
AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 1

Virtual Tutorial Series
Open-Source Tools

& Open-Access Solar Data

Webinar series part 3: Modeling Tools

Kevin Anderson, Sandia National Laboratories

Tassos Golnas, Solar Energy Technologies Office (SETO), DOE

Matt Prilliman, National Renewable Energy Laboratory (NREL)

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 2

Data: a Means to an End

Better photovoltaic (PV) models and system

performance through high-quality data.

PV models are important in:

• Project development and valuation

• Power plant operation and maintenance

Better system performance means

lower cost of solar electricity

Prize goal:

Support industry and academic research efforts to

develop, improve, evaluate, and validate models of

real-world PV system performance in diverse

locations.

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 3

Open-Access Data & Open-Source Tools

Three webinars
will show you how to:

Access
the datasets from

the Prize

Analyze
system

performance

PVAnalytics,
RdTools,

Solar Data Tools

Model
systems with data

from the Prize

pvlib-python,
SAM (System

Advisor Model)

Register!

https://github.com/pvlib/pvanalytics
https://www.nrel.gov/pv/rdtools.html
https://solar-data-tools.readthedocs.io/en/documentation-sphinx/
https://pvlib-python.readthedocs.io/en/stable/index.html
https://sam.nrel.gov/

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 4

Modeling tutorial overview

We will be showing demos for two open-source PV modeling tools:

- Python interface to SAM

- Resource-to-energy simulations

- Can model many technologies

(not just PV), plus financials

- Flexible toolbox approach

- Provides several alternatives for each

model type

- Useful in a variety of PV applications

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 5

System Advisor Model (SAM) & PVWatts
Free software that enable detailed performance and financial analysis

for renewable energy systems

https://sam.nrel.gov/

https://pvwatts.nrel.gov/

✓ Desktop application

✓ PVWatts web tool & API

✓ Software development kit

✓ PySAM Python package

✓Open source code

✓ Extensive documentation

✓ User support

https://sam.nrel.gov/
https://pvwatts.nrel.gov/

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 6

Performance

Model

Model Structure

Weather Data

System Specs

Losses

Costs

Compensation

Financing

Incentives

Financial

Model

Calculate hourly or

sub-hourly power

production (kW)

• Monthly, annual

production

• Capacity factor

• Operating

parameters

Calculate after-tax

annual cash flow

from project

perspective ($)

• NPV

• LCOE

• Payback period

• Operating costs

• Revenue/savings

• TaxesProduction (kWh) Value ($)

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 7

PySAM

• Python wrapper of SAM code

• Automatic code generation

through SDK

• PyPi

• Documentation

• Github Repo

https://pypi.org/project/NREL-PySAM/
https://nrel-pysam.readthedocs.io/en/main/
https://github.com/NREL/pysam

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 8

What is pvlib?

REFERENCE MODELS

Stand-alone models for each

step of the modeling chain

Transparent, peer-reviewed

implementations

DATA I/O

Parsing of standard file

formats, e.g., TMY2, TMY3,

EPW

Automated fetching of

12+ weather data sources

Weather-to-power following

the PVPMC workflow

Customizable end-to-end PV

system modeling

(ModelChain)

A python library for PV performance modeling that is community-

driven, free, open-source, and well-documented

MODEL WORKFLOW

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 9

pvlib.solarposition

- SPA

- ephemeris

- hour_angle

pvlib.irradiance

- Transposition models

- Decomposition models

pvlib.clearsky

- Ineichen

- Simplified solis

pvlib.snow

- Marion model

- Townsend

pvlib.ivtools

- fit_sde_sandia

- fit_pvsyst_sandia

- fit_desoto_sandia

pvlib.soiling

- Kimber model

- Humboldt State model

pvlib.tracking

- slope-aware backtracking

pvlib.inverter

- fit_sandia

- sandia_multi

- pvwatts_multi

pvlib.bifacial

- infinite_sheds

pvlib.iam

- martin_ruiz

- martin_ruiz_diffuse

- marion_diffuse

- physical

pvlib.temperature

- faiman

- fuentes

- ross

- noct_sam

- pvsyst

- prilliman transient model

Selection of model implementations

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 10

Irradiance measurement stations Satellite/reanalysis datasets

pvlib.iotools: fetching weather data

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 11

Where to find pvlib python

Installation:

- Python Package Index: https://pypi.org/project/pvlib
- pip install pvlib

- Conda-forge: https://anaconda.org/conda-forge/pvlib/
- conda install –c conda-forge pvlib

Documentation: https://pvlib.readthedocs.io

Development: https://github.com/pvlib/pvlib-python

Google group: https://groups.google.com/g/pvlib-python

https://pypi.org/project/pvlib
https://anaconda.org/conda-forge/pvlib/
https://pvlib.readthedocs.io/
https://github.com/pvlib/pvlib-python
https://groups.google.com/g/pvlib-python

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 12

Demos

AMERICAN-MADE | U.S. DEPARTMENT OF ENERGY 13

• Organized into a "toolbox" of

individual model functions

• Fully customizable in Python

• Focused primarily on PV

modeling and related

functionality

• Implemented in Python

• Large development community,

with over 100 code contributors

• May be better suited for

applications where component

models are needed

Both!

• Robust implementations of PV modeling

algorithms

• End-to-end PV model with limited model

choices available in each tool

➢ ModelChain in pvlib

➢ pvsamv1 in PySAM

• Open-source

• Example scripts to help you get started

• Available via pip install

• Shared module and inverter libraries

➢ PySAM for module coefficients

➢ pvlib for inverter coefficients

• Great for use in your own Python project!

• Primarily organized into functions for

complete resource-to-energy system

simulation

• Some sub-functions available

(module, inverter, irradiance)

• Minimal coding required to perform a

PV simulation

• Export system setups to/from the

SAM desktop tool

• Implemented in C++ and accessed

as a Python package

• Includes financial models

• May be better suited for batch

analysis or PVsyst-type simulations

