

CO2 Capture

Chemicals

Renewable Electrons

Grid Integration

Liquid Fuels

Marine

Fuels and Chemical Production

H2

Energy Pathways

Deep Decarbonization of Biomass Conversion Processes Energy Carriers

Zia Abdullah, PhD.

Carbon-Efficient Conversion Process Session Transportation

Clean Fuels & Products Earth Shot

April 9, 2024

LD Vehicles HD/MD Vehicles *Expected dominant fuels by sector; others will exist

Sectors

Aviation

We Are Utilizing Multiple Biological And Catalytic Processes To Convert Diverse Biomass Sources To Fuels And Chemicals

Carbon Efficiency of Current Conversion Processes Can be Improved Significantly, Which will Reduce Feedstock Volume Needed

Our Near-Term Goal Is Deployment and Longer-Term Goal is to Deeply Decarbonize While Achieving Grand Challenge Volume Targets

Near Term Focus on Deployment

Longer Term Focus on Deep Decarbonization

Feedstock Conversion interface

 Reliable feeding of biomass into reactors.

Refinery integration to accelerate deployment

Gen 1 EtOH refineries • Decarbonize • ATJ Pathways

Purpose grown –ve carbon feedstocks • Enable –ve carbon fuels

Carbon & energy efficient conversion • Carbon efficiency ~30%

Electro-fuels

- Decrease Carbon Intensity s
- Use CO₂ & waste gases

Negative Carbon flights

Negative Carbon shipping

CO₂RUe Consortia

Goal: Develop bolt-on technologies that use renewable electricity to increase the efficiency of bioconversion.

- Leverages Inter-Lab and Industry expertise across the Conversion value chain: Feedstocks, Electro/ BioCatalysis, and Analysis
- 12 Projects at 5 Nat'l labs

- Poor carbon yields limit the Carbon Intensity reduction potential of current bioconversion pathways.
- Emerging direct electrification pathways show promise for conversion of biogenic CO₂
- Initial period of performance revealed near-term opportunities to valorize Gen1 Biorefinery CO₂ via integrated LTE-bioconversion technologies

An Example Project With Fermentation: CO as an Energy Source To allow Sugar Fermentation to Ethanol with no net CO₂ Generation

Technology Summary

- Use a CO₂ electrolyzer to reduce CO₂ to CO. Spilt water to make hydrogen.
- CO₂ and hydrogen can be fermented to produce more ethanol.
- Power can be generated using wind turbines on the same fields used to grow corn for the ethanol plant.

Technology Impact

- Generation of low cost and low carbon intensity ethanol can greatly reduce the CI of Gen 1 starch ethanol plants and enable them to contribute to the SAF Grand Challenge.
- Technology can be applied to use CO and H₂ as energy source for other products

Integrated Process That Allows CO₂-Free Fermentation

Elimination of Biogenic CO₂ During Fermentation

Leverages NREL expertise in C₁ biocatalysis, fermentation and process engineering, and chemical catalysis

- Biogenic CO₂ accounts for ~30% of input carbon.
- "CO₂ bypass" conversion strategies presents step-change potential for high-yield, carbon negative biomanufacturing
- Targets obsolescence of conventional technology
- Expands conversion portfolio to include C₁ and H₂

Carbon Efficiency of Pyrolysis And Upgrading Is ~ 30% and Can Be Improved

Demonstrating SAF Production from Biomass via Catalytic Pyrolysis and Hydrotreating

First-of-its-kind fuel property analysis revels a cycloalkane-rich SAF product that complies with key ASTM D4054 guidelines

SAF Properties			
CFP-Oil Oxygen Content, wt% dry basis		17-0	20-0
Density @15°C, 0.730-0.880 g/ml	\checkmark	0.854	0.843
Flash Point >38 °C	\checkmark	41.5	41.5
Freezing Point, <-40 °C	\checkmark	<-80	<-80
Surface Tension 22°C, 25-29 mN/m ^b	\checkmark	28	27
Lower Heating Value, >42.8 MJ/kg		42.5	42.7
D86 Simdis T10 150-205 °C	\checkmark	162	162
D86 Simdis FBP <300 °C		253	250

Lifecycle assessment confirms potential for≥ 85% reduction in GHG emissions compared to fossil pathways Integrated experimental campaigns provide end-to-end mapping of carbon utilization and identify opportunities for process development to improve yields

Opportunity to

>75 wt% Cycloalkanes in SAF Fraction

Griffin, M. B, et al. ``Opening pathways for the conversion of woody biomass into sustainable aviation fuel via catalytic fast pyrolysis and hydrotreating'', 2024, Energy and Environmental Science, Under Review

SAF Pathway: Direct Conversion of CO₂-rich Gas To Hydrocarbons

C1BB Process integration approach – Lower CapEx, OpEx, Carbon Intensity

- Developing the **centerpiece technology** for direct syngas-to-hydrocarbons
- Hydrocarbon SAF precursor product using NREL's Cu/BEA zeolite catalyst
- Process concept translates to a variety of hydrocarbon synthesis catalysts to target specific SAF components (*e.g.*, iso-paraffins, cyclics)

Judicious Use of Renewable Electricity / Hydrogen Can Enable Significant Increase In Carbon Efficiency of Biomass Processes To Meet Earth Shot Goals

- Improve Carbon Efficiency of biomass processes to reduce biomass volume needed for multiple uses.
- Reduce Carbon Intensity of existing biomass processes to enable deeper carbon draw-down
- Improve energy efficiency of PTL