# DOE Rapid Operational Validation Initiative (ROVI) Guidance for Data Collection from Flow Systems

Last Revised December 7, 2023

# Contents

| 1. Introduction                                                 |
|-----------------------------------------------------------------|
| 2. System Metadata                                              |
| 2.1 System Metadata Excel Sheet                                 |
| 2.2 System Physical Layout                                      |
| 2.3 Power Meter Layout                                          |
| 2.4 Auxiliary Load Meter Layout                                 |
| 2.5 Protection Component Layout1                                |
| 2.6 Vendor Data Sheets                                          |
| 2.7 Other                                                       |
| 3. System Streaming Data13                                      |
| 3.1 Streaming Data Points During Standard Operation13           |
| 3.2 Fault-Triggered Data Collection16                           |
| 3.3 Streaming Data Communications Protocols16                   |
| 4. Event and Maintenance Data19                                 |
| 5. System Commands23                                            |
| 6. Reference Performance Tests (RPTs)24                         |
| 6.1 Schedule for Energy Capacity Test at rated power24          |
| 6.2 Schedule for Energy Capacity Test at half the rated power25 |
| 6.3 Schedule for Pulse Test                                     |
| 6.4 Schedule for PV Firming27                                   |
| 6.5 Schedule for Frequency Regulation28                         |
| 6.6 Schedule for Standby Energy Loss29                          |
| 6.7 Timeline for Reference Performance Tests                    |
| 7. Data Request Checklist                                       |

# 1. Introduction

The DOE Energy Storage Grand Challenge Rapid Operational Validation Initiative (ROVI) is intended to address critical gaps in data needs to evaluate energy storage, such as the lack of access to large and uniform sets of performance data that are necessary to accelerate the pace at which technology development can occur. ROVI's overall focus is to accelerate the time from lab to market for new energy storage technologies by employing data-driven tools to predict their operational lifetimes. The data will also be used to develop accelerated testing and validation methods for new technologies. To achieve these goals, ROVI will collect data from Long Duration Energy Storage (LDES) systems awarded funding from certain DOE programs. For example, DE-FOA-0002867, Bipartisan Infrastructure Law Long-Duration Energy Storage Demonstrations, notes that

"In order to fulfill statutory objectives for reporting and testing and validation requirements outlined in the BIL and Energy Act of 2020, OCED will leverage the Rapid Operational Validation Initiative to collect quality data from deployments funded by the BIL provisions."

This document outlines the ROVI expectations for data collection from these deployed systems, specifically redox flow battery (RFB) systems. Reporting requirements are outlined for four types of data/metadata: 1) system metadata; 2) streaming data; 3) event and maintenance data; 4) system commands/schedules. Additionally, this document details protocols for periodic reference performance tests to assess system state of health. Section 7 of this document has a summary table of the requested information.

We acknowledge that some of the requested component metadata may be considered sensitive information and will work with the project performer to identify what is reasonable to share for their technology. ROVI will build a robust data platform that will be designed and implemented leveraging state-of-the-art cyber-security solutions. Also, the team will establish a governance council with the DOE to provide a trusted mechanism for data sharing across the stakeholders including features such as encryption and anonymization of sensitive data.

RFBs may have different architectures that impact the type of information that can be collected from each one (Figure 1). In this document, we address data and metadata for three basic RFB designs: (1) a standard dual flow system with only dissolved actives; (2) a hybrid system employing a solid anode active; (3) a redox shuttle design with majority stationary solid actives in tanks accessed by pumped redox shuttles. The data request may be adjusted if the system differs significantly from these designs.

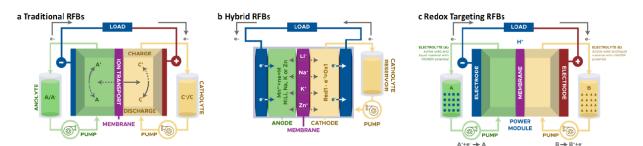



Figure 1. Three basic RFB designs.

# 2. System Metadata

System metadata is to be reported to the ROVI team within two months of the project start. This involves uploading the following documents to a ROVI-designated shared drive:

- 1) Completed system metadata Excel sheet
- 2) System physical layout
- 3) Plumbing & Instrumentation Diagram (P&ID) description of fluidic structure, thermal interface, and sensor locations
- 4) Power meter layout
- 5) Auxiliary load meter layout
- 6) Protection component layout
- 7) Vendor data sheets

Additional details on each of these reporting requirements are noted below.

#### 2.1 System Metadata Excel Sheet

Metadata is essential for organizing data streams from different deployment projects. Table 1 provides a copy of the information requests in the System Metadata Excel Sheet. In lieu of filling out this table, the project performer may also share vendor data sheets with the relevant information. The ROVI team will then complete this table on the project performer's behalf and follow up with requests for any missing metadata.

We acknowledge that some of the requested component metadata may be considered sensitive information and will work with the project performer to identify what is reasonable to share for their technology. Basic materials metadata is essential for identifying possible degradation mechanisms in the overall system.

## Table 1. Flow system metadata requests.

| Metadata                                            | Unit              | Value | Additional Requests for Awardee                                                           |
|-----------------------------------------------------|-------------------|-------|-------------------------------------------------------------------------------------------|
| System Specifications                               |                   |       |                                                                                           |
| Rated power                                         | kVA               |       | Provide energy at which Rated<br>Power is measured.                                       |
| Rated energy                                        | kWh               |       | Provide power at which Rated<br>Energy is measured.                                       |
| Rated charge power                                  | kVA               |       | If different from rated power                                                             |
| Maximum or peak discharge power                     | kVA               |       | Provide duration at maximum discharge power                                               |
| Maximum or peak charge power                        | kVA               |       | Provide duration at maximum charge power                                                  |
| Minimum operating temperature                       | С                 |       |                                                                                           |
| Maximum operating temperature                       | С                 |       |                                                                                           |
| Operating temperature window (lower to upper bound) | С                 |       | Temperature range for which the<br>system specifications (power,<br>energy, etc.) are met |
| Maximum state of charge (SOC) (operating limit)     | percent           |       |                                                                                           |
| Minimum SOC (operating limit)                       | percent           |       |                                                                                           |
| Power Conversion System (PCS) Specifications        | percent           |       |                                                                                           |
| Power conversion system rated power                 | kVA               |       |                                                                                           |
| # of AC/DC bidirectional inverters                  |                   |       |                                                                                           |
| AC/DC bidirectional inverter rated power            | kVA               |       | For each bi-directional inverter                                                          |
| AC/DC bidirectional inverter rated voltage (in/out) | V_ac / V_dc       |       | For each bi-directional inverter                                                          |
| AC/DC bidirectional inverter rated current          | A_ac / A_dc       |       | For each bi-directional inverter                                                          |
| DC/DC bidirectional converter rated power           | kW                |       | For each converter                                                                        |
| DC/DC bidirectional converter rated voltage         | V_high /<br>V_low |       | For each converter                                                                        |
| DC/DC bidirectional converter rated current         | A_high /<br>A_low |       | For each converter                                                                        |
| # of DC/DC converters per AC/DC inverter            |                   |       |                                                                                           |
| Bank Specifications                                 |                   | 1     | 1                                                                                         |
| Rated power                                         | kW                |       |                                                                                           |
| Rated energy                                        | kWh               |       |                                                                                           |
| Rated charge power                                  | kW                |       |                                                                                           |
| Maximum or peak discharge power                     | kW                |       |                                                                                           |
| Maximum or peak charge power                        | kW                |       |                                                                                           |
| Total # of strings per bank                         |                   |       | One bank connected to each AC/DC bidirectional inverter                                   |
| How are Strings connected? "x" Parallel "y" Series  |                   |       | Most probably in parallel directly<br>to each other or to dc-dc<br>converter.             |

| Metadata                                          | Unit      | Value | Additional Requests for Awardee                                                            |
|---------------------------------------------------|-----------|-------|--------------------------------------------------------------------------------------------|
| String Specifications                             |           |       |                                                                                            |
|                                                   |           |       | How are stacks connected within each string, directly to each other                        |
| Total # stacks per string with xPyS configuration | х, у      |       | or via a dc-dc converter?                                                                  |
| Total # of stacks per set of electrolyte tanks    |           |       |                                                                                            |
| Stack Specifications                              |           |       | 1                                                                                          |
| Total # cells in stack                            |           |       |                                                                                            |
| Rated charge power                                | kW        |       |                                                                                            |
| Rated discharge power                             | kW        |       |                                                                                            |
| Max voltage                                       | V         |       |                                                                                            |
| Min voltage                                       | V         |       |                                                                                            |
| Max current charge                                | A         |       |                                                                                            |
| Max current discharge                             | А         |       |                                                                                            |
| Cell Specifications                               |           |       | 1                                                                                          |
| Flow pattern                                      |           |       | e.g., flow through, interdigitated,<br>etc. (provide associated<br>dimensions if possible) |
| Negative electrode material                       |           |       |                                                                                            |
| Negative electrode size (I x w x thickness)       | cm        |       |                                                                                            |
| Negative electrode pre-treatments                 |           |       |                                                                                            |
| Negative electrode compression ratio              |           |       |                                                                                            |
| Negative electrode conductivity                   | S/cm      |       |                                                                                            |
| Negative electrode area density                   | g/cm2     |       |                                                                                            |
| Negative electrode volumetric density             | g/cm3     |       |                                                                                            |
| Positive electrode material                       |           |       |                                                                                            |
| Positive electrode size (I x w x thickness)       |           |       |                                                                                            |
| Positive electrode pre-treatments                 |           |       |                                                                                            |
| Positive electrode compression ratio              |           |       |                                                                                            |
| Positive electrode conductivity                   | S/cm      |       |                                                                                            |
| Positive electrode area density                   | g/cm2     |       |                                                                                            |
| Positive electrode volumetric density             | g/cm3     |       |                                                                                            |
| Membrane material                                 |           |       |                                                                                            |
| Membrane size (I x w x thickness)                 | cm        |       |                                                                                            |
| Membrane pre-treatments                           |           |       |                                                                                            |
| Membrane water uptake                             | percent   |       |                                                                                            |
| Membrane swelling ratio                           | percent   |       |                                                                                            |
| Membrane area resistance                          | Ohm cm2   |       |                                                                                            |
| Membrane proton conductivity                      | mS/cm     |       |                                                                                            |
| Membrane permeability                             | cm2       |       |                                                                                            |
| Membrane porosity                                 | percent   |       |                                                                                            |
| Membrane ion selectivity                          | S min/cm3 |       |                                                                                            |

## Table 1. Flow system metadata requests (continued).

## Table 1. Flow system metadata requests (continued).

| Metadata                                                                    | Unit     | Value | Additional Requests for Awardee                                                          |
|-----------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------|
| Electrolyte Specifications                                                  |          |       |                                                                                          |
| Negative electrolyte active species                                         |          |       |                                                                                          |
| Negative electrolyte active species initial concentration                   | М        |       |                                                                                          |
| Negative electrolyte supporting species                                     |          |       |                                                                                          |
| Negative electrolyte supporting species initial concentration               | м        |       |                                                                                          |
| Negative electrolyte initial volume in tank                                 | L        |       |                                                                                          |
| Negative electrolyte viscosity                                              | Pa s     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Negative electrolyte density<br>Negative electrolyte specific heat capacity | g/cc     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Negative electrolyte specific near capacity                                 | J/(kg-C) |       |                                                                                          |
| Negative electrolyte conductivity                                           | S/cm     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Negative electrolyte precipitation temperature                              | с        |       | Specify if precipitation occurs at<br>less than or greater than this<br>value.           |
| Negative electrolyte pH                                                     |          |       |                                                                                          |
| Positive electrolyte active species                                         |          |       |                                                                                          |
| Positive electrolyte active species initial concentration                   | М        |       |                                                                                          |
| Positive electrolyte supporting species                                     |          |       |                                                                                          |
| Positive electrolyte supporting species initial<br>concentration            | М        |       |                                                                                          |
| Positive electrolyte initial volume in tank                                 | L        |       |                                                                                          |
| Positive electrolyte viscosity                                              | Pa s     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Positive electrolyte density                                                | g/cc     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Positive electrolyte specific heat capacity                                 | J/(kg-C) |       |                                                                                          |
| Positive electrolyte conductivity                                           | S/cm     |       | Varies with SOC and<br>temperature. Provide values at<br>multiple SOCs and temperatures. |
| Positive electrolyte precipitation temperature                              | с        |       | Specify if precipitation occurs at<br>less than or greater than this<br>value.           |
| Positive electrolyte pH                                                     |          |       |                                                                                          |

| Table 1. Flow s | ystem metadata | requests | (continued). |
|-----------------|----------------|----------|--------------|
|-----------------|----------------|----------|--------------|

| Metadata                                                         | Unit | Value | Additional Requests for Awardee   |
|------------------------------------------------------------------|------|-------|-----------------------------------|
| Other Specifications                                             |      |       |                                   |
| Positive tank internal volume                                    | L    |       |                                   |
| Negative tank internal volume                                    | L    |       |                                   |
| List of wetted materials external to stack and their composition |      |       | e.g., tubing material composition |
| Component Manufacturers + Product IDs                            |      |       | ·                                 |
| Electrodes                                                       |      |       |                                   |
| Membrane                                                         |      |       |                                   |
| Electrolyte                                                      |      |       |                                   |
| Stack                                                            |      |       |                                   |
| Battery management system                                        |      |       |                                   |
| Thermal management system                                        |      |       |                                   |
| Power conversion system or inverter                              |      |       |                                   |
| Transformer                                                      |      |       |                                   |
| HVAC                                                             |      |       |                                   |
| Pumps                                                            |      |       |                                   |
| Tanks                                                            |      |       |                                   |

The project performer should also note any planned operating constraints for the system, such as bounds on SOC, temperature, number of cycles per year, etc.

## 2.2 System Physical Layout

Diagrams of the system will assist in the development of models that allow the identification of locationspecific issues in containers (e.g., inadequate cooling that is impacting the performance of stacks in one corner of the container). The diagrams of the system provided to the ROVI team should include the information noted in Table 2. These diagrams will preferably be shared as Computer Aided Design (CAD), Building Information Modeling (BIM), or other 3-d model files. These diagrams comprise of: 1) Site layout of the full system - likely 2D and less detailed, 2) 3-d layout of the repeating module. Table 2. Elements to include in system diagrams.

| System Diagram Elements                     | Notes                                                        |
|---------------------------------------------|--------------------------------------------------------------|
| Dimensions                                  |                                                              |
| Location of battery stacks in the container |                                                              |
| Location of pumps                           |                                                              |
| Location of tanks                           |                                                              |
| Location of power electronics in the        |                                                              |
| container                                   |                                                              |
| Location of all thermal sensors             |                                                              |
| Location of HVACs                           |                                                              |
| Location of any additional sensors          | E.g., gas detection                                          |
| Layout of streaming data label vs.          |                                                              |
| container number and location of            | Components include stacks, pumps, etc. If there are elements |
| component in container or enclosure or      | labeled Stack 1 and 2 in the data stream, we should know     |
| facility                                    | where they are in the container.                             |

## 2.3 Power Meter Layout

The ROVI team is requesting documents that map the measurements from power meters in the streaming data to points on a single line diagram. This information will provide essential context for power measurements.

The following descriptions provide three examples of potential power meter layouts, mapped against points in power flow diagrams in Figure 2. Each of these scenarios presents a different configuration, illustrating how power is measured at various points in the energy storage system.

Example 1: In this layout, a single DC battery power meter measures the DC power flow from the DC battery to the bi-directional inverter ( $P_{bat}$ ). This power is subsequently measured at the PCS power meter as it exits the inverter ( $P_{PCS}$ ). The power is then split off and measured at an auxiliary power meter for the auxiliary loads ( $P_{aux}$ ). Another portion is directed to the transformer, measured at a separate power meter ( $P_{trans}$ ). Exiting the transformer, the power flow is measured at the grid power meter ( $P_{grid}$ ) before finally being delivered to the grid.

Example 2: In this layout, a DC power meter measures the DC power flow out of the DC battery ( $P_{bat1}$ ). This power splits off into two streams. One portion is measured at the auxiliary power meter ( $P_{aux}$ )<sup>1</sup>, and the other portion is measured as it enters the bi-directional inverter ( $P_{bat2}$ ). The power leaving the inverter is measured by the PCS power meter before it goes into the transformer ( $P_{PCS}$ ). The power exiting the transformer and feeding into the grid is measured at the grid power meter ( $P_{grid}$ ).

Example 3: In this layout, a DC power meter measures the DC power flow from the battery to the bidirectional inverter (P<sub>bat</sub>). The PCS power meter then measures the power flowing from the inverter to the

<sup>&</sup>lt;sup>1</sup> The line powering the auxiliary load from the DC Battery typically goes through a uni-directional inverter, which is not shown for the sake of compactness.

transformer ( $P_{PCS}$ ). The grid power meter captures the power flow from the transformer to the grid ( $P_{grid}$ ). In this configuration, the auxiliary load is powered via a separate line as shown by the solid line. For events such as Black Start or Outage Mitigation, when the ESS is not connected to the grid, auxiliary loads are powered by the battery through the bi-directional inverter (similar to Case 1). Note that the dotted line may originate from the DC Battery (similar to Case 2).

The project performer should provide a power meter layout similar to the examples in Figure 2. For all cases, the various levels at which power flow is measured are:

- P<sub>grid</sub> (upstream<sup>2</sup> of transformer)
- P<sub>trans</sub> (downstream of transformer)
- P<sub>pcs</sub> (upstream of bi-directional inverter)
- P<sub>aux</sub> measure auxiliary load
- P<sub>bat</sub> (upstream of DC Battery)
  - For Example Case 2, P<sub>bat1</sub> is measured just upstream of DC battery, Pbat2 is measured upstream of the point at which power flows to auxiliary load

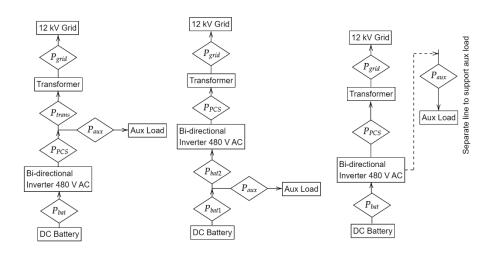



Figure 2. Example cases (1 to 3, left to right) of power meter layouts.

## 2.4 Auxiliary Load Meter Layout

The auxiliary load meter layout will provide essential context for power measurements and should be noted in a single line diagram. Table 3 provides example auxiliary loads that may be considered in the electrical line diagram. Some additional examples are found in the following references.<sup>3</sup>

<sup>&</sup>lt;sup>2</sup> Upstream is towards grid, downstream is away from grid

<sup>&</sup>lt;sup>3</sup> Examples of auxiliary load meter layouts: 1. <u>https://energystorage.pnnl.gov/pdf/PNNL-28480.pdf Figure A.9</u>; 2. <u>https://energystorage.pnnl.gov/pdf/PNNL-28379.pdf</u> Figure A.1; 3. <u>https://energystorage.pnnl.gov/pdf/PNNL-</u>

Table 3. Auxiliary loads to consider in the electrical line diagram.

| Auxiliary Load Component                                  | Notes                                                                                        |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|
| НVАС                                                      |                                                                                              |
| Pumps                                                     |                                                                                              |
| Lighting inside container/cabinet                         |                                                                                              |
| Fire suppression system                                   |                                                                                              |
| Power to the battery management system (BMS)              |                                                                                              |
| PCS controls and cooling                                  |                                                                                              |
|                                                           |                                                                                              |
| Protection equipment                                      |                                                                                              |
| Power the site manager, energy management system<br>(EMS) | For example, computers, controls, AC,<br>lighting for the cabin/room in which EMS<br>located |
| Data storage and transfer                                 | For example, power industrial computers to share data                                        |

## 2.5 Protection Component Layout

The electrical protection component layout will provide essential context for events and faults in the battery energy storage system (BESS) and should be noted in an electrical line diagram. Table 4 provides example protection components that may be considered in the electrical line diagram. Some additional examples are found in the following references.<sup>4</sup>

28478.pdf Fig. 3, Fig. A.3, Fig. A.4; 4. <u>https://www.pterra.com/our-projects/auxiliary-metering-for-besspv-installations/; https://www.sandia.gov/ess-ssl/publications/SAND2014-2883.pdf</u> Figure 3

<sup>4</sup> Examples of protection components in electrical line diagrams: 1. <u>https://library.e.abb.com/public/98f8a60a51614e81baff97c9b2a4af83/Battery%20Energy%20Storage%2</u> <u>OComponents%20for%20the%20OEM%20Presentation.pdf;</u> 2. <u>https://www.sandia.gov/ess-</u> <u>ssl/publications/SAND2014-2883.pdf</u> Figure 2; 3. <u>https://energystorage.pnnl.gov/pdf/PNNL-28478.pdf</u> Fig. 3, Fig. A.3, Fig. A.4.

#### Table 4. Protection component layout.

| Level                                    | Component                                                                               | Comments                                                                                                                                                                                                                              |
|------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stack                                    | Fuse                                                                                    | If stacks connected in series, only<br>one fuse needed at string level. If<br>connected in parallel, each stack<br>needs a fuse.                                                                                                      |
| DC String Level                          | Fuse, contactor, circuit breaker,<br>relay, switch (may not have all of<br>these items) | Strings may be connected in<br>series, in parallel, or in<br>series/parallel. If strings<br>connected in series, only one of<br>each item needed at string level. If<br>connected in parallel, each string<br>would need these items. |
| DC BESS (on the DC                       | Fuse, circuit breaker, contactor,                                                       |                                                                                                                                                                                                                                       |
| side of the bi-<br>directional inverter) | relay, switch, surge protector (may not have all of these items)                        |                                                                                                                                                                                                                                       |
| AC side of the bi-                       | Fuse, circuit breaker, contactor,                                                       |                                                                                                                                                                                                                                       |
| directional inverter                     | relay, switch, surge protector (may not have all of these items)                        |                                                                                                                                                                                                                                       |

The project performer should also specify any other kinds of protection or safety components that are built into the system (e.g., spill, gas, etc.).

## 2.6 Vendor Data Sheets

The project performer is to provide vendor data sheets for all components for which they are available, especially the electrolyte (safety data sheet), membrane, stacks, strings, pumps, battery management system, converter, inverter, thermal management system, capacity rebalancing component, and overall BESS.

The inverter data sheet would preferably include the following information:

- Temperature rating (power vs. temperature)
- Altitude rating (power vs. altitude)
- Nominal capability curve ( P (MW) vs. Q (MVar) )
- Any other standard inverter specs provided to the customer

The system data sheet would preferably include the following information:

- Discharge energy at various SOC (at various discharge powers)
- Any other standard system specs provided to the customer

#### 2.7 Other

The ROVI team may require other system metadata over the course of the project. The ROVI team and the project performer will discuss these new requests with the DOE. The project performer will provide the metadata in the specified format if the request is deemed reasonable.

## 3. System Streaming Data

The following section details the streaming data points that the ROVI team is requesting and the communications protocols according to which the project performer may share the data with the ROVI team.

## 3.1 Streaming Data Points During Standard Operation

Tables 5 provides a copy of the data point specifications in the Streaming Data Excel sheet. These specifications apply to data collection during normal operating conditions. For all points, discharging should be denoted as positive and charging as negative. The IEEE standard should be used for the VAR/PF sign convention.

The project performer should confirm with the ROVI team and all component manufacturers that they will be able to supply each of the data points at the requested rate and resolution. Additionally, the project performer should notify the ROVI team if they plan to use any additional sensors in the system (e.g., gas detection, leakage, mechanical vibration for pumps, etc.), especially at the cell or stack level. The ROVI team may also request the streaming data from these sensors.

| Data Point                                    | Units    | Sample Rate<br>Minimum<br>(sample/s) | Values                  | Additional Requests for Awardee                                   |
|-----------------------------------------------|----------|--------------------------------------|-------------------------|-------------------------------------------------------------------|
| System Level                                  | <b>I</b> | <u> </u>                             | ł                       | •                                                                 |
| Time                                          |          | 1                                    | value                   | ISO 8601 format                                                   |
| Power at Point of Common Coupling             | kW       | 1                                    | value                   | see meter layout diagram                                          |
| Reactive Power at Point of Common<br>Coupling | kVAR     | 1                                    | value                   | see meter layout diagram                                          |
| Power Factor at Point of Common Coupling      |          | 1                                    | value                   | see meter layout diagram                                          |
| AC RMS Voltage (A/B/C)                        | VRMS     | 1                                    | value                   | distinct output for A/B/C                                         |
| AC RMS Current (A/B/C)                        | IRMS     | 1                                    | value                   | distinct output for A/B/C                                         |
| Power at Transformer                          | kW       | 1                                    | value                   | see meter layout diagram                                          |
| Reactive Power at Transformer                 | kVAR     | 1                                    | value                   | see meter layout diagram                                          |
| Power Factor at Transformer                   |          | 1                                    | value                   | see meter layout diagram                                          |
| AC RMS Voltage (A/B/C) at Transformer         | VRMS     | 1                                    | value                   | distinct output for A/B/C                                         |
| AC RMS Current (A/B/C) at Transformer         | IRMS     | 1                                    | value                   | distinct output for A/B/C                                         |
| Power Requested (command)                     | kW       | 1                                    | value                   | At what meter does BESS attempt to provide the requested power?   |
| Reactive Power Requested (command)            | kVAR     | 1                                    | value                   |                                                                   |
| System State                                  | Binary   | 1                                    | on/off                  |                                                                   |
| SOC                                           |          | 1                                    | value                   | 0.1% precision                                                    |
| State of Health (SOH)                         |          | 1 per day                            | value                   | 1% precision (Specify what this is this based on)                 |
| Total AC Discharge Energy                     | kWh      | 1 per 10 min                         | value                   | Recorded at meter or calculation? If at meter, get at each meter. |
| Total AC Charge Energy                        | kWh      | 1 per 10 min                         | value                   | Recorded at meter or calculation? If at meter, get at each meter. |
| Contactor Status                              | Binary   | 1                                    | 1 = closed, 0<br>= open | For every contactor                                               |
| Breaker Status                                | Binary   | 1                                    | 1 = closed, 0<br>= open | For every breaker                                                 |
| System Frequency                              | ,<br>Hz  | 1                                    | value                   |                                                                   |

#### Table 5. Flow battery system streaming data.

Table 5. Flow battery system streaming data (continued).

|                                                             |        | Sample Rate<br>Minimum |                      | Additional Requests for                                                              |
|-------------------------------------------------------------|--------|------------------------|----------------------|--------------------------------------------------------------------------------------|
| Data Point                                                  | Units  | (sample/s)             | Values               | Awardee                                                                              |
| Power Conversion System                                     |        |                        |                      |                                                                                      |
| Power at PCS                                                | kW     | 1                      | value                | see meter layout diagram                                                             |
| Reactive Power at PCS                                       | kVAR   | 1                      | value                | see meter layout diagram                                                             |
| Power Factor at PCS                                         |        | 1                      | value                | see meter layout diagram                                                             |
| AC RMS Voltage (A/B/C) at PCS                               | VRMS   | 1                      | value                | distinct output for A/B/C                                                            |
| AC RMS Current (A/B/C) at PCS                               | IRMS   | 1                      | value                | distinct output for A/B/C                                                            |
| THD                                                         | dBm    | 1                      | value                | Usually measured at converter level                                                  |
| Contactor Status                                            | Binary | 1                      | 1 = closed, 0 = open | For every contactor                                                                  |
| Breaker Status                                              | Binary | 1                      | 1 = closed, 0 = open | For every breaker                                                                    |
| Total DC Discharge Energy                                   | kWh    | 1 per 10 min           | value                | Recorded at meter or calculation?                                                    |
| Total DC Charge Energy                                      | kWh    | 1 per 10 min           | value                | Recorded at meter or calculation?                                                    |
| DC Power                                                    | kW     | 1                      | value                |                                                                                      |
| DC Voltage                                                  | V      | 1                      | value                |                                                                                      |
| DC Current                                                  | I      | 1                      | value                |                                                                                      |
| Device Temperature                                          | С      | 1                      | value                | 0.1C precision                                                                       |
| Tank and Pumps                                              |        |                        |                      |                                                                                      |
| Negative Electrolyte Pump Power                             | kW     | 1                      | value                |                                                                                      |
| Negative Electrolyte Pump Flow Rate                         | m^3/s  | 1                      | value                |                                                                                      |
| Negative Electrolyte Tank Headspace<br>Pressure             | psi    | 1 per 10 s             | value                | If monitored.                                                                        |
| Negative Electrolyte Tank Level                             | m      | 1 per 10 s             | value                | If monitored.                                                                        |
| Negative Electrolyte Stack Inlet or Pump<br>Outlet Pressure | psi    | 1                      | value                | Per hydraulic parallel connection                                                    |
| Negative Electrolyte Tank Temperature                       | с      | 1                      | value                | 0.1C precision; At all locations where measured                                      |
| Negative Electrolyte Return Manifold<br>Temperature         |        | 1                      | Value                |                                                                                      |
| Negative Electrolyte Tank SOC                               |        |                        |                      |                                                                                      |
| Positive Electrolyte Pump Power                             | kW     | 1                      | value                |                                                                                      |
| Positive Electrolyte Pump Flow Rate                         | m^3/s  | 1                      | value                |                                                                                      |
| Positive Electrolyte Tank Headspace<br>Pressure             | psi    | 1 per 10 s             | value                | If monitored.                                                                        |
| Positive Electrolyte Tank Level                             | m      | 1 per 10 s             | value                | If monitored.                                                                        |
| Positive Electrolyte Stack Inlet or Pump<br>Outlet Pressure | psi    | 1                      | value                | Per hydraulic parallel connection                                                    |
| Positive Electrolyte Return Manifold                        | C      | 1                      | volue                | 0.1C precision; At all locations                                                     |
| Temperature Positive Electrolyte Tank SOC                   | C      | 1                      | value                | where measured<br>0.1% precision; Based on<br>positive/negative electrolyte<br>tanks |

| Data Point                      | Units | Sample Rate Minimum<br>(sample/s)     | Values | Additional Requests for Awardee                                |
|---------------------------------|-------|---------------------------------------|--------|----------------------------------------------------------------|
| Bank Level                      |       |                                       |        |                                                                |
| DC Power                        | kW    | 1                                     | value  |                                                                |
| DC Voltage                      | V     | 1                                     | value  |                                                                |
| DC Current                      | А     | 1                                     | value  |                                                                |
| SOC                             |       | 1                                     | value  |                                                                |
| SOH                             |       | 1 per day                             | value  | 1% precision                                                   |
| String Level                    |       |                                       |        |                                                                |
| DC Power                        | kW    | 1                                     | value  |                                                                |
| DC Voltage                      | V     | 1                                     | value  |                                                                |
| DC Current                      | А     | 1                                     | value  | Add data points if charge/discharge current limits are dynamic |
| SOC                             |       | 1                                     | value  | If multiple tanks in a string                                  |
| SOH                             |       | 1 per day                             | value  | 1% precision                                                   |
| Stack Level                     | T     | · · · · · · · · · · · · · · · · · · · |        |                                                                |
| DC Power                        | kW    | 1                                     | value  |                                                                |
| DC Voltage                      | V     | 1                                     | value  |                                                                |
| DC Current                      | А     | 1                                     | value  |                                                                |
| Cell Level                      |       | · · · · · · · · · · · · · · · · · · · |        |                                                                |
| DC Voltage                      | V     | 1                                     | value  | if measured                                                    |
| Other Auxiliary Systems         |       |                                       |        |                                                                |
| Auxiliary System Power          | kW    | 1                                     | value  | For every auxiliary meter                                      |
| Auxiliary System Reactive Power | kVAR  | 1                                     | value  | For every auxiliary meter                                      |
| HVAC/Thermal Control Power      | kW    | 1                                     | value  |                                                                |
| External Conditions             |       |                                       |        |                                                                |
| Outside Temperature             | С     | 1 per min                             | value  | 0.1C precision                                                 |
| Outside Dew Point Or Humidity % |       | 1 per min                             | value  |                                                                |
| Precipitation                   | mm    | 1 per min                             | value  |                                                                |

## Table 5. Flow battery system streaming data (continued).

## 3.2 Fault-Triggered Data Collection

Grid anomalies will inevitably occur at some point during energy storage testing and operation. While the expectation is that the energy storage technology should be able to perform corrective actions (disconnection, deactivation, ride-through, etc.), having data to understand the event and the implication on operations is critical. Digital fault recording technology has been present in many technologies and is generally used for recording of system events and monitoring system protection performance.<sup>5</sup> These fault recording systems are also integrated into larger energy storage systems (Trevizan 2022) to establish explanations for system trips and sudden changes in performance.<sup>6</sup> These systems collect data at much higher resolution continually but only provide this data upon a poll. The ROVI team requests that fault data is collected at a minimum of 1 ms data resolution. Data recorded includes AC side voltage and current. The project performer should notify the ROVI team if they also have a mechanism to collect DC fault data.

## 3.3 Streaming Data Communications Protocols

The following section outlines two options for the project performer to provide streaming data to the ROVI team based on existing common methods for sharing data from a BESS:

- 1. ROVI connects to existing vendor communication adapter(s)
- 2. ROVI connects to existing vendor cloud services

The project performer should select one of these methods for sharing data with the ROVI team and address any additional questions listed for that method. The project performer should immediately notify the ROVI team if neither of these data sharing protocols work for them.

#### Method 1: ROVI connects to existing vendor communication adapter

- In this method (Figure 3), the project performer will directly stream the data in real time or collect data locally in a historian and stream in a batch mode (with a maximum interval of 24 hours) through a 'vendor-owned' communication adapter
- The Energy Management System (which has access to the requested streaming data points) will be collecting data into a historian independent of the communication module connected to the utility
- The ROVI team will provide the endpoints and Rest API methods
- 'Vendor-owned' communication adapter will adhere to the Rest API documentation that will be provided before the commissioning of the BESS system.
- A responsibility matrix will be established between the ROVI team and the project performer (in terms of ownership and protocols for communication) for guaranteed service to ensure minimal loss of data
- The project performer provides the communication adapter to communicate to the Rest API

<sup>&</sup>lt;sup>5</sup> J. Perez, "A guide to digital fault recording event analysis," 2010 63rd Annual Conference for Protective Relay Engineers, College Station, TX, USA, 2010, pp. 1-17.

<sup>&</sup>lt;sup>6</sup> R. D. Trevizan, J. Obert, V. De Angelis, T. A. Nguyen, V. S. Rao and B. R. Chalamala, "Cyberphysical Security of Grid Battery Energy Storage Systems," in IEEE Access, vol. 10, pp. 59675-59722, 2022.

• The process for token exchange to be used by the system performer as trust certificate when pushing the data will be defined with sufficient rotation periods (up to 5 minutes)

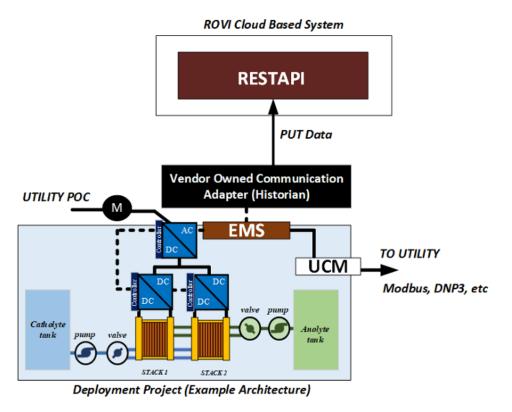



Figure 3. ROVI connects to existing vendor communication adapter.

#### Method 2: ROVI connects to existing vendor cloud services

- In this method (Figure 4), the vendor will directly stream the data from their 'vendor-serviced' cloud system to the ROVI cloud system
- Similar to method 1, the data will be streamed across the cloud services in either continuous or batch mode
- The Vendor Cloud System will provide an adapter to communicate to the ROVI Cloud system using Rest API
- The ROVI team will provide the Endpoints and Rest API methods
- Rest API documentation for vendors to follow will be provided before the commissioning of the BESS system.
- A responsibility matrix will be established between the ROVI team and the project performer (in terms of ownership and protocols for communication) for guaranteed service to ensure minimal loss of data
- The process for token exchange to be used by the system performer as trust certificate when pushing the data will be defined with sufficient rotation periods (up to 5 minutes)

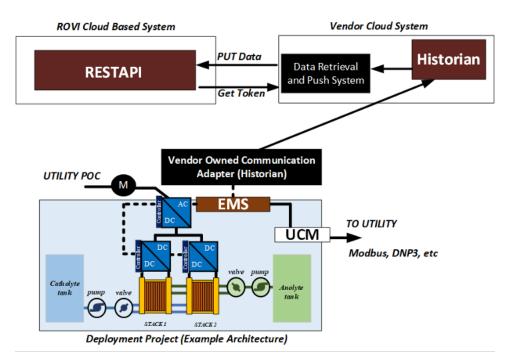



Figure 4. ROVI connects to existing vendor cloud services.

# 4. Event and Maintenance Data

Streaming data alone does not provide adequate context for the events (planned and unplanned) that impact system performance. The following section details the system event and maintenance information that the ROVI team is requesting and the methods according to which the project performer may share the data with the ROVI team. An event is defined as anything that causes the system or a particular subsystem/component to be taken offline, replaced, or updated.

Table 6 (reproduced from the Event and Maintenance Log Excel file) details the minimum information that the ROVI team expects to receive whenever an event occurs and a system maintenance action is carried out. The ROVI team should be notified with the event information, component information, and event description within two business days of an event occurring. The ROVI team should be notified of the resolution within two business days of a maintenance action being taken.

The project performer will share this information with the ROVI team by filling out the Operations & Maintenance Written Log Excel file within a ROVI-designated shared drive. Reports associated with any maintenance procedures (e.g., electrolyte chemical analysis) should also be shared with the ROVI team.

Alternatively, this information may be shared via an existing maintenance tracking software that the project performer intends to use. This will be discussed during the development of the project work plan.

The ROVI team may require other event and maintenance descriptions over the course of the project. The ROVI team and the project performer will discuss these new requests with the DOE. The project performer will provide the event and maintenance description in the specified format if the request is deemed reasonable.

#### Table 6. Events and maintenance activity log.

|        | Event Information       |                                     |                              | Component Information   |                                                                                             | Event Description                     |                         | Resolution                                                |          |                |                                 |                     |           |                                       |
|--------|-------------------------|-------------------------------------|------------------------------|-------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-----------------------------------------------------------|----------|----------------|---------------------------------|---------------------|-----------|---------------------------------------|
| Event# | Planned vs<br>Unplanned | % System Rated Power<br>Unavailable | Event Category (see options) | Component (see options) | Additional Component<br>Details?<br>(e.g., associated streaming<br>label in system diagram) | Event Start Time<br>(ISO 8601 format) | Short Event Description | Root Cause                                                | Solution |                |                                 | Related to Previous | less than | firmware                              |
| 1      | Unplanned               |                                     | Hardware                     | Tank                    | Tank 2                                                                                      | 2/2/2020 0:00                         | Loss of containment     |                                                           |          |                | 40 days, 11<br>hours, 1 minutes | none                | 3 days    |                                       |
| 2      | Unplanned               |                                     | Firmware / Software          | Database issue          |                                                                                             | 7/17/2020 0:00                        | Database software crash | firmware issue /<br>update firmware with<br>vendors help. | 2        | 7/20/2020 0:01 | 3 days, 0 hours, 1<br>minutes   | 1                   |           |                                       |
| 3      | Planned                 |                                     | Firmware / Software          | Update                  |                                                                                             |                                       |                         |                                                           |          |                |                                 |                     |           | BMS<br>upgraded<br>to Version<br>11.2 |

The options for the Event Category column are: Hardware, Firmware/Software, Network, and External. The component options for each of the event categories are noted in Tables 7-10 below. These options are taken from the Electric Power Research Institute (EPRI) Operations and Maintenance Tracker.<sup>7</sup>

<sup>&</sup>lt;sup>7</sup> https://www.epri.com/research/products/00000003002019222

 Table 7. Hardware event category components.

| Hardware                              | Notes                                                                                                                              |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Stack                                 |                                                                                                                                    |
| Inverter                              | Bi or mono-directional AC-DC converter                                                                                             |
| Converter                             | Bi or mono-directional DC-DC converter                                                                                             |
| Tank                                  |                                                                                                                                    |
| Pump                                  |                                                                                                                                    |
| Plumbing                              |                                                                                                                                    |
| Sensors                               |                                                                                                                                    |
| Thermal management                    | Anything related to HVAC                                                                                                           |
| Electrical conductor                  | Only conductors used for moving energy in/out of storage system (excludes comms or auxiliary conductors)                           |
| Energy management system              | High level system controller typically used to orchestrate the operation of many storage devices and inverters                     |
| Transformer                           | Generic transformer. Details about the transformer can be provided in the blue table                                               |
| Meter                                 | Any device in the system that is measuring and externally reporting data                                                           |
| Battery management system             | Controller that manages the operation of a single battery / storage system                                                         |
| Data acquisition (DAQ)                | A device which collects and communicates data from many different metering devices, but does not necessarily measure data directly |
| Database                              | A repository for historical system data                                                                                            |
| Network equipment                     |                                                                                                                                    |
| Uninterruptible power supply          |                                                                                                                                    |
| Fire detection or suppression systems |                                                                                                                                    |

## Table 8. Firmware/software event category components.

| Firmware/Software | Notes                            |
|-------------------|----------------------------------|
| Update            |                                  |
| Error             | Bug in firmware requiring update |
| Database issue    |                                  |

#### Table 9. Network event category components.

| Network                         | Notes |
|---------------------------------|-------|
| Data transfer error             |       |
| Device failure                  |       |
| Internet service provider error |       |
| Local area network error        |       |
| VPN error                       |       |
| Firewall error                  |       |
| Physical disconnection          |       |
| Cloud service outages           |       |

## Table 10. External event category components.

| External                | Notes                                                           |  |  |
|-------------------------|-----------------------------------------------------------------|--|--|
| Loss of grid power      |                                                                 |  |  |
| Loss of auxiliary power |                                                                 |  |  |
| Weather/natural causes  | Earthquake, thunderstorm, pandemic, rodents, corrosion, erosion |  |  |
| Operator error          |                                                                 |  |  |
| External tampering      | Vandalism                                                       |  |  |
| Site access issues      |                                                                 |  |  |

# 5. System Commands

Understanding system performance requires comparison of the command issued to the BESS with the action ultimately taken. To this end, the ROVI team requests a time-stamped on/off, charge/discharge schedule for the system that details the power/reactive power command and any conditional logic. This would ideally be provided as part of the streaming data (see Table 5 - entries for power and reactive power requested). The project performer should notify the ROVI team if this information cannot be shared as streaming data.

# 6. Reference Performance Tests (RPTs)

The execution of standard test protocols is essential for assessing the state of health of a system over time. The project performer will execute the following system reference performance tests (energy capacity, pulse, PV firming, frequency regulation, and standby energy loss) at specified times throughout the year. The resulting data will be shared with the ROVI team via the previously described approaches for streaming data and system commands.

The frequency of certain RPTs may be reduced if equivalent data is collected during normal operation over the course of the year. Additionally, there is flexibility in the timing of RPTs so that the BESS is not exercised to the detriment of the grid. Ideally, RPTs will be done at a standard temperature over the course of the year.

## 6.1 Schedule for Energy Capacity Test at rated power

This test is done twice a year: at the start of operations and every six months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the energy capacity test at rated power and that information is reproduced below. Figure 5 shows the full protocol over time.

- 1. Charge the BESS to max SOC as dictated by BMS (which may be < 100% SOC) using recommended charge power, allowing power to taper as dictated by BMS
- 2. Rest for 20-10 min (for 10-24 h duration, 20 min for 10-h, 10 min for 24-h, interpolate in between)
  - a. All auxiliary loads related to thermal management, BMS, EMS, lighting are on
  - b. Pumps being on is optional depends on the system design. The same algorithm used in the field for rest duration of 10-20 min will be used.
- 3. Discharge at rated power to lower SOC limit as dictated by BMS (which may be > 0% SOC)
  - a. The lower SOC limit is simply the value less than which rated power cannot be supported
- 4. Rest for 20-10 min (for 10-24 h duration, 20 min for 10-h, 10 min for 24-h, interpolate in between)
- 5. Charge the BESS to max SOC as dictated by BMS) using recommended charge power, allowing power to taper as dictated by BMS
- 6. Rest for 20-10 min (for 10-24 h duration, 20 min for 10-h, 10 min for 24-h)
- 7. Steps 3-6 form one cycle. Repeat steps 3-6 three times.

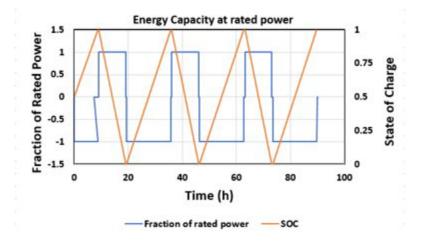



Figure 5. Protocol for energy capacity test at rated power.

## 6.2 Schedule for Energy Capacity Test at half the rated power

This test is done once a year: at the start of testing and every 12 months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the energy capacity test at half the rated power and that information is reproduced below. Figure 6 shows the full protocol over time.

- 1. Charge the BESS to max SOC as dictated by BMS (which may be < 100% SOC) using recommended charge power, allowing power to taper as dictated by BMS
- 2. Rest for 20-10 min (for 10-24 h duration, 20 min for 10-h, 10 min for 24-h, interpolate in between)
  - a. All auxiliary loads related to thermal management, BMS, EMS, lighting are on
    - b. Pumps being on is optional depends on the system design. The same algorithm used in the field for rest duration of 10-20 min will be used.
- 3. Discharge at half the rated power to lower SOC limit as dictated by BMS (which may be > 0% SOC)
- 4. Rest for 20-10 min (for 10-24 h duration, 20 min for 10-h, 10 min for 24-h)
- 5. Charge the BESS to max SOC as dictated by BMS using recommended charge power, allowing power to taper as dictated by BMS

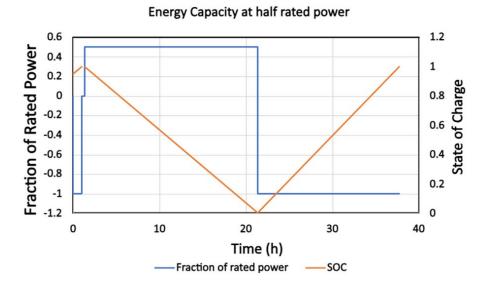



Figure 6. Protocol for energy capacity test at half the rated power.

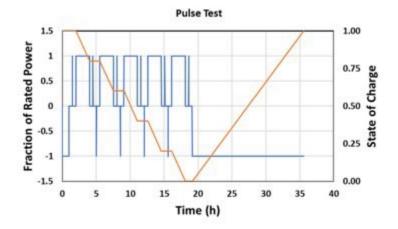
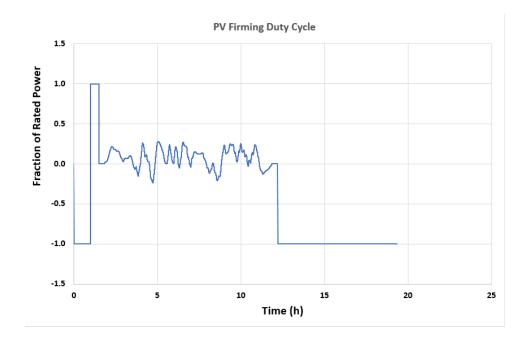
## 6.3 Schedule for Pulse Test

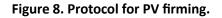
This test is done once a year: at the start of testing and every 12 months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the pulse test and that information is reproduced below. Figure 7 shows the full protocol over time.

Start at 100% SOC. Measure resistance at Max SOC, 80%, 60%, 40%, 20%, Min SOC, with only discharge pulse at 100% SOC, and charge pulse at 0% SOC, and discharge, charge pulse at other SOCs. Rest 30 min between pulses, and after taking BESS to desired SOC.

- Assume discharge pulse applied at rated power. Keep delta SOC for pulse < 0.025% SOC.
- Rated Power\*(Pulse duration delta T in hours for 10-h BESS) = Rated power\*10h\*0.00025
- Pulse duration in hours = 0.0025 hours or 9 sec.
- For same duration of 9 sec, delta SOC for 24-h BESS = 0.010%
- 1. Take BESS to max SOC per procedure described earlier. Rest for 30 min.
  - a. Apply discharge pulse at rated power for 9 sec. Rest 30 min.
- 2. Take BESS to 80% SOC by discharging at rated power. Rest for 30 min.
  - a. Apply discharge pulse at rated power for 9 sec. Rest 30 min
  - b. Apply charge pulse at rated power for 9 sec. Rest 30 min
- 3. Take BESS to 60% SOC by discharging at rated power. Rest for 30 min.
  - a. Apply discharge pulse at rated power for 9 sec. Rest 30 min
  - b. Apply charge pulse at rated power for 9 sec. Rest 30 min
- 4. Take BESS to 40% SOC by discharging at rated power. Rest for 30 min.
  - a. Apply discharge pulse at rated power for 9 sec. Rest 30 min

- b. Apply charge pulse at rated power for 9 sec. Rest 30 min
- 5. Take BESS to 20% SOC by discharging at rated power. Rest for 30 min.
  - a. Apply discharge pulse at rated power for 9 sec. Rest 30 min
  - b. Apply charge pulse at rated power for 9 sec. Rest 30 min
- 6. Take BESS to min SOC by discharging at rated power. Rest for 30 min.
  - a. Apply charge pulse at rated power for 9 sec. Rest 30 min
- 7. Bring BESS to max SOC. Rest 30 min.



Figure 7. Protocol for pulse test.

#### 6.4 Schedule for PV Firming

This test is done once a year: at the start of testing and every 12 months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the PV firming protocol and that information is reproduced below. Figure 8 shows the power commands sent to the BESS as a function of time.

- 1. Bring BESS to desired start SOC (95% SOCmax)
- 2. Rest 20 minutes
- 3. Apply 10-h PV firming signal
- 4. Rest 10-min
- 5. Bring BESS back to initial SOC





#### 6.5 Schedule for Frequency Regulation

This test is done once a year: at the start of testing and every 12 months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the frequency regulation protocol and that information is reproduced below. Figure 9 shows the full protocol over time.

- Bring BESS to the required starting SOC. Note: since 1 power unit is the rated power, which is the 10-h rate, applying a 24-h energy neutral duty cycle is not expected to have a delta SOC of > 5%. To avoid voltage excursion on charge pulses, the starting SOC is set at 60%.
  - a. Charge or discharge the BESS to 60% SOC. Compare the charge or discharge energy to the required energy to bring to start SOC based on the measured energy capacity from the RPT.
- 2. Rest for 10 min for 10-h duration, 5 min for 24-h duration
- 3. Apply the frequency regulation signal
- 4. Bring battery back to initial 60% SOC

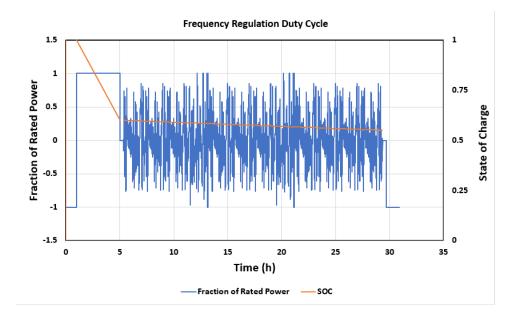



Figure 9. Protocol for frequency regulation.

## 6.6 Schedule for Standby Energy Loss

This test is done once a year: at the start of testing and every 12 months thereafter. Document *Flow Reference RPTs.xslx* provides a row-by-row schedule for the Standby Energy Loss Rate protocol and that information is reproduced below. Figure 10 shows the power commands sent to the BESS as a function of time.

- 1. Charge BESS to max SOC
- 2. Rest 20 min
- 3. Discharge at rated power to lower SOC limit (Wh\_initial)
- 4. Rest 20 min
- 5. Charge BESS to max SOC
- 6. Rest 3 days
- 7. Discharge at rated power to lower SOC limit (Wh\_3days)
- 8. Rest 20 min
- 9. Charge BESS to max SOC (Wh\_charge)

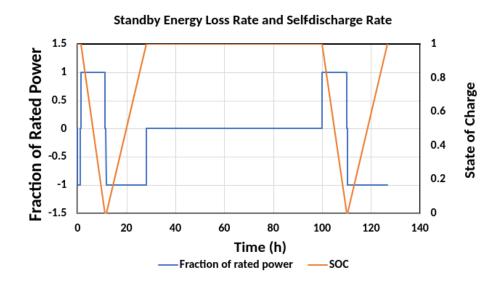



Figure 10. Protocol for standby energy loss rate and self-discharge rate.

#### 6.7 Timeline for Reference Performance Tests

Figure 11 specifies when particular reference performance tests should be performed over the course of a twelve-month period for a 10-h flow battery.

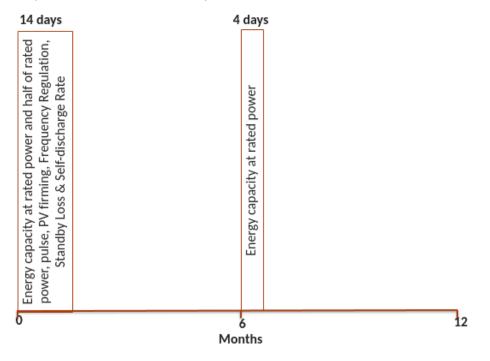



Figure 11. Monthly timeline for ROVI RPT requests for 10-h flow battery.

Figure 12 specifies when particular reference performance tests should be performed over the course of a twelve-month period for a 24-h flow battery.

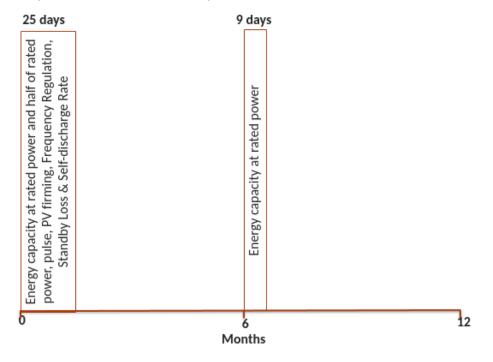



Figure 12. Monthly timeline for ROVI RPT requests for 24-h flow battery.

# 7. Data Request Checklist

Table 11 summarizes the full list of information that the ROVI team is requesting from the project performer, as well as the method and timeline for that information transfer.

| Description                    | Sharing Format                                                                                                   | Timeline for Sharing                                                                                                                                                                                                                                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System Metadata                | ROVI-provided System Metadata Excel<br>sheet completed and uploaded to<br>designated shared drive                |                                                                                                                                                                                                                                                      |
|                                |                                                                                                                  | Within two months of project start                                                                                                                                                                                                                   |
| System Physical Layout         |                                                                                                                  |                                                                                                                                                                                                                                                      |
| Power Meter Layout             | Upload to designated shared drive                                                                                |                                                                                                                                                                                                                                                      |
| Aux Load Meter Layout          |                                                                                                                  |                                                                                                                                                                                                                                                      |
| Protection Component<br>Layout |                                                                                                                  |                                                                                                                                                                                                                                                      |
| Vendor Data Sheets             |                                                                                                                  |                                                                                                                                                                                                                                                      |
|                                | ROVI team and project performer to                                                                               | <ol> <li>Final data points list and<br/>communications protocol agreed<br/>upon during work plan development</li> <li>Pipeline for data collection<br/>completed prior to project<br/>commissioning</li> <li>Streaming data collection is</li> </ol> |
| Streaming Data Points          | agree upon communications protocols                                                                              | continuous during project execution                                                                                                                                                                                                                  |
| -                              | ROVI-provided Event and Maintenance<br>Data sheet completed by project<br>performer + project performer to share |                                                                                                                                                                                                                                                      |
| Event and Maintenance          | any reports associated with                                                                                      | days of an event or a resolution +                                                                                                                                                                                                                   |
| Data                           | events/maintenance                                                                                               | reports within a week of completion                                                                                                                                                                                                                  |

Table 11. Checklist of documents for project performer to share with ROVI team.