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We Are Utilizing Multiple Biological And Catalytic Processes To Convert

Diverse Biomass Sources To Fuels And Chemicals
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Catalytic Pyrolysis Pathway
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Carbon Efficiency of Current Conversion Processes Can be Improved

Significantly, Which will Reduce Feedstock Volume Needed

Current State Of Technology
345 MMT carbon | > 40 Billion GGE biofuel
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Our Near-Term Goal Is Deployment and Longer-Term Goal is to Deeply

Decarbonize While Achieving Grand Challenge Volume Targets

Broaden feedstock
* MSW, wet waste,
CO2, flue gases

Carbon & energy
efficient conversion
* Carbon efficiency ~30%

Refinery integration
to accelerate
deployment

Feedstock
Conversion
interface
* Reliable feeding of

biomass into .
reactors. Gen 1 EtOH
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refineries Purpose grown -ve Electro-fuels Negative Carbon
« Decarbonize carbon feedstocks * Decrease Carbon Intensity shipping
* Enable —ve carbon « Use CO, & waste gases
* ATJ Pathways l fuels 2
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CO,RUe Consortia

Goal: Develop bolt-on

CEUTRIOEIES e USE [EieElel Analysis and CO2 Electrolysis Biological

electricity to increase the Modeli LTE U di
efficiency of bioconversion. odeling ( ) pgrading
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* Leverages Inter-Lab and Industry
expertise across the Conversion +
value chain: Feedstocks, Electro/

BioCatalysis, and Analysis COZ

* 12 Projects at 5 Nat’l labs

» Poor carbon yields limit the Carbon Intensity reduction potential of
current bioconversion pathways.
Argonne &

« Emerging direct electrification pathways show promise for conversion
of biogenic CO,

;:E N R E L Analysis and Modeling &_‘QAK RI[:&E‘

tional Labo;

* Initial period of performance revealed near-term opportunities to
i A valorize Gen1 Biorefinery CO, via integrated LTE-bioconversion
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An Example Project With Fermentation: CO as an Energy Source To

allow Sugar Fermentation to Ethanol with no net CO, Generation

Technology Summary

0 Use a CO, electrolyzer to reduce CO, to CO. Spilt
water to make hydrogen.

. CO, and hydrogen can be fermented to produce
more ethanol.

. Power can be generated using wind turbines on the
same fields used to grow corn for the ethanol plant.

Technology Impact

. Generation of low cost and low carbon intensity
ethanol can greatly reduce the Cl of Gen 1 starch
ethanol plants and enable them to contribute to the

SAF Grand Challenge.

. Technology can be applied to use CO and H, as energy
source for other products

For further information contact:
Michael Resch
Michael.Resch@nrel.gov

Integrated Process That Allows CO,-Free Fermentation
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Elimination of Biogenic CO, During Fermentation

==
i

Leverages NREL O -
expertise in C, h!!!‘IHQ
biocatalysis,

fermentation and

process
engineering, and * Biogenic CO, accounts for ~¥30% of input carbon.

chemical catalysis * “CO, bypass” conversion strategies presents step-change
potential for high-yield, carbon negative biomanufacturing

* Targets obsolescence of conventional technology

* Expands conversion portfolio to include C, and H,
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Carbon Efficiency of Pyrolysis And Upgrading Is ~ 30% and Can Be

Improved

Demonstrating SAF Production from Biomass via Catalytic Pyrolysis and Hydrotreating

First-of-its-kind fuel property analysis revels a
cycloalkane-rich SAF product that complies with key
ASTM D4054 guidelines

SAF Properties

CFP-Oil Oxygen Content,

wt% dry basis 170 20-0
Density @15°C, <
0.730-0.880 g/ml 0.854 0.843
Flash Point
v/

S38°C 41.5 41.5
Freezing Point, v
heest <80 <80
Surface Tension 22°C

’ v/
25-29 mN/mP 28 27
Lower Heating Value,
>42.8 Mi/kg 425 427
D86 Simdis T10 162 162
150-205 °C
D86 Simdis FBP 253 250

<300 °C

>75 wt% Cycloalkanes in SAF Fraction

Lifecycle assessment confirms potential for>
85% reduction in GHG emissions compared to

Integrated experimental campaigns provide end-to-end
mapping of carbon utilization and identify opportunities

fossil pathways for process development to improve yields
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M Petroleum Jet Fuel
M Pine preprocessing
M Pine transportation
M Pine collection

M Forest residue processing

H Fuel combustion

B Pine handling and storage S
M Pine processing \k

convert to product

- i A Ch
M Forest residue preprocessing ar
Receiving handling and storage M Forest residue transportation
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Losses

Griffin, M. B., et al. “Opening pathways for the conversion of woody biomass into sustainable aviation fuel via
catalytic fast pyrolysis and hydrotreating”, 2024, Energy and Environmental Science, Under Review
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SAF Pathway: Direct Conversion of CO,-rich Gas To Hydrocarbons

C1BB Process integration approach — Lower CapEx, OpEx, Carbon Intensity

Direct Isoalkane
CO,-rich STH Dehydrocoupling
| > | > —>

Gasmcatlon

Blomass CO,-rich ™ Isoalkanes Branched Sustainable
or Waste Syngas SAF Precursors Aviation
N i N Fuel
Methanol RISt — ~ Olefins

Ether

Traditional multi-step process
High CapEx, OpEx, and Carbon Intensity

» Developing the centerpiece technology for direct syngas-to-hydrocarbons

 Hydrocarbon SAF precursor product using NREL's Cu/BEA zeolite catalyst

» Process concept translates to a variety of hydrocarbon synthesis catalysts to
target specific SAF components (e.g., iso-paraffins, cyclics)
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Judicious Use of Renewable Electricity / Hydrogen Can Enable Significant

Increase In Carbon Efficiency of Biomass Processes To Meet Earth Shot Goals

Aviation Fuels \ Grid decarbonization
; '
Marine Fuels w ‘& o S’ EVs
BECCS /‘ EEE s

Fuels

Chemicals | < = | Hydrogen
Materials l * Renewable Chemicals
Fs’ellets Biomass Electricity/ Hydrogen IPr]rcll-ustriaI decarbonization
team

\ /

» Improve Carbon Efficiency of biomass processes to reduce
biomass volume needed for multiple uses.

* Reduce Carbon Intensity of existing biomass processes to enable
deeper carbon draw-down

» Improve energy efficiency of PTL
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