Cold Climate HPWH using Environment-Friendly Refrigerants

Phase I: Low GWP refrigerants evaluation for Rheem residential HPWHs

Phase II: Develop Cold Climate HPWH for Multi-family buildings

Oak Ridge National Laboratory Bo Shen* 865-574-5745, <u>shenb@ornl.gov</u> WBS#03.09.01.33.06, Technology Collaboration Program

Project Summary

Objective and outcome

- Refrigerant transitions for residential and commercial HPWHs
- Upgraded DOE/ORNL Heat Pump Design Model (HPDM) as the product design and optimization tool to assist refrigerant transition in HPWHs
- Laboratory investigation of low GWP refrigerant options to replace R-134a in Rheem residential HPWH families including 220V and 110V products
- Development and laboratory verification on a commercial cold climate heat pump water heater

Team and Partners

Rheem Manufacturing Company (CRADA partner)

<u>Stats</u>

Phase I (completed): 10/01/2020 to 09/30/2022 – residential; Budget: DOE-\$80K, Rheem - \$20K

Key Milestones

- 1. Investigate low GWP refrigerants in a 40-gallon, 220V Rheem residential HPWH, 09/30/2021
- 2. Investigate low GWP refrigerants in a 50-gallon, 110V, Rheem residential HPWH, 09/30/2022

Phase II (future work)-Cold Climate HPWH: 05/2023 to 06/2024 (separate project) –for final approval; Budget: DOE-\$200K, Rheem - \$200K

- 1. Phase II kicks off, 04/2023
- Laboratory performance verification on light commercial HPWH, Heat water up >= 140°F down to 5°F having a COP > 2.0 and annual COP > 3.6, 05/2024

Problems

Phase I:

- The HPWH industry is phasing out high GWP refrigerants of R-134a (GWP of 1430) and R-410A (GWP of 1890)
- Uniform Energy Factors (UEF) and First Hour Ratings (FHR)of new low GWP refrigerants/blends in 220V/120V HPWHs are unknown yet.

Phase II:

- It is more challenging to develop a cold climate HPWH than heat pump, because higher water supply temperature > 110°F than 95°F air supply temperature
- High pressure ratio of CCHPWH at low ambient temperature causes drastic capacity degradation, low heating efficiency and high compressor discharge temperature.

Alignment and Impact

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050

Power system decarbonization 100% carbon pollutionfree electricity by 2035 Energy justice 40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

- Power System Decarbonization: Advance HPWH technologies to replace gas water heaters and reduce GHG emissions.
- Green House Emissions Reductions: Replace high GWP refrigerants in Rheem's residential and commercial HPWH product families
- Energy Justice: Develop commercial cold climate heat pump water heaters for multi-family buildings
- Develop and calibrate high-fidelity, publicdomain HPWH and heat exchanger modelling and design tool for low GWP refrigerants in wrapped-tank and forced water flow configurations

Approach – Upgrade DOE/ORNL Heat Pump Design Model

Progress: Segment-to-Segment Tank Coil Model

• TNOD0 [F]

TNOD4 [F]

TNOD8 [F]

• TNOD1 [F]

• TNOD5 [F

TNOD9 [F]

TNOD2 [F]

TNOD6 [F]

WaterDraw [lbm/hr]

• TNOD3 [F]

TNOD7 [F

Heat pump power [W

Coupled a segment-to-segment coil model to stratified tank model

- Pattern of wrapped-tank coil affects stratification
- Water stratification is a boundary condition to the segment-to-segment coil model

Progress: Segment-to-Segment Forced Flow Water-to-Refrigerant Heat Exchanger Model

Approach: Two Representative Rheem HPWHs (Phase I)

220V- 40-gallon HPWH

Progress: Rheem collected low GWP refrigerant candidates (Phase I)

Refrigerant	GWP	Safety Class	Glide/pressure in Condenser	Glide/press in Evaporator @	Critical Temperature/M	Volume Vapor	Volume Vapor Heat@ 4.4°C
			@54.4°C [K]/[kPa]	4.4°C [K] /[kPa]	ole weight [C]/[g/mol]	Heat@54.4° C. [k.]/m³]	[kJ/m³]
			[rdp[rd of]	10.01	[0],[8,]	o [tonin]	
R-134a						<mark>10959.4</mark>	3276.0
(baseline)	<mark>1430</mark>	<mark>A1</mark>	0/1469	0/342	101.06/102.0		
R-1234yf	<mark>4</mark>	A2L	0/1444	0/366	95.0/114.04	<mark>10024.4</mark>	3263.7
R-1234ze	<mark>6</mark>	A2L	0/1114	0/254	153.7/114.04	<u>8522.1</u>	2473.2
R-513Aª	<mark>573</mark>	<mark>A1</mark>	0.01/1530	0.01/377	96.5/108.43	<mark>10832.0</mark>	3442.8
R-516A ^b	<mark>131</mark>	A2L	0.0/1478	0.0/369	97.17/102.6	<mark>10411.3</mark>	3332.5
R-515B ^c	<mark>293</mark>	<mark>A1</mark>	0.0/1107	0.0/252	108.7/117.48	<u>8472.4</u>	2457.9

^a R-513A has mass-based compositions of R-1234yf (0.56)/ R-134a (0.44).

^b R-516A has mass-based R1234yf (0.775)/R152a (0.14)/ R134a(0.085).

^c R-515B has mass-based R1234ze (0.911) and R227ea (0.089)

Progress: Experimental Results of 40-gallon, 220V HPWH

Progress: Experimental Results of 50-Gallon, 110V HPWH

	R-134a	R-513A	R-515B	R1234ze	R1234yf	R516A
Optimized Charge [oz]	64	64	68	64	64	56
UEF [w/w]_MediumDraw	3.18	3.21	3.43	3.568	3.526	3.642
UEF [w/w]_HighDraw	N/A	3.43	3.61	3.776	3.658	3.922
FHR [gallon]	69.2	63.5	58.9	63.2	66.8	68.8

Future Work: Commercial CCHPWH Design Targets (Phase II)

	Low target	High target	
		SCOP \geq 3.6	
DUW officiency rating	$\text{UEF} \ge 2.20$	(Tier 5 from NEEA	
DHw efficiency famig	(Energy Star v5.0 [3])	Advanced Water Heater	
		Specification v8.0 [4])	
	CoP (Ambient air		
Hydronic space heating	temperature- A7°C/return	$C_0 P(\Lambda 7/W65) > 4.5$	
efficiency	water temperature- W35°C) \geq	$COI(A/(W03)) \ge 4.3$	
	4.5		
Cold climate heating capacity	No auxiliary electric heating	No auxiliary electric heating	
Cold enhate heating capacity	down to 5 °F	down to -5 °F	
Cold climate heating afficiency	$CoP \ge 1.7$ at 5 °F outdoor	$CoP \ge 2.0$ at 5 °F outdoor	
Cold chinate heating efficiency	temperature	temperature	
Maximum leaving water	140 °F	180 °F	
temperature	140 1		

Future Work: Variable-Speed Vapor Injection System Configurations

Model-based concept selection

Developed variable-speed vapor injection compressor model in HPDM library.

Publications

- Parametric studies of heat pump water heater using low GWP refrigerants, B Shen, K Nawaz, A Elatar - International Journal of Refrigeration, 2021
- Bo Shen, Kashif Nawaz, Van Baxter, Ahmed Elatar, Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser, International Journal of Refrigeration, Volume 87, 2018, Pages 78-90, ISSN 0140-7007

Thank you

Oak Ridge National Laboratory Bo Shen, Research Staff (865)-574-5745; shenb@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

Stakeholder Engagement

Industry Partner – Rheem Manufacturing Company

- Supported Rheem team to use DOE/ORNL Heat Pump Design Model to optimize heat exchanger design and accelerate HPWH system development
- Rheem fabricated system prototypes
- Rheem provided all the low GWP refrigerant samples
- Weekly meetings with Rheem engineers to monitor the progress.

Remaining Project Work

Phase I has completed and final report released

Phase II, development of commercial CCHPWH launched

Project Budget

Project Budget: \$80K (DOE) (Phase I) Variances: NONE Cost to Date: \$80K Additional Funding: 200K (Phase II)

Budget History							
FY 2	2021	FY 2	2022	FY 2023			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
40K	10K	\$40K	\$10K	\$200K	\$200K		

REFERENCE SLIDES