On-board Cryogenic Hydrogen Storage Performance and Cost Analysis

R. K. Ahluwalia, J-K Peng, and D. Papadias

Hydrogen Infrastructure Priorities to Enable Deployment in High-Impact Sectors

HFTO Workshop, Alexandria, VA February 27-28, 2024

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Trailer Loading at Terminal

Dewar Loading at Refueling Station

Loading 64,350-L Trailer at Terminal (Liquefaction Plant)*

- Pressure transfer from terminal at 24 psia to trailer at 20-22 psia, ~600 kg/h LH₂ transfer rate
- 3.3% total boil-off during loading and initial trailer depressurization

Loading 12,500-L Dewar at Refueling Station*

- Pressure transfer from trailer pressurized to 60 psia to Dewar maintained at 45 psia, ~1100 kg/h average LH₂ transfer rate
 - 16% total boil-off loss including 3% from Dewar during loading and 12% from final depressurization of trailer to 20 psia
- Pump transfer can greatly reduce the H₂ loss rate
 > 3.4% from Dewar, 0% from trailer

 *Guillaume Petitpas, "Simulation of boil-off losses during transfer at a LH₂ based hydrogen refueling station," IJHE, 43 (2018) 21451-21463

LH₂ Storage for Heavy Duty Trucks

1. R K Ahluwalia, et al, "Liquid hydrogen storage system for heavy duty trucks: Configuration, performance, cost, and safety," IJHE, 48 (2023) 13308-13323

2. R K Ahluwalia, et al, "Liquid hydrogen storage system for heavy duty trucks: Capacity, dormancy, refueling, and discharge," IJHE, 48 (2023) 34120-34131

3. R K Ahluwalia, et al, "Supercritical cryo-compressed hydrogen storage for fuel cell electric buses," IJHE, 43 (2018) 10215-10231

4. S Schäfer and S. Maus, "Technology Pitch: Subcooled Liquid Hydrogen (sLH2)," NOW & CEP Heavy Duty Event, April 21st, 2021

On-Board Storage System Metrics

Task	Metric	AnalysisTarget	Analysis Approach
1	Storage System Range	750 miles	Assemble and analyze duty cycles
			Harmonize with 21st Century Truck Partnership
2	Storage System Capacity	>60 kg	Consider packaging and sizes of CNG tanks for MD and HD trucks
			Frame Mounted, Roof Mounted and Behind the Cab Configurations
3	Refueling Rate	8-10 kg/min	Develop specifications for off-board refueling pump
			Develop model for refueling dynamics
4	Discharge Rate	4.6 g-H ₂ /s (16.6 kg/h)	Consider 275-kW fuel cell system with 46-kWh battery storage system
		6-bar discharge pressure	Develop thermal management requirement
			Simulate tank discharge dynamics with and without on-board pump
			Develop pump requirements: 1-stage or 2-stage
5	Hydrogen Loss		Determine H ₂ loss during refueling
6	Insulation and Dormancy	>1-2 W/m ² heat gain	Consider multi-layer vacuum insulation for minimum 1-d dormancy
		<2 mbar vacuum	Conduct heat transfer analysis to determine number of layers and vacuum pressure
7	Structural Analysis	5,000 refueling cycles	Liner: ABAQUS FE analysis of hoop stress and safety factor, ASME BPVC Div-1
		11,000 cycles	code for liner thickness; Shell: ABAQUS FE buckling analysis for maximum stress
			and safety factor, ASME BPVC Div-1 code for liner thickness
8	Strucural Materials		Aluminum 2219 -T87 preferred for cryogenic applications
			Aluminum 5083 and SS 304 also considered as candidates
9	Gravimetric Capacity	15 wt.% (study goal)	Conceptualize system with all BOP components
			Estimate component weights
10	Volumetric Capacity	>35 g/L (study goal)	Conduct system analysis and estimate componet volumes
11	System Cost	8-9 \$/kWh	Bottom-up cost analysis
12	Safety Codes and Standards	Applicable SAE and	Failure modes and effects (FMEA) and safety codes and standards (SCA) analyses
		and GTR standards	Review codes: SAE J2343, SAE2578, SAE2579, NFPA-52
13	LH ₂ Refueling Interface		Conceptual design of LH ₂ refueling station

LH₂ Storage for Heavy Duty Trucks: Packaging Options and Capacity

- Autonomie simulation of power demand by Vincent Freyermuth (ANL): 21st Century Partnership platform for long-haul class 8 HD truck
- Fuel cell simulation of Hydrogen Consumption: 275 kW FCS hybridized with 70 kWh battery
- Peak H₂ flow rate: 4.6 g/s (16.6 kg/h)
- 16 packaging options in frame mounted (FM), roof mounted (RM) and behind-the-cab (BTC) configurations for mediumand heavy-duty vehicles¹

5

Tank Refueling and Discharge

- 1. LH₂-1 system uses feed and bleed protocol (FBP) during the constant pressure refueling phase.
 - FBP requires dual nozzle refueling
 - H₂ return to the station can be avoided by raising the pressure head of the refueling pump above 8 bar but the storage capacity decreases
- 2. LH₂-2 system w/o on-board pump supplies heat during discharge to maintain tank pressure above 6 bar.

- 1. sLH_2 system relies on the refueling pump to pressurize LH_2 to 16 bar.
 - It operates in subcooled, 2-phase and superheated regions
- 2. CcH₂ system relies on the in-tank HX to operate in supercritical region.
 - Depending on the pump delivery pressure, it can reach storage density higher than 70 kg/m³.

H₂ Storage Volume

 $\rm LH_2$ -1 has the largest available internal volume for $\rm H_2$ storage.

Volume distribution in 968 L tank

System Configuration	LH ₂ - 1	cH₂ 350 bar	sLH ₂	LH ₂ -2	CcH₂	cH₂ 700 bar
H ₂ Storage Volume [%]	85.1	84.3	83.1	79.5	71.1	70.4
Liner (%)	1.8	3.2	3.7	1.7	3.2	2.9
Carbon Fiber Composite (%)		12.5			13.2	26.7
Vacuum Insulation (%)	9.3		9.5	15.0	8.6	
Outer Shell (%)	3.8		3.8	3.8	3.8	

- FM: 66 x 305 Tank (968 L)
 BTC: 53 x 203 Tank (414 L)
- RM: 30 x 246 Tank (299 L)

Usable H₂ Storage Density

 CcH_2 has the highest usable H_2 storage density in the 2 x 66 x 305 FM tank system

- CcH₂
 sLH₂
 65.5 kg/m³
 57.7 kg/m³
- LH₂-1 52.5 kg/m³
- LH₂-2 47.5 kg/m³
- cH₂-700 bar 39.3 kg/m³
- cH₂-350 bar 23.2 kg/m³

- FM: 2 x 66 x 305 Tanks
- BTC: 4 x 53 x 203 Tanks
- RM: 4 x 30 x 246 Tanks

Gravimetric Capacity

 LH_2 -1 has the highest gravimetric capacity in the 2 x 66 x 305 FM tank system

Volumetric Capacity

 CcH_2 has the highest volumetric capacity in the 2 x 66 x 305 FM tank system

- CcH₂ 42.5 g-H₂/L
- sLH₂ 39.6 g-H₂/L
- LH₂-1 37 g-H₂/L
- LH₂-2 31.3 g-H₂/L
- cH₂-700 bar 27.7 g-H₂/L
- cH₂-350 bar 19.3 g-H₂/L

• RM: 4 x 30 x 246 Tanks

Carbon Fiber Usage

 CcH_2 uses the least amount of carbon fiber composite in the 2 x 66 x 305 FM tank system

- CcH₂
 cH₂-700 bar
 4.5 kg-CF/kg-H₂
 10.3 kg-CF/kg-H₂
- cH₂-350 bar 14.8 kg-CF/kg-H₂

FM: 2 x 66 x 305 Tanks
BTC: 4 x 53 x 203 Tanks
RM: 4 x 30 x 246 Tanks

Cost*

sLH₂ is the lowest cost option for heavy-duty applications

Cost breakdown in 2 x 66 x 305 FM tank systems, 100K units/year

System Configuration	cH₂ 350 bar	cH₂ 700 bar	LH ₂ - 1	LH ₂ -2	CcH₂	sLH ₂
Total Cost [\$/kWh]	\$12.66	\$15.65	5.11	\$4.91	\$7.03	\$4.13
Liner (%)	3.4	1.7	6.9	8.0	5.2	15.6
Carbon Fiber Composite (%)	<mark>77.0</mark>	<mark>86.1</mark>			<mark>60.0</mark>	
System Testing (%)	0.7	0.6	0.3	0.4	0.5	0.4
Vacuum Insulation (%)			4.0	6.7	3.5	4.5
Outer Shell (%)			14.0	17.2	6.4	16.1
BOP (%)	7.9	5.3	<mark>60.7</mark>	<mark>50.3</mark>	15.7	<mark>47.0</mark>
Housing, Support, and Assembly (%)	11.1	6.3	14.1	17.3	8.6	16.2

*Cost analysis results from Zachary Watts and Cassidy Houchins, Strategic Analysis, September 2023

- FM: 2 x 66 x 305 Tanks
- BTC: 4 x 53 x 203 Tanks
- RM: 4 x 30 x 246 Tanks

Future Outlook

1. Model results indicate that CcH_2 and sLH_2 are attractive on-board H_2 storage options for heavy duty trucks if the fuel cell system accepts H_2 delivered at 5 bar.

Representative results for 2 x 66 x 305 FM tank systems manufactured at 100K units/year

System Configuration	Usable H_2	Usable H ₂ Density	System Gravimetric Capacity	System Volumetric Capacity	Specific Carbon Fiber Requirement	Specific System Cost
	kg	kg/m ³	%	kg-H ₂ /L	kg-CF/kg-H ₂	\$/kWh
CcH ₂	90.2	65.5	9.8	42.5	4.5	7.03
sLH ₂	92.7	57.7	16.4	39.6		4.13
LH ₂ -1 (w Pump)	86.6	52.5	19.0	37.0		5.11
LH ₂ -2 (w/o Pump)	73.2	47.5	16.6	31.3		4.91
cH ₂ - 700 bar	53.6	39.3	7.2	27.7	14.8	15.65
cH ₂ - 350 bar	37.8	23.2	5.7	19.3	10.3	12.66

- 2. CcH_2 is the only viable liquid storage option if the fuel cell system requires H₂ to be delivered above 15 bar.
- 3. Low pressure LH₂ storage becomes competitive if on-board boost pumps capable of delivering 16 kg/h H₂ at 5-15 bar pressure are developed.
- 4. Stationary pumps capable of transferring LH₂ from trailer truck at 1100 kg/h and providing 5 bar pressure head can greatly reduce H₂ loss during Dewar loading.
- 5. Future study to assess the potential of eliminating H_2 loss from the Dewar with a cryo-cooler