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A measurement strategy to address disparities
across household energy burdens
Eric Scheier 1,2 & Noah Kittner 2,3,4✉

Energy inequity is an issue of increasing urgency. Few policy-relevant datasets evaluate the

energy burden of typical American households. Here, we develop a framework using Net

Energy Analysis and household socioeconomic data to measure systematic energy inequity

among critical groups that need policy attention. We find substantial instances of energy

poverty in the United States – 16% of households experience energy poverty as presently

defined as spending more than 6% of household income on energy expenditures. More than

5.2 million households above the Federal Poverty Line face energy poverty, disproportionately

burdening Black, Hispanic, and Native American communities. For solar, wind, and energy

efficiency to address socioeconomic mobility, programs must reduce energy expenditures by

expanding eligibility requirements for support and access to improved conservation mea-

sures, efficiency upgrades, and distributed renewables. We recommend the United States

develop a more inclusive federal energy poverty categorization that increases assistance for

household energy costs.
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Household energy use for services such as cooking1 or space
heating and cooling2 is crucial for decent living
conditions3. Unaffordable energy is a persistent trend4

that is negatively related to social cohesion, climate change
responses, and disproportionate environmental impacts on low-
income populations and minority groups5. Furthermore, energy
inequity is not just a lack of money to meet basic energy needs—it
is a lack of access to the capabilities6 that enable a sustainable and
prosperous society built on just principles7. Energy inequity could
have significant implications for navigating sustainable develop-
ment and meeting societal goals around decarbonization and
energy use. In this study, we demonstrate the magnitude of
energy inequity in the United States (US) using a metric informed
by Net Energy Analysis (NEA). Without a set of inclusive indi-
cators and data tools to examine energy inequity, many house-
holds that are at risk of energy poverty and injustice may remain
unidentified. This analysis applies lessons from NEA to address
energy poverty in the US.

Many frameworks are currently being explored to understand
energy poverty and equity, while differentiating between related
concepts. In a thematic exploration of energy equity, Brown et al.
identify energy access, energy poverty, energy insecurity, and energy
burden as key concepts for understanding the issue8, but quantita-
tive measurement of these concepts has been limited. Pachauri &
Rao establish measures for the sustainable development context that
incorporate periods when energy is available, the quality of voltage
supplied, the reliability in terms of the number of disruptions, the
capacity in terms of power available, the consumption levels allowed
per day, and affordability of the standard consumption package as a
percentage of household income9. Energy metrics have been assessed
quantitatively across several countries. Though some aspects, such as
formal disconnections from energy service10, are translatable to the
US context, these methods require normalizing many variables
amongst different types of data and are overly broad for applications
in areas where electricity access is relatively high and reliable.

Of such areas, the United Kingdom (UK) has a richer history
of incorporating energy poverty formally into its government
programs: since 2000, the UK has used some form of an energy
burden metric to assess whether households are facing energy
poverty and determine the level of support that they require as a
result11. This metric has evolved from a simple ratio of household
income and energy expenditures to one that incorporates building
efficiency ratings and average incomes in the community. While
the European Union (EU) currently lacks a unified metric for
energy poverty, similar metrics have been developed in member
countries, such as a metric which compares incomes and
expenditures to local averages and absolute heating needs to
determine energy poverty levels in Italy12 or a multidimensional
index of building quality and ability to pay bills in Poland13.

Prior research of household prosperity in limited global jurisdic-
tions using these sorts of measures has found that gender, age,
housing age14, tenure type15, energy inefficiency16, education,
employment17, geography18, socioeconomic status19, race/ethnicity20,
and macroeconomic conditions21 are associated with high energy
burdens in various geographical areas. The US lags in part due to a
lack of metrics and tracking, and this paper develops a tool to show
how net energy is a valuable resource to evaluate energy burden and
inequality.

In the US, energy inequity is a significant challenge as families
struggle to meet monthly bills and live paycheck to paycheck11.
There is a growing disparity between wealthier and lower-income
households based on their abilities to meet basic energy needs8.
While per-unit residential energy prices have increased below the
rate of inflation in the US since the 1980s22, many households still
struggle to make utility bill payments and are especially vulner-
able to economic shocks21.

Ross and Drehobl performed distinct urban16 and rural14

analyses to describe energy inequity in the US. While limited by
geographic and demographic focus and a lack of peer-review,
these studies have established the proportion of income (G) spent
on energy expenditures (S), or energy burden (Eb), as the stan-
dard benchmark for energy poverty in the US today (Eq. 1). The
US Department of Energy (DOE) significantly improved upon
Ross and Drehobl’s underlying methodology by assembling its
Low-Income Energy Affordability Dataset (LEAD)23, which
estimates incomes and energy expenditures for most households
in the US at a census-tract scale.

Energy Burden ðEbÞ ¼
S
G

ð1Þ

NEA offers potential support to understanding energy equity
through the use of formally defined Energy Return Ratios (ERRs) like
Eb that articulate the relationships among energy flows within
complex systems24. Net Energy Return (NER), which describes the
newly released potential to do work as a result of some activity, is
recommended as a basis for future analysis25, especially in the study
of macro-energy systems like the US residential housing stock26.

Here, we examine the relationship between energy spending
and household energy income and observe spatial disparities
across a census-tract scale—particularly across race and ethnicity,
income, housing tenure, and educational attainment. A difference
of $500 in annual energy expenditures dramatically improves
many middle and high-income households’ ability to enjoy
benefits from energy services for low cost (2–5% of annual
income), but basic energy expenditures comprise approximately
14% of annual earnings for low-income households. The cate-
gorizations for federal assistance programs that are based on
poverty line indices fail to capture at least 5.3 million households
that would benefit from energy support and assistance. House-
holds in communities of color experience energy poverty at a rate
60% greater than those in white communities based on this study.
Additionally, state-level analysis demonstrates wider spatial dis-
parities across states such as Maine, where residential heating oil
and fuelwood remain common heat energy sources and states
such as Alabama and Mississippi which have among the lowest
net energy returns on average. This empirical analysis fills a gap
in the current discussion about energy equity by providing a
framework to evaluate disparities and include more households in
energy poverty metrics that are aligned with the assessment of
energy flows through biological, physical, and economic systems.

Results
Applying net energy return to energy equity. The main con-
tribution of the study is the application of NER as an indicator of
household energy poverty by utilizing a set of energy burden
metrics based on NER to represent the disparity across those who
face significant energy burdens in the US with those who do not.
NER displays critical thresholds where more households face
energy and income challenges.

The NER of a process is a relationship between the gross
amount of energy extracted and the amount of embodied energy
directed toward extraction27. For households extracting income
from the economy, these ratios can be composed of gross income
(G) and spending on energy (S).

Household NER (Nh) represents the net earnings a household
receives for every expenditure on secondary energy, defined
according to Eq. (2):

HouseholdNet Energy Return ðNhÞ ¼
G� S
S

ð2Þ

The NER is the standard metric of NEA because it reflects the role
of energy as an input to a value-generating process in ecosystems28.
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Eb is the metric of choice in the energy insecurity literature due to its
presumed interpretability as a percentage14,16,19,21

While most ERRs, including NER, are hyperbolic paraboloids,
NER has several useful mathematical properties: it can smoothly
handle systems with negative incomes and energy costs, accept
households with zero income, and emphasize extreme incomes
and energy costs in an interpretable fashion, as shown in Fig. 1.
While Eb appears inversely correlated to income, this is primarily
driven by a long tail of households with zero or very low incomes,
often with energy expenditures exceeding their incomes
(approximately n = 118,000 households in the dataset have
Eb > 100% or Eb < 0%). Due to the structure of the Eb equation
(Eq. 1), the Eb of these households approaches infinity and cannot
be captured on the standard 0-100% scale the metric is intended
to be interpreted within: around 37,000 homes have an infinite
energy burden. Since LEAD is estimated and provided for the
express purpose of exploring low-income communities, we are
hesitant to discard these households as outliers. Nh provides a
framing of the same dataset that allows for exploration of most
households on a similar scale without the long tail. Nh appears
positively related to income, and most communities appear
within a few orders of magnitude. Utilizing Nh avoids discarding
low-income communities as outliers in energy poverty analysis.
Furthermore, Nh offers a way to view the relationship between
energy expenditures and income such that the wide disparity
between those in broader poverty is immediately apparent. Many
households with moderate-to-high Ebs are actually higher-income
households with high energy expenditures, making their Nhs
quite high (e.g., >$100 of income per $1 of energy spending).
Almost 100% of the households in the dataset have net incomes
between −$1000 and $60,000, with Nhs (or Ebs) of between −10

(−10%) and 400 (400%). Only households with no energy costs
are excluded from the analysis, whereas households with no
energy costs or incomes must be excluded from an analysis
utilizing Eb.

For the discussion of household energy poverty, we are
primarily interested in how households of different characteristics
are distributed according to their Nhs, representing how many net
dollars are earned by a household for every dollar it spends on
energy. Since the Nh is unitless but is a ratio of return on
investment, we present it below interchangeably with no units or
in units of $/$ depending on context. Other proposed indicators
of energy poverty may be similarly examined in this manner.

Application to energy poverty. While a variety of thresholds
have been developed and explored, energy-poor households in
the US are commonly defined in terms of Eb as those with an
expenditure of greater than 6% of household income on energy
based on the logic that energy expenditures should not be greater
than 20% of housing expenses, which themselves should not
exceed 30% of household income8. Calibrating our Nh analysis to
this level will help gauge different thresholds of energy poverty
and benchmark the results of this paper to the energy poverty
literature while acknowledging the continuum of experiences
across household energy consumption. Translated into its relative
level for Nh, the energy poverty line Nh is defined according to Eq.
(3) as approximately 16.

E�
B ¼ S

G ¼ 6%

N�
h ¼ G�S

S such that S
G ¼ 6%

N�
h � 16 ) Household at Energy Poverty Line

ð3Þ

Fig. 1 Display of the relationship between Eb and Nh with net income (gross income - energy expenditures) for US households. While Eb appears
inversely correlated to net income, this is primarily driven by a long tail of households with zero or very low incomes, often with energy expenditures
exceeding their incomes. Due to the structure of the Eb equation (Eq. 1), the Eb of these households approaches infinity and cannot be captured on the
standard 0–100% scale the metric is intended to be interpreted within. Since LEAD is estimated and provided for the express purpose of exploring low-
income communities, we are hesitant to discard these households as outliers. Nh frames the same dataset on a scale without the long tail. Nh appears
positively related to income, and most communities appear within a few orders of magnitude. Utilizing Nh avoids discarding low-income communities as
outliers in energy poverty analysis. Furthermore, Nh offers a way to view the relationship between energy expenditures and income such that the wide
disparity between those in broader poverty is immediately apparent: many households with moderate-to-high Ebs are actually higher-income households
with high energy expenditures, making their Nhs quite high (e.g., >$100 of income per $1 of energy spending), which is only visible on an Nh scale.
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This means that a household that earns less than approxi-
mately $16 of income for every dollar it spends on secondary
energy will be considered to be in energy poverty by the
traditional Eb accounting method. An Nh of approximately 16 or
lower is equivalent to an Eb of 6% or higher. This threshold is
arbitrary and may not be suitable in situations where households
fall very close to this line or where the numbers of family
members or measures of certain building characteristics vary
widely. Simply, it is presented as a benchmark. We examine the
Nh at a community scale across the US in Table 1.

The US household net energy landscape. We use LEAD23 (n =
113.2 million households) to evaluate the Nh dynamics across the

US. The average US home in the dataset has an income of $41,922
and an annual energy expenditure of $1219 ($102/month), which
equates to an average Eb of 3% or an average Nh of 33.4. While the
dataset slightly overrepresents households below the median
income due to the limitations of the statistical methods used to
compile them, it represents estimates for approximately 94–95%
of the 119.5–120.0 million family-occupied households evaluated
by the American Community Survey. Table 1 shows a summary
of these data for households and their average statistics delineated
by their incomes relative to the median income of similar size
families in the same metropolitan area or non-metropolitan
county, known as Area Median Income (AMI). We can see that
high burdens are found mostly in the very-low-income group,
with an average Eb of 14% or Nh of 6.2. Income drives the escape
from energy poverty: middle and high-income groups do not
spend drastically different amounts on energy (21% and 63%
more, respectively) but earn 3 and 10 times that of the very low-
income group, respectively. An Eb of 14% means that $71 per
month is spent on energy, which is quite high on a monthly
income of $510. The additional $15 per month that the next rung
of moderate-income groups spends on energy represents a min-
uscule proportion of their income (1%).

Another contribution of this work is that by using Nh, we can
display these data spatially across the US to explore how different
communities are experiencing energy outcomes as in Fig. 2 and
investigate specific communities at multiple scales such as census
tract, county, state, and regional as in Fig. 3. Furthermore, we can
break down the data among meaningful subsets as in Fig. 4 and
examine state-by-state trends as in Fig. 5. This is useful because
the presence of energy inequity is harder to see in urban areas
compared to rural areas for which census tracts are a larger
physical area or when certain household characteristics such as
primary heating fuel are related to widely differing energy
outcomes in the same area. Additionally, it shows a spatial
variation of energy poverty that includes 5.3 million more
households that would not be captured by traditional poverty
metrics because their incomes are too low (Eb > 100%) or too high
(above the FPL). By processing disparate data sources into a

Table 1 Average annual household energy expenditures,
incomes, net incomes, Nhs, and Ebs portrayed for different
income groups based on their relationship to AMI. Note that
the statistics for Eb and Nh are calculated per cohort after
averaging the income and expenditure statistics to avoid the
effect of extreme values skewing the interpretability of
these metrics as described in the text. For example, the
actual weighted average Eb for households from 0-30% AMI
is 16,451%, and the average Nh for this cohort is 8.6 due to
subsets of the dataset with very low incomes or low energy
expenditures. Nh is not as susceptible to this skewing effect.

Metric name 0–30% AMI 30–80% AMI Above
80% AMI

Households in sample 15.9 million 29.7 million 67.6 million
Annual income (G) $6120 $20,671 $59,689
Annual energy
expenditures (S)

$853 $1034 $1386

Eb (S/G) 14% 5% 2%
Net income (G-S) $5267 $19,637 $58,303
Nh ([G-S]/S) 6.2 19 42.1

AMI Area Median Income, Nh Household Net Energy Return, Eb Household Energy Burden

Fig. 2 Map of the average net earned income per secondary energy expenditure for each census tract in the continental US. Shades of yellow and red,
respectively, indicate communities at or below the energy poverty line as defined by earning approximately 16 dollars or less in income per dollar of energy
expenditures. This corresponds to the traditional definition of energy poverty as spending 6% or more of income on energy. Low Nhs can be starkly
observed in the Black Belt across the Southeastern US, Hispanic communities near the US-Mexico border, Native American lands, and rural New England.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27673-y

4 NATURE COMMUNICATIONS |          (2022) 13:288 | https://doi.org/10.1038/s41467-021-27673-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


coherent structure and providing a convenient open-source tool
for others to do the same, these data can be used in urban
planning, public policy, and other relevant contexts.

Displayed geospatially in Fig. 2, the Black Belt in the American
Southeast is visibly perceptible as an area of high burden,
indicating that low-Nh follows racial lines. Likewise, border
populations and immigrant populated areas in the Southwest
have higher burdens, as do Native American lands. High burdens

can also be seen in rural Northeast states where heating burdens
are high. Nh allows a nuanced view of these widely ranging
income dynamics by portraying them on a scale that matches the
scope of the issues: areas of high energy burden (close to Nh = 0)
are visible in orange while highly affluent areas are also visually
perceptible as dark blue even though these groups’ average
metrics are multiple orders of magnitude apart.

Urban inequity results in lower Nh populations not showing up
in many dense or gentrified urban areas such as the San Francisco
Bay Area, New York City, and New Orleans, as shown in Fig. 3.
The pervasiveness of urban energy poverty in Detroit has been
studied extensively and shown to have distinct geographic
boundaries down to the street level19. While some of these
conclusions are supported by existing evidence and literature,
they should be confirmed with a rigorous analysis of this dataset
using the Nh metric for the reasons explained in Applying NER to
Energy Equity: extremely low-income households are not visible
on a 0–100% scale, and households with no income are often
discarded as outliers. Additional analyses should incorporate
additional demographic and household dimensions due to
potential disparities within census tracts since diverse neighbor-
hoods may not be represented accurately by aggregate census-
tract metrics.

From this high level, we can see in Fig. 4a that approximately
16% of households in the US experience energy poverty.
Displaying these communities defined by their relationship to
the US Federal Poverty Line (FPL), which indicates income
poverty status according to government policy, in Fig. 4b provides
a stark picture. While 94% of households below the FPL also face
energy poverty, more than 5.2 million of those households above
the FPL face this scarcity, underscoring the relative burden of

Fig. 4 The distribution of Nhs across different household characteristics. Subfigure (a) shows the overall distribution. Subfigure (b) shows the difference
among those groups of households above and below the Federal Poverty Line. Subfigure (c) shows the difference among groups of households identified by
their primary heating fuel. Subfigure (d) shows the difference based on whether they are renters or owners. Subfigure (e) shows the difference based on
the most prominent race in the census tract of each cohort. Subfigure (f) shows the difference based on the most prominent education history in the
census tract of each cohort.

Fig. 3 An inset focused on the city of New Orleans, Louisiana (Orleans
Parish). This view shows an example of the dynamics of energy poverty in
an urban area where the presence of energy inequity is harder to see
compared to rural areas for which census tracts are a larger physical area.
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energy expenditures as a poverty trap and the inadequacy of FPL
as an indicator of energy poverty in particular. When we break
the group of relatively prosperous households into subsets as
outlined in Table 1, we find that 32% of households living at
30–80% of their AMI are experiencing energy poverty. This
suggests that energy poverty may be a useful metric for
identifying households at risk of other forms of poverty. However,
we find that most households experiencing energy poverty are
also suffering from a broader lack of access to resources
characterized by income-based poverty. Given that the quality
of energy used by low-income households is expected to be of
similar inherent usefulness, this stark contrast in Nh on the
households’ energy investments is surprising.

Figure 4c shows that households with solar as a primary
heating fuel have a higher Nh (Nh = 111) than those which rely
on other fuel sources (Nh = 33), even for households far below
the income poverty line: the average Nh for energy-impoverished
households utilizing solar power is 19, compared to 7 for those
relying on any other fuel source. The slope of the Nh density lines
in Fig. 4c indicates that these lower-income households seem to
experience a different rate of return on Nh from the benefits of
increased energy adoption than higher-income households. Why
are certain households not receiving the same benefits of their
fuel source across the distribution of incomes? This could be due
to lower-income households’ low consumption, meaning that the
potential savings from implementing energy efficiency measures
are lower than for high-income households according to the
prebound effect identified by Sunikka-Blank and Galvin29 and
Cong et al.30. Despite technological progress and rapid declines in
technology costs and availability for cleaner, renewable electricity
generation options such as solar photovoltaics and energy storage,
many households cannot take advantage. Most households do not
have access to advancements such as low-cost rooftop solar or
energy efficiency upgrades that improve air quality, lower

greenhouse gas emissions, and save money31: only 18% of
households that have adopted rooftop solar have been below the
median household income in the US32.

Examining these dynamics by the status of homeownership in
Fig. 4d reveals further disparities. Though renters and home-
owners are similarly distributed below the energy poverty line
(28% of renters and 17% of homeowners are in energy poverty),
there appears to be an advantage of homeownership from a net
energy perspective for lower-income households (Nh = 37 for
homeowners versus Nh = 39 for renters). Only at a relatively high
Nh do renters seem to have an advantage: owners of multi-family
apartments earn 2.4 times as much as renters of single-family
homes when normalized by energy expenditures. Renters face
systemic disadvantages in the energy transition; they typically pay
the home’s energy costs while the landlord controls infrastructure
upgrades, commonly understood as the split incentive problem33.
Tenure matters for more than just equity itself: renters are less
likely to take actions to improve their Nhs due to a lack of
property rights and split incentives. Even when action is taken to
improve the energy efficiency of a rental building, tenants are less
likely to see any economic benefits from it.

Furthermore, Fig. 4e shows that Nh varies widely by racial
demography. Asian households have the highest Nh across the
entire population distribution (Nh = 65), and Indian households
have the lowest (Nh = 18), with Black households a close second
from the lowest (Nh = 26). These relative positions are the same
across the entire population distribution, with only White (Nh =
38) and Hispanic (Nh = 36) populations showing different
relative Nhs across the population. Households in communities of
color experience energy poverty at a rate 60% greater than those
in white communities. Education level also seems to be correlated
with disparate Nh outcomes according to Fig. 4f, with a wide gap
between those households in areas with mostly high-school (Nh =
25) or college-educated (Nh = 40) populations.

Fig. 5 A comparison of Nhs among each state in the US. The bars are sorted by median household Nh and represent the interquartile range (25%-75%
percentiles) of household Nhs colored by the percent of household energy expenditures in each state that goes to support fossil-fuel combustion, whether
directly through natural gas purchases or indirectly through the electricity grid in each state. Natural gas purchases are assumed to be entirely combusted
by the end-user, and electricity purchases are divided into their respective sources according to the US Environmental Protection Agency’s (EPA)
Emissions and Generation Resource Integrated Database (eGRID) for each state. Other expenditures are divided according to the primary heating fuels
other than electricity or natural gas used by American households according to the Census, which are approximately 75% fossil-fuel combustion. The
figure suggests that a reliance on fossil-fuel combustion does not lead to a more affordable energy system for end-users.
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Assessing the Nhs among different states in Fig. 5 presents a
counterintuitive picture of how states address energy poverty and
energy equity. Nh can equate communities that experience high
energy costs and low incomes with those with high incomes and
even higher energy costs. This explains why states such as
Connecticut (Nh = 26) and Vermont (Nh = 23), where 47% and
30% higher than average electricity prices may pose affordability
threats for communities affected by higher prices, are similarly
positioned on the list to states such as Mississippi (Nh = 22) and
Alabama (Nh = 24), which have significant low-income
populations and low per-unit energy prices (22% and 8% lower
than average, respectively). Not only are households in these
states falling behind in terms of income, but net incomes are
lower relative to energy expenditures than neighboring states and
other parts of the country. This may be appropriate: while the
equity issues in Southeastern states are well studied, states such as
Maine that continue to utilize residential heating energy sources
like oil and fuelwood may suffer not only from lack of efficiency
but also health impacts. States may need to pay attention to these
dynamics from an affordability perspective, and further targeted
energy assistance may be needed based on a diverse selection of
metrics.

Although they are the states with the highest Nh, California
(Nh = 59) and Colorado (Nh = 63) are not immune to these
problems and likely represent a greater spread and diversity of
energy affordability impacts. Likely, this diversity captures the
benefits accrued by early adopters and the challenges of having
high populations of those struggling with energy poverty and
high housing costs. In many of these places, residents have self-
sorted into geographic areas based on the overall costs of living.
Also, advances in clean energy legislation are a common thread
among the top-performing states on an Nh basis, signaling the
value of strong decarbonization targets and accompanying
policies to ensure electricity affordability for low-income
households.

Visualizing the proportion of end-use energy sourced from the
combustion of fossil fuels in Fig. 5 shows that such reliance does
not necessarily lead to a more affordable system for energy
consumers. Households in states with a high proportion of fossil
fuel are no less likely to have high Nhs than those in other states
that rely on clean energy, defying the conventional wisdom that
fossil-fuel consumption is a chosen tradeoff between environ-
mental health and affordability for citizens.

Discussion. A sensible prior hypothesis is that everyone
experiences the same efficiency from the energy system as
measured by return on energy investment. Differences in
absolute outcomes may be related to the quantity of energy
investment, but the marginal unit of energy consumed by one
household should lead to as much benefit for that household as
any other. However, here we see that Nhs are different among
different groups of households in the US. This difference is often
correlated to factors out of the households’ control and even
those related to persistent social inequalities, such as race and
education. These striking disparities suggest the existence of
deeply structural barriers to prosperity in the US. Energy is
central to equity and economic prosperity, but the energy sys-
tem appears to be regressive in that costs accrue dis-
proportionately to those of lower-income levels.

Furthermore, we demonstrate that owning a home and
consuming solar power are associated with increased income
multipliers for energy expenditures. This advantage leads to gains
that are not being realized by many communities. When
households adopt solar power, their Nh increases as a result of
decreasing their energy expenditures, which creates a disparity

between those with access to renewable energy and those reliant
on fossil-fuel-based energy sources. This helps explain why there
has been a disparity in how the benefits of the energy transition
are accruing among socioeconomic groups34. There is the
potential for electrification and the transition to clean fuels to
exacerbate this division if appropriate policies are not
implemented35.

Indeed, there are clear, mutually synergistic, positive reinforce-
ment mechanisms to alleviate health and environmental dispa-
rities in air pollution exposure by reducing household energy
burdens and improving economic mobility across low-income
households. Combustion of biofuels and hydrocarbons is a
significant source of air pollution and exacerbates other house-
hold costs like healthcare and maintenance, yet we find that
utilization of these sources is not associated with increased Nhs at
a state or household scale. Not only are households living in more
poverty and closer proximity to highly polluted areas at greater
risk of adverse health impacts; they must also consume more
energy to overcome the particulate emissions, which, themselves,
reduce the efficiency of clean sources such as solar panels36.

The inherent benefits of solar electricity must be accessible to
all populations in the US to promote sustainability, but
communities of color are not receiving a similar benefit to white
and wealthier households from their energy expenditures. Net
energy metrics exhibit this income multiplier effect and the
resulting divide. Designing solar policies to benefit those facing
low Nhs may substantially improve net energy income ratios and
raise households out of energy poverty in the US.

Pachauri et al. distinguish between affordability and cost of
supply, implying that more focus should be applied toward how
energy burdens vary among customers of different energy
suppliers than on how per-unit costs of energy vary9. For
instance, Roanoke Electric Membership Corporation is the
electric utility with more than 10,000 customers whose members
have the lowest average Nh (13), according to LEAD. At the same
time, the per-unit cost of electricity in this service territory is only
more expensive than 76% of utilities at $0.14/kWh. Is an
exceptionally high burden acceptable because the per-unit costs
are not exceptional?

This relevance especially holds for electricity because it is a
commodity delivered via a stationary, centralized grid system, and
households retain little control over their own energy choices. In
vertically integrated energy markets, the monopoly utility is the only
option available to all consumers. In organized energy markets, the
public utility is designated as the last resort provider for those unable
or unwilling to participate in the competitive procurement of energy.
Even in organized markets, local utilities retain monopolistic control
of the transmission and distribution systems.

Consumers are price takers with relatively inelastic demand.
Changes in the unit price of energy or slight differences in
consumption patterns matter more to those with low incomes than
those with higher incomes. Furthermore, the current lack of storage
infrastructure on the grid and behind each meter means that
households are bound to electricity providers at the time of use. The
“forward-looking” or “reactive” tendencies of these public electric
utilities have implications for the energy transition in their
jurisdictions and beyond37. A more in-depth examination of the
energy system’s underlying regulatory structures and robust assess-
ments of energy burden could provide a path forward and track how
the benefits of the energy transition are being accrued.

In some markets, specialized rates or programs are available for
Low and Moderate Income (LMI) consumers, who may have
higher energy burdens. We find it notable that more than half of
all funding to address high energy burdens in the US is from
utility ratepayer-funded bill and energy efficiency assistance14. At
a national scale, the Low Income Home Energy Assistance
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Program (LIHEAP) and the Weatherization Assistance Program
(WAP) in the US seek to address aspects of energy poverty
through bill payment assistance and energy efficiency measures,
but the efficacy of these programs has been mixed in addressing
distributional equity in energy burdens and receiving benefits
from energy efficiency programs11. In part, this may be because
these programs rely on income-based poverty lines such as the
FPL to determine eligibility for benefits.

The US benchmarks its FPL to the food requirements of the
average household38 and uses this threshold as is an eligibility
criterion for more than 40 federal programs across ten agencies
(in addition to state, charitable, and private enterprises that also
do so)39. Practitioners have posited that the standard policy of
“using the ‘economy food plan’ to determine who can afford to
hire an attorney” may be depriving citizens of their basic rights40.
In some cases, food assistance programs are more inclusive than
energy assistance programs: we show that more than 5.2 million
households above the FPL experience energy poverty.

Research using detailed qualitative sociological and public health
interview data links energy burden with housing and energy
policy41. Other articles have linked technology adoption barriers to
low-income communities of color42–44 and identified that house-
holds that are in the same peer social network often adopt
technologies such as solar45. While some studies already acknowl-
edge the benefits of improving energy efficiency and equity
outcomes through surveys and interviews46, this study adds to
the literature by building a comprehensive quantitative framework
and empirical result based on a large dataset. This toolkit adds more
quantitative backing to this body of qualitative work and can be
used in future analysis with technology adoption data to identify
strategic opportunities to improve energy efficiency and access to
clean technology in a more equitable manner.

Previous work provided theoretical frameworks for under-
standing energy poverty beyond a simple income-based
measure7, and limited examples of applications to empirical
data that rely on building-specific efficiency characteristics12 or
subjective self-assessments13. Applying Nh to a nationwide
dataset for the US builds on this work by providing a tangible
tool that includes 5.3 million households with energy expendi-
tures greater than their incomes or with incomes above the FPL
that are left out by other measures, and is a way to visualize the
disparities between groups that may allow for further investiga-
tion around different household characteristics. Nh highlights
inequality better than a simple linear metric while allowing the
assessment of a wide variety of households, such as those with
no income or for which efficiency data is not available. A
significant insight from NEA that should be incorporated into
future work is that embodied energy takes many forms across
the household budget (food, goods, services, transportation,
housing, etc.), and these can all be compared using the same
units of measure (e.g., joules) to scale the Nh framework across
multiple expenditure categories.

The Coronavirus Disease 2019 (COVID-19) pandemic and
associated recovery measures may be a critical opportunity to
provide relief payments related to energy expenditures and to
invest in more efficient residential47 and commercial energy
infrastructure that enables newer and cleaner systems48. We show
that US households are already spending excessive amounts on
energy, notwithstanding more families staying at home for longer
periods of time during pandemic lockdowns. The ongoing crisis
offers a chance to address inequity with a focus on residential
energy burdens49. The EU is in the process of defining how
communities can participate in the energy transition50 and how
burdens can be alleviated through this process using proactive
policy tools and business models such as One Stop Shops (OSS)

for energy efficiency and renewable energy upgrades51. Adopting
energy criteria for energy and other programs like these could
expand access for those underserved populations in need of
assistance independent of their needs in other consumption
categories.

Creating a federal energy poverty line would be a critical step in
identifying families that face large disparities in access to
affordable electricity and energy in the US and improve
programs’ abilities to address energy burdens. A toolkit based
on this analysis enables neighborhood level outreach where
burdens are highest and identifies opportunities where house-
holds could benefit from emerging technologies.

Methods
Data. To estimate the Net Energy Return (Nh) of American households, we pri-
marily utilize the Low Income Energy Affordability Data (LEAD)23 and Rooftop
Energy Potential of Low-Income Communities in America (REPLICA)52 datasets,
which the DOE assembled to help “stakeholders make data-driven decisions on
energy goal setting and program planning by providing them information on low-
income household populations and associated energy use characteristics”23. These
datasets encompass estimates of household energy expenditures (S), income (G),
and demographic characteristics for most households at the census-tract scale in all
states and most territories of the US.

LEAD: The LEAD portrays the average income, electricity expenditures, gas
expenditures, and other fuel expenditures for cohorts of households segmented by
location (census tract, county, state) and household characteristics (whether the
unit is rented or owned, the building’s year of first construction, the number of
units in the building, whether the units are attached, and the unit’s primary heating
fuel type). The dataset is assembled by applying an iterative proportional fitting
(IPF) algorithm to cross-tabulations of household responses from the 2016 5-year
American Community Survey (conducted by the US Census Bureau), which
provides the samples for each cohort as Public Use Microdata Samples. IPF is a
widely used spatial microsimulation method to allocate individuals (i.e.,
households) to zones (i.e., census tracts and utility service territories) while
calibrating each zone’s characteristics to known quantities. Using IPF, the
microdata samples are scaled to match aggregate annual values from utility sales
and revenues reported in Energy Information Administration forms 861 and 176.

REPLICA: The Renewable Energy Potential of Low-Income Communities in
America (REPLICA) dataset includes the racial and education level composition of
each census tract used in the ultimate analysis52. In addition to providing a simpler
designation of cohorts for each census tract, REPLICA also includes estimates of
the technical potential of rooftop solar and additional techno-economic variables
(e.g., demographics and electricity rates) that will be useful for future research.

eGRID: We use the EPA’s eGRID53 to calculate the proportion of household
energy expenditures that support fossil-fuel combustion through the purchase of
electricity. 100% of natural gas purchases are considered to support fossil-fuel
combustion. Electricity purchases are divided into their respective sources
according to the state proportions indicated by the “STCLPR” (coal), “STOLPR”
(oil), “STGSPR” (gas), and “STOFPR” (other fossil) fields in the 2018 eGRID
dataset. Other expenditures are divided according to the primary heating fuels
other than electricity or natural gas used by American households according to the
Census, which are approximately 76% fossil-fuel combustion.

Treatment. The LEAD data represents the unit’s ownership status (OWNER vs.
RENTER) and income bracket as a fraction of AMI (0–30%, 30–60%, 60–80%,
80–100%, or 100%+) or FPL (0–100%, 100–150%, etc.). These categorical variables
are saved as factors. Then we create min_units from BLD INDEX, a variable which
represents a non-uniformly distributed set of buckets for the range of the number
of units in the building and whether single-unit households are attached or
detached from neighboring households (1 ATTACHED, 1 DETACHED, 2 UNIT,
3-4 UNIT, 5-9 UNIT, 10-19 UNIT, 20-49 UNIT, 50+ UNIT, MOBILE_TRAILER,
BOAT_RV_VAN, OTHER UNIT). We extract the minimum number of units from
the range and whether the building is detached. Those households labeled OTHER
UNIT, MOBILE_TRAILER, or BOAT_RV_VAN are given values of Not Applic-
able (NA) for this characteristic. Finally, we calculate S and G of which each metric
is composed:

S = annual expenditures on electricity (ELEP CAL) + natural gas (GASP CAL)
+ and other fuels (FULP)

G = the cohort’s average annual income (HINCP)
The metric formulas outlined in Applying NER to Energy Equity are then used

to calculate each cohort’s energy poverty metrics. Since we are examining homes’
relationships with the energy system, we ignore any homes that do not use energy
as denoted by rows where S == 0. The estimation procedure used by the DOE
results in an estimated number of occupied housing units for each cohort (UNITS,
renamed as households). It displays the number of American Community Survey
responses that contribute to the estimate of energy expenditures (COUNT,
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renamed as acs_responses). We then remove any categories with fewer than 1 unit
represented since this is not physically possible.

We then combine this dataset with the REPLICA dataset. To do so, we must
aggregate the income levels of the LEAD dataset to the simpler schema used by
REPLICA for summarizing households’ income relative to the area’s median
income (AMI):

● 0–30% AMI: Very-Low-Income
● 30–80% AMI: Low-to-Moderate-Income
● ≥ 80% AMI: Middle-to-High-Income

Also, we create an indicator of whether a particular cohort is in income poverty
as defined by the relevant standards for its characteristics. For the AMI version of
LEAD, this is defined as being “Very-Low-Income” or ≤ 30% of AMI. For the FPL
version of LEAD, we translate directly from the designation of the income bracket
as follows:

● 0-100% FPL: In Poverty
● ≥ 100% FPL: Not In Poverty

The REPLICA dataset also simplifies any households with only one unit per
building into “Single Family” homes and any households with more than one unit
per building as “Multi-family.” Non-stationary and non-traditional homes are not
included in the REPLICA analysis. We match these simplifications in the LEAD
dataset by aggregating by the number of units:

● 1 Unit: Single-Family
● > 1 Unit: Multi-Family
● Other Unit: NA (excluded from analysis)

After simplifying these characteristics in the LEAD AMI data, we merge the
AMI dataset with the REPLICA dataset along the census tract, simplified income
bracket, simplified number of units, and housing tenure variables to achieve the
primary dataset used in the analysis. Merging with the REPLICA dataset provides
additional demographic and geospatial data not available in the LEAD dataset
only52. Characteristics such as the utility type and locale description are sourced
from REPLICA and unavailable in LEAD, and we source the cost of electricity,
racial composition, and education levels of census tracts from REPLICA for this
analysis. Similarly, the REPLICA dataset contains only electrical expenditure
estimates without natural gas or other fuel costs to households and could not be
used to perform this analysis alone.

The FPL version of LEAD is not merged with all of the REPLICA data because of
incompatibility between the FPL and AMI bracket definitions. However, demographic
data associated with each census tract as a whole can be merged with the FPL dataset.
Both AMI and FPL versions of LEAD are combined with demographic data from the
REPLICA dataset and geospatial shapefiles from the Census to produce the final
datasets used in the analysis. Since the FPL version of LEAD is not aggregated to the
simpler categories found in REPLICA, more granular variables such as Primary
Heating Fuel remain available for assessment across the entire population.

Considerations. While a helpful place to start, Eb has certain drawbacks. Sig-
nificantly, a simple proportion does not account for the fact that money spent on
energy cannot be spent elsewhere and is therefore not useful income to the
household for the purposes of measuring prosperity. Including gross income in Eb
has the effect of depressing the average Eb, by definition.

Furthermore, because energy expenditures are a small proportion of even the most
impoverished households’ total income, Eb is almost always a very small percentage
(<10%). This leads to issues with interpretability in public discourse and policy settings
and may even affect program outcomes that are based on Eb if small numbers are
rounded to even the nearest hundredth of a percent. As the UK experienced when using
Eb, if the household is above an energy poverty line defined by such a metric for public
policy purposes, the family may not receive critical support11.

Because such a small proportion of expenditures can impact different income
groups so differently, ratios of this type can be useful when delineating across income
quantiles or other categories - particularly for vulnerable populations where energy
poverty poses a significant difficulty or affordability threshold not captured by measures
of absolute poverty. However, Eb is often portrayed at a population scale (e.g., the
average energy burden of the population is X%), which can be skewed by outliers within
the population. Household metrics and surveys are important for further understanding
of and policy development around issues of energy poverty.

Finally, presenting the relationship between household income and energy
expenditures as a proportion with income in the denominator suggests that
improvements can only be made by decreasing energy expenditures or increasing
incomes. However, in reality, there is a positive relationship between energy
expenditures and incomes because energy is an input to wealth-creating processes.
Households consume energy to unlock the utility that energy services provide to
them as participants in society, whether to cook food or connect to the internet.
This relationship is generally accepted when understanding individual household
behavior54 and macroeconomic effects of energy consumption55. Therefore, a
metric describing the efficiency of household wealth creation may be more intuitive
with income in the numerator.

The iterative proportional fitting method has limitations as an estimation
procedure that constrain the strength of conclusions that can be drawn from the

simulated LEAD and REPLICA datasets. The relationship between constraint
variables such as total energy spending by utility service territory and number of
households per census tract will tend toward the average of the initializing dataset
and depress variations among otherwise similar regions. This may explain the large
quantities of households that are estimated to have very low incomes. Validating
these estimated data would require randomized surveys of households along the
dimensions of interest.

The meaning of the “primary heating fuel” category comes from the answer to
the question “Which fuel is used most for heating this house, apartment, or mobile
home?” on the American Community Survey. This question’s power to predict
energy expenditures or fuel sources is unknown, and further analysis is required to
understand the implications of this survey question for drawing broader
conclusions about household energy use. However, the US Census Bureau has been
asking this question since 1940. It states that these data are collected to help
communities “provide assistance with utilities,” “estimate future energy demand,”
and “measure environmental impacts”56.

Though the REPLICA dataset relies on a different vintage of the LEAD dataset
(assembled in 201752) than this analysis (assembled in 201923), inferring differences
among annual estimates is not meaningful due to the standard error of the data23. A
rigorous treatment of these metrics over time is an area for future research.

The results inferred from eGRID are only as good as the eGRID methodology
itself. We choose to outline the proportion of combusted fuels rather than
emissions data due to the limitations outlined by proponents of marginal emissions
attribution in electric power system models57,58 and limitations in estimating
regional electricity transfers59.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Zenodo database under
https://doi.org/10.5281/zenodo.567622560.

All data necessary for the composition of the source datasets used in this analysis are
freely available from US government sources as open data. All functions to automatically
retrieve and assemble these data and compiled versions of these data are made available
to the user as part of the software available at https://doi.org/10.5281/zenodo.567622560.

Code availability
The code and data to fully reproduce this paper are available on GitHub at https://
github.com/ericscheier/net_energy_equity under the GNU Affero General Public License
v3.0. The most recent release of the software can be found at https://doi.org/10.5281/
zenodo.567622560.
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