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H, fuel cell electric vehicles are attractive zero-emission options
when daily energy use is high (vehicle cost perspective)
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Hydrogen Delivery Scenario Analysis suite of Models (HDSAM)

Argonne’s HDSAM and its derivatives evaluate the economic performance and market acceptance of
hydrogen delivery technologies and fueling infrastructure for FCEVs

» Publicly available with >5,000 users, including major gas » Supported by U.S. Department of Energy’s Hydrogen and
and energy companies, in more than 25 countries Fuel Cell Technologies Office (HFTO) since 2004
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https://hdsam.es.anl.gov/index.php?content=hdsam

Fueling model for fuel cell HDVs is different from LDVs

e Hydrogen fueling cost for HDVs is different from LDV Requires different design strategies
> fill amount > fueling pressure |:>Wlth respect to buffering compressor
> fill rate > precooling requirement, etc. and refrigeration systems

> fill strategy

Sizing of Refueling Components

Market [ Definition . P ﬁ Model Output
xxx [kg,,,/day] . |

Fuelmg Hourly Demand

”l“l“lln

Station Utilization Scenarios ]
A% ———— e Tt
”l / e '/4
" p/ l' |
J” ,’ "
_:;:2:,‘_’,—" ;

https://hdsam.es.anl.gov/index.php?content=hdrsam

uuuuuuuuuuuuuuu



https://hdsam.es.anl.gov/index.php?content=hdrsam

Gaseous hydrogen delivery to HRS requires complex logistics
of H, supply and station design
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Cost of hydrogen delivery and refueling for FCEVs is strongly driven by
onboard storage requirement and H, supply chain
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https://www.sciencedirect.com/science/article/pii/S0360319917320311

Typical refrigeration system used in HRS requires ~ 15-20kW
precooling capacity per each 1 kg/min dispensing
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Low temperature (-40°C) precooling
requires complex refrigeration cycle
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Liquid hydrogen (LH,) delivery simplifies station design
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Versatile refueling configurations with LH, delivery: simplifies HRS configuration

or .‘ > Cryo-compressed (CcH,) or low-P sLH, tanks (Options 2,3)
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Refrigeration unit can be avoided with proper thermal energy recovery



Liquid H, supplied stations can handle faster fills with lower cost compared
to gaseous H, supply
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700 bar tanks dramatically increase HRS cost, even with LH, supply

Class 8, long-haul trucks
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» MDVs and buses can benefit from 350 bar fueling due to lower daily VMT and available space for CHSS
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H, liquefaction is energy and cost intensive
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5 tpd $4.0 / kg-LH2 11kWh/kg 4.8 kgCO,, / kgH,
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Cost associated with boiloff losses can be significant (depends on LH, cost)
Example: sLH, HRS
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Conclusions

» Cost of hydrogen fueling depends strongly on H, delivery phase (i.e., gaseous vs.
liquid) and vehicle’s onboard storage design

« Cost and reliability of pump are key cost drivers

» CcH, and sLH, onboard storage can potentially reduce HRS cost contribution
compared to 350 and 700 bar CH,, onboard storage

» but energy density for CcH, > sLH, > 700 bar CH, > 350 bar CH,

 Boiloff losses associated with cryogenic delivery to onboard storage is most
impactful but most uncertain parameter

» Requires careful assessment for CcH, and sLH, onboard storage fueling

 Liquefaction energy and carbon intensity are important considerations
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Thank You!
aelgowainy@anl.qgov

Our models, tutorials and publications
are available at:

https://hdsam.es.anl.qov/
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