: temporal, regional, and marginal
- Systems Integration
  - Demand response, load shifting
- Electrification Infrastructure Build-out
  - Generation
  - Transmission & Distribution
  - Availability, regional, temporal & power quality
- Costs
  - \$/MWh projections
  - High Capital costs
  - Risk mitigation
- Social
  - Reliability of grid for local communities
  - Workforce development for new processes



## **Energy Efficiency for Decarbonization**


Industrial Efficiency and Decarbonization Office

May 14, 2024

## **Energy Efficiency as a Decarbonization Pathway**

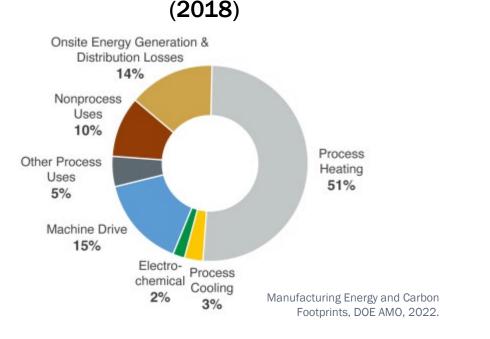
Energy efficiency measures and system design are fundamentally important at all industrial decarbonization stages since they apply to incumbent and future technologies.

Often the "lowest-hanging fruit"; EE practices can directly reduce GHG emissions by minimizing industrial energy • demand from fossil fuel combustion (scope 1) and electricity (scope 2).



learning-series-webinar-9-process-heating-and-waste-heat-recovery

Other\*


5% to 10%

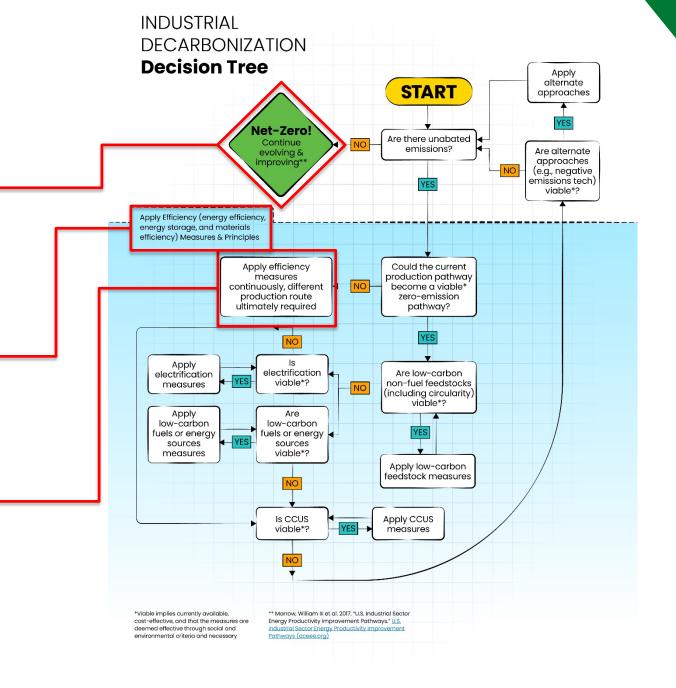
## **Energy Efficiency as a Decarbonization Pathway**

Energy efficiency measures and system design are fundamentally important at all industrial decarbonization stages since they apply to incumbent and future technologies.

• Often the "lowest-hanging fruit"; EE practices can directly reduce GHG emissions by minimizing industrial energy demand from fossil fuel combustion (scope 1) and electricity (scope 2).

### Distribution of energy end-uses at U.S. manufacturing facilities




#### Key Energy Efficiency Approaches

- Strategic energy management
- Material and Life Cycle Efficiency
  - System efficiency improvements, e.g., process intensification, process integration
  - Waste heat recovery, waste heat to power
- Smart Manufacturing
  - Digitalization, IoT, AI/ML, flexible modular manufacturing and operations design
- Combined Heat and Power

Even after Net-Zero, energy efficiency should be utilized to continue evolving and improving processes.

Regardless of other cross-cutting strategies, energy efficiency must be leveraged in parallel.

In addition, energy efficiency must be applied continuously to existing production routes, until a net-zero pathway is implemented.



### **Challenges**

Primary challenges for the energy efficiency technology adoption

- Inadequate awareness of efficiency measures and incentives and the resources to implement them.
- Unfavorable return on investment due to low fossil fuel energy costs and or high additional equipment cost.
- Disruptions to operation during retrofits.
- Engineering constraints for existing processes, e.g., waste heat integration.
- Lack of strategic energy management to ensure improvements persist.
- Rebound effects increased energy consumption due to improved energy efficiency.



## Hydrogen and Other LCFFES

Industrial Efficiency and Decarbonization Office

May 14, 2024

## Hydrogen and Other LCFFES

|                             | Approaches                                     | Examples                                                     |  |
|-----------------------------|------------------------------------------------|--------------------------------------------------------------|--|
| Fuels and energy<br>sources | Combustion of hydrogen and hydrogen carriers   | H <sub>2</sub> , ammonia                                     |  |
|                             | Combustion of biofuels and biomass             | Ethanol, biodiesel                                           |  |
|                             | Integration of Renewable/clean sources of heat | Nuclear, solar-thermal,<br>geothermal                        |  |
| Feedstocks                  | Hydrogen as a feedstock or reductant           | $H_2$                                                        |  |
|                             | Waste, scrap, and synthetic feedstocks         | Circular economy, steel scrap, alternative SCMs and binders. |  |

## Hydrogen

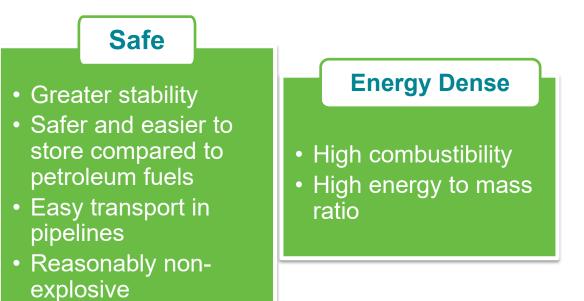
- Current H<sub>2</sub> production: 10 MMT (U.S.); 90 MMT (global)
- 2030 H<sub>2</sub> demand: 200 MMT (global projected)

MMT = million metric tons

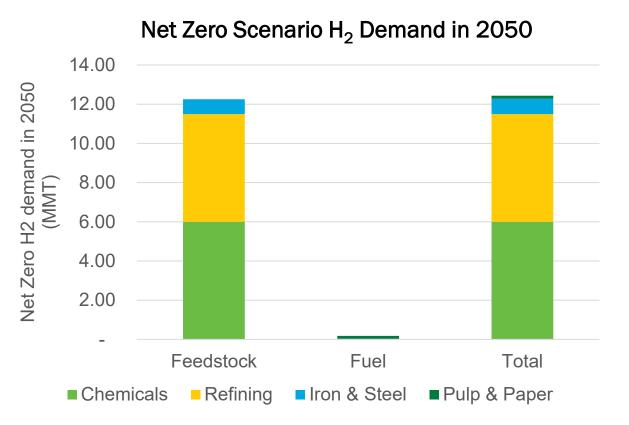
Clean

ompatible

 $\boldsymbol{O}$ 


• Water and excess O<sub>2</sub> are the only combustion products

• No carbonaceous residue as with biomass fuels

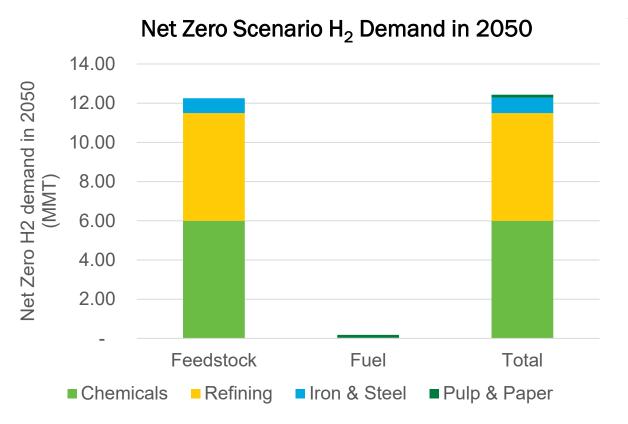

- **High flame temperature**: enables decarbonization of hard-to-electrify industrial processes
- Similarity to natural gas: easier operator training and lower switching costs than biomass
- **Multi-functional**: transportation fuel, energy storage medium, and industrial fuel and feedstock

## **Biofuels**

- Biomass conversion into biofuels via:<sup>1</sup>
  - Deconstruction
  - Upgrading: biological and/or chemical processing to produce a finished product.
- Most common types of biofuels:<sup>1</sup>
  - Ethanol
  - Biodiesel
  - Hydrocarbon "Drop-In" Fuels



## **Hydrogen Demand and Specific Assumptions**




\*Note that food & beverage and cement report negligible hydrogen demand under the net-zero scenario U.S. National Clean Hydrogen Strategy and Roadmap forecast 50 MMT hydrogen production in 2050 (current hydrogen production is ~10 MMT)

- Total 2050 Net Zero Hydrogen Demand for 6 EEII sectors is over 12 MMT
- Chemicals and Refining are largest consumers
  - >90% of total industrial hydrogen use
- In 2050 hydrogen remains more valuable as a feedstock than as a combustion fuel

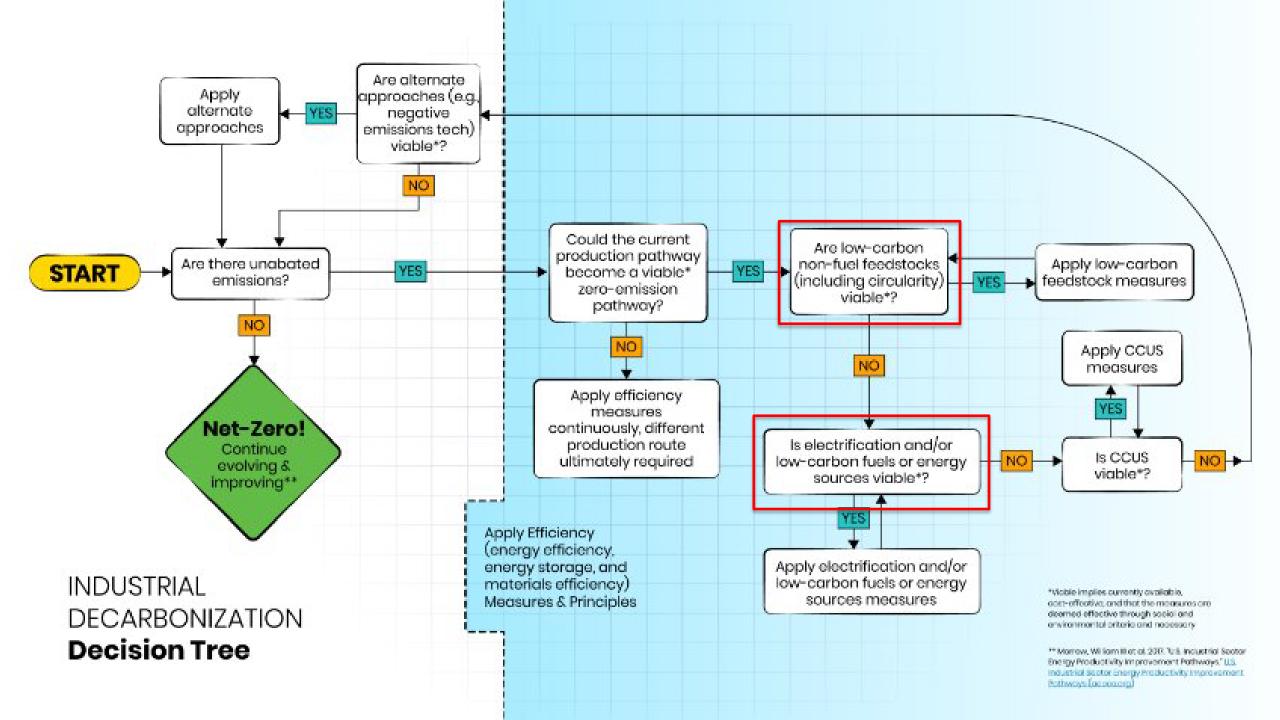
#### PRELIMINARY DATA. DO NOT CITE.

## **Hydrogen Demand and Specific Assumptions**



\*Note that food & beverage and cement report negligible hydrogen demand under the net-zero scenario

#### Sector-Specific Assumptions\*


*Chemicals*: Assumes complete replacement/switching to lowercarbon hydrogen feedstocks for BTX production.

Petroleum Refining: The net-zero scenario assumes grey hydrogen capacity is switched to blue and green hydrogen by approximately 50% and 30%, respectively (~80% of total feedstock demand).

*Iron and Steel*: Aggressive adoption of clean H<sub>2</sub> DRI is assumed for the net-zero scenario.

*Pulp and Paper*: Low-carbon hydrogen is considered as a possible fuel source for the yankee dryers in tissue mills.

#### PRELIMINARY DATA. DO NOT CITE.



## **Challenges**

#### Hydrogen

#### **Expensive:**

Must meet or exceed Hydrogen Shot Target  $\frac{1}{kg}$  H<sub>2</sub> (~\$7.50/MMBtu H<sub>2</sub>)



#### **Equipment:**

Flame detection, sensors & controls, and compressors, exhaust control

#### Infrastructure:

New materials to prevent corrosion and embrittlement, pipeline permitting and buildout



Lack of analysis to inform  $H_2$  end use: technoeconomic and lifecycle analyses are needed

### **Biofuels**



#### **Expensive:**

Production of biofuels often cost-prohibitive for industrial applications.



#### Water Intensive: Can further exacerbate the water supply.



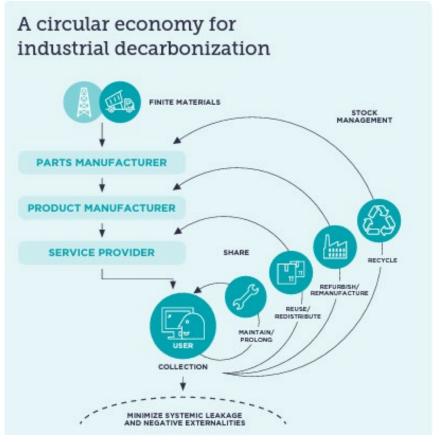
#### Monoculture:

Growing one crop can have negative environmental impacts in agriculture.

#### **Supply Limited:**

Biogenic feedstock availability may limit biofuel potential to fully replace transportation and industrial needs.




Demand Reduction / Resource Efficiency, Material Efficiency and Circular Economy

Industrial Efficiency and Decarbonization Office

May 14, 2024

### Context

- For an integrated and material efficient economy, the industrial ecosystem must consider the full life cycle of products, from mine to manufacturing to use to end of life.
- According to Circle Economy, 85% of emission reductions needed to limit global warming below 2°C could come from CE (Circle Economy, 2021).
- Scope 3 emissions are the largest contributors to corporate emissions, and materials from the supply chain are a large part of that.
  - Reducing total demand through material efficiency or circular economy strategies can help to reduce scope 3 emissions and decarbonize the industrial sector.



Ellen MacArthur Foundation

## Demand Reduction/Resource Efficiency, Material Efficiency, and Circular Economy Strategies

| Strategy                              | Pathways                                                       |   | Strategy                                               | Pathways                      |
|---------------------------------------|----------------------------------------------------------------|---|--------------------------------------------------------|-------------------------------|
| Alternative<br>material<br>approaches | Critical material substitution                                 |   | Do without or<br>with less<br>products or<br>resources | Lightweighting                |
|                                       | Biomass substitution                                           |   |                                                        | Dematerialization             |
|                                       | Energy intensive material<br>substitution                      |   |                                                        | Yield improvement             |
| Use products<br>for longer            | Property improvement for increased productivity or longer life |   |                                                        | Distributed manufacturing     |
|                                       | Re-sale                                                        |   |                                                        | Recycling / recovery          |
|                                       | Design for longer life                                         |   |                                                        | Operation at or near capacity |
|                                       | Design for repair or re-manufacture                            | L | Use products<br>more<br>intensively                    | Shared use                    |
|                                       |                                                                |   |                                                        | Products as service           |
|                                       | Modularity                                                     |   |                                                        |                               |
|                                       | Re-use                                                         |   |                                                        |                               |

### **Scale Matters**

ME approaches have different impacts and challenges at different scales.





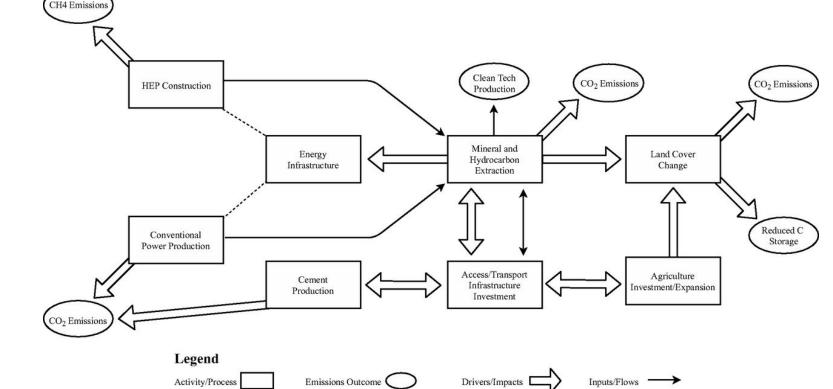


System/Supply Chain

| Impacts of ME approaches                 | Well characterized.                                                                                                                                                                                                                                       | Well characterized.                                                                                                                                                          | Not well understood.                                                                                                                                                                                                                                                                                                               |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Challenges and<br>barriers<br>(examples) | <ul> <li>Scale-up risks and<br/>performance or quality<br/>trade-offs with alternative<br/>substitutes.</li> <li>Impurities in scrap or<br/>impurity build up.</li> <li>Modifications to existing<br/>processes to<br/>accommodate new inputs.</li> </ul> | <ul> <li>Absent or inadequate data to transition towards ME practices.</li> <li>Lack of expertise to implement ME practices.</li> <li>Lack of technology options.</li> </ul> | <ul> <li>Absent or inadequate reverse<br/>supply chain infrastructure.</li> <li>Higher costs relative to linear<br/>supply chains.</li> <li>Regionality of available<br/>materials/suppliers.</li> <li>Availability of scrap.</li> <li>Risk adverse nature of<br/>industry.</li> <li>Re-thinking business models.surce:</li> </ul> |



## **Natural Resources**


Industrial Efficiency and Decarbonization Office

May 14, 2024

## What do we mean by natural resources

#### Connection between natural resources and industrial decarbonization

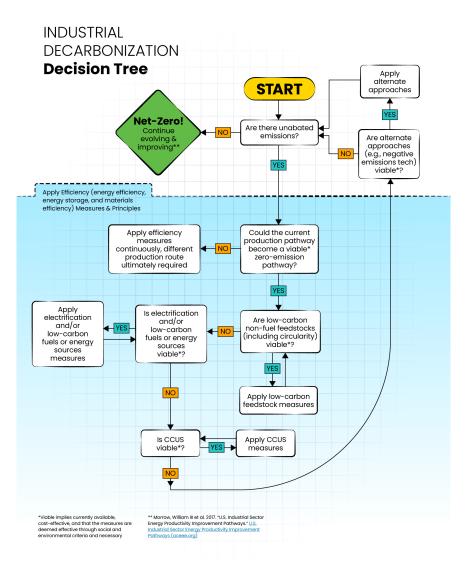
- Water (availability and quality),
- Minerals/materials (critical and otherwise),
- Land use/availability
- Soil health,
- Biodiversity (pharma, food, paper),
- Climate (in terms of uncertainty in availability),
- Oil/gas (particularly as feedstocks)



Bebbington et al. 2018. PNAS. 115 (52) 13164-13173

## Implications of natural resources on decarbonization

Climate change Genetic diversity **Biosphere integrity** Impose limits on the availability of a Novel entities Functional technology diversity/ • Scarcity Security • Land-system Stratospheric ozone depletion change • Substitutability Can cause detrimental environmental impacts, e.g., Soil contamination Atmospheric aerosol loading Freshwater use Water stress • Land use changes Phosphorus Ocean acidification Nitrogen Use for industrial decarbonization **Biochemical flows** limits its use for other activities (see Beyond zone of uncertainty (high risk) Below boundary (safe) right) In zone of uncertainty (increasing risk) Boundary not yet quantified

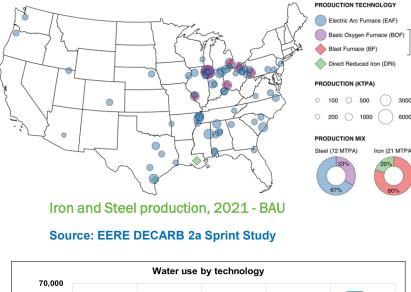

Planetary boundaries: Guiding human development on a changing planet, Volume: 347, Issue: 6223, DOI: (10.1126/science.1259855)

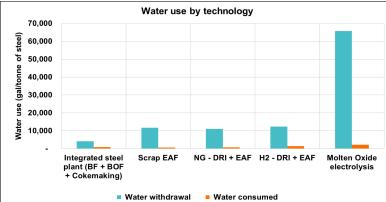


•

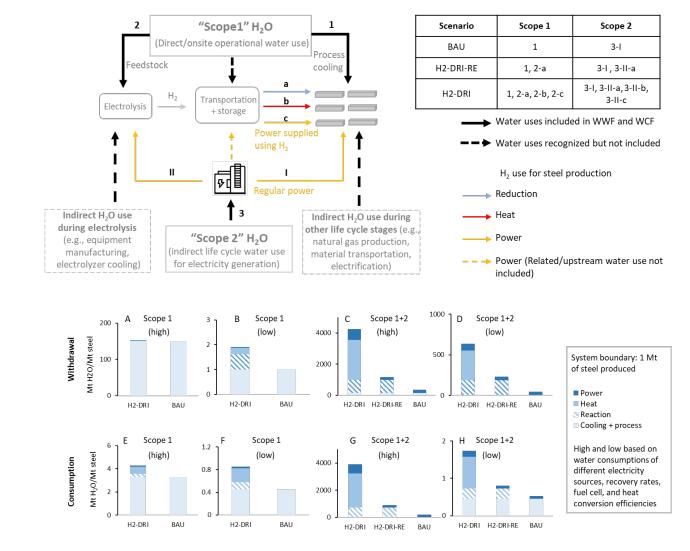
## Impact for each decarbonization pillar

- Viability of any option is dependent on natural resources:
  - Land availability and water for bio-based energy sources and feedstocks
  - Water availability for H<sub>2</sub>
  - Land availability for onsite clean electricity generation
  - Water and land availability for CCUS
  - Mineral availability for alternate pathways, e.g., high grade iron ore for H2 DRI steelmaking, SCMs





## **Ex: Water impacts of steel decarbonization**

3000


Iron (21 MTPA)

Integrated Mill





Preliminary Results: Water demand of electric technologies can exceed the water demand of existing integrated iron and steel production technologies to manufacture steel.



#### Under review. Do note cite or reproduce.

## **Some challenges**

- Quantification:
  - Data to track resource availability (domestically and globally) and utilization (by industry but also across economy)
  - Metrics of merit to understand and track natural resource utilization by industrial decarbonization technologies
  - Lack of transparency further up a supply chain to where and how much natural resources are being used
- Lack of LCA-thinking
  - Impacts may be on natural resources not physically tied to manufacturer of technology
- Decision-making under deep uncertainty