Compressor is a Sensor (CRADA Emerson)

Emerson CoreSense™ Diagnostic, Communications & Protection Technology

Pump-down Commissioning

Oak Ridge National Laboratory PI: Bo Shen, Senior R&D Staff; Presenter: Zhenning Li, Associate R&D Staff 865-574-5745, shenb@ornl.gov WBS # 03.02.06.83, Lab call CRADA

Project Summary

Objective and outcome

- Develop accurate charge fault detection and diagnosis technology embedded in the existing compressor sensor board
- The new technology automatically identifies refrigerant charge faults during regular heat pump commissioning operation and makes refrigerant charge value available at the technician's fingertips
- The new technology featured fast response, high accuracy, and universal applicability for various residential and commercial systems

Outdoor unit of heat pump placed on a scale for charge migration measurement

Team and Partners

Emerson Commercial and Residential Solutions (the Helix center) - CRADA

Stats

Performance Period: 10/01/2021-09/30/2023 DOE budget: \$500k, Cost Share: \$500k Milestone 1: Dynamic modeling report Milestone 2: Development of an algorithm to correlate the equipment delivered capacity with the system charge level Milestone 3 (Go/No-go): Laboratory verification on residential system to capture the system charge within +/- 10% accuracy Milestone 4 (Go/No-go): Laboratory verification on commercial system to capture the system charge within +/-10% accuracy Milestone 5: Field installation and instrumentation Milestone 6: Final reporting

Problems

- Charge faults (overcharge or leakage) have a significant impact on heat pump performances
- Evacuating and weighing the refrigerant is time-consuming and cost ineffective
- Subcooling and superheat degrees at steady-state operation are commonly used as prediction indices for charge fault, however, steady-state operation requires long data acquisition time due to the variation of ambient temperature and building load
- Machine-learning based charge prediction method requires large amount of experimental data for training and ML model is system dependent
- Existing charge prediction method based on steady-state operation of vapor compression system cannot predict inactive charge in refrigerant buffers, i.e., accumulator and receiver

Alignment and Impact

- Increase building energy efficiency and reduce GHG emissions
 - The accurate charge prediction method improves the reliability and energy efficiency of the system and reduces the indirect GHG emission
 - A reliable charge FDD method mitigates refrigerant leakage, mitigate the danger of flammable refrigerants and reduces the direct GHG emission
- Prioritize equity, affordability and resilience
 - It is seamlessly integrated into existing compressor sensors and commissioning operations, thus, accommodate the current manufacturing and installation processes
- The pump-down based charge FDD technology features fast response, high accuracy, and universal applicability for various residential and commercial systems

Approach – Detailed Modeling of Charge Migration in Pump-down

- Performed quasi steady state simulation using DOE/ORNL Heat Pump Design Model^[1]
- The system is dissembled into two half systems, and the algorithm iterates between high-side and low-side systems at each time step to calculate the charge moved at each second
- At start up, charge is assumed to be distributed proportionally per each component inner volume

[1] <u>https://hpdmflex.ornl.gov</u>

Progress - Quasi Steady State Simulation Results

- Simulate a 5-ton heat pump system validated with experiments from partner
- Pump-down takes 24 seconds until compressor cut-off pressure 55 psia
- After 4 seconds, the entire low-pressure side is fully superheated
- At the end of pump-down, the remaining charge not moved via compressor is 5.2% of the total charge

Progress – Charge Prediction Validation on a Residential Heat System

- A R410A residential 5-ton split heat pump was used for experiment validation
- Pump-down starts from system stand-by mode by closing the cut-off valve at liquid line and start the compressor and outdoor fan

Outdoor unit placed on scale to measure refrigerant migration

Schematic of the residential split system

Progress – Test Matrix

- The pump-down operations were conducted at 3 different charge levels, i.e., 7 lbm, 8.078 lbm and 9.109 lbm and 4 different ambient conditions
- For each charge level, the pump-down were repeated three times for reproducibility test
- Pump-down is automatically terminated by low-pressure protection sensor when the suction pressure reaches 20 psi
- The more refrigerant is charged, the pump-down takes longer; the higher the outdoor temperature, the pump-down takes longer

Charge	7 lb	8.078 lb	9.109 lb
	71 °F (Cooling)	71 °F (Cooling)	71 °F (Cooling)
Outdoor Temperature	79 °F	79 °F	79 °F
	(Cooling)	(Cooling)	(Cooling)
	87 °F	87 °F	NIA
	(Cooling)	(Cooling)	N/A
	95 °F	95 °F	NΔ
	(Cooling)	(Cooling)	

Pump-down test matrix

Progress – Charge Prediction based on Pump-down Process (Method-1)

 Compressor map was used to predict the volumetric efficiency degradation and refrigerant mass flow rate during pump-down process

Progress – Charge Prediction based on Pump-down Process (Method-1)

- Calculated the reversed refrigerant flow via 4-way valve due to valve leakage
- Refrigerant flow in 4-way value is driven by the pressure difference between discharge and suction points

$$VFR_{4WayValve} = Cv_{fourWayValve} \times (P_{discharge} - P_{suction})^2$$

$$Mr_{4-wayValve} = \rho_{discharge} * VFR_{4-WayValve}$$

Suction and discharge pressure during pump-down

Refrigerant mass flow rate via four-way valve

Progress – Charge Prediction based on Pump-down Process (Method-1)

 The charge prediction is within 6% (project goal +/- 10%) by considering the migrated charge via compressor and 4-way valve using the experiment data from pump-down process

Progress – Charge Prediction based on the End of Pump-down (Method-2)

- At the end of pump down, the system reaches quasi steady state, and detailed HX model is used to predict the subcooled liquid length and the charge in condenser
- Previous research^[1] of Purdue Univ. shows the errors between actual charge and simulated charge is a linear function of liquid length
- Once this equation is fitted using limited test data by OEM, it can be used to charge prediction

[1] Shen, B., Braun, J. E., & Groll, E. A. (2009). Improved methodologies for simulating unitary air conditioners at off-design conditions. Int. Journal of Ref., 32(7), 1837-1849.

Progress and Future Work

- Laboratory verification on a commercial roof-top unit is in progress
- We will conduct field validation for the charge prediction method after the commercial system validation

Commercial Roof-top Unit Used for Charge Prediction Validation

Outcome: Li, Zhenning; Welch, Drew; Shen, Bo; Gluesenkamp, Kyle; Butler, Brian; and Morgan, Stuart, "A Universal Refrigerant Charge Fault Detection and Diagnostics Method Based on Pump Down Operation" (2022). International Refrigeration and Air Conditioning Conference. Paper 2433.

Thank you

Oak Ridge National Laboratory Bo Shen, Sr. R&D staff 865-574-5745, shenb@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22
125 industry partners
54 university partners
13 R&D 100 awards
52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

	Task		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
FY21	1	Charge Fault Detection Method Refinement and Market Assessment								
	2	Development of Detailed Dynamic System Model to Represent Pump-Down Procedures								
	Milestone 1	Dynamic Modelling Report								
	3	Selection of Sensors to Monitor Dynamic Process								
	4	Experimental Validation of Automatic Charge Fault Detection on Residential Systems						<u>/</u>		
	Milestone 2	Laboratory Verification Report on Residential Systems				7	Go	/No-G	iO	l
FY22	5	Experimental Validation of Automatic Charge Fault Detection on Light Commercial Systems							Go/N	o-Go
	Milestone 3	Laboratory Verification Report on Commercial Systems						7		
	6	Fabrication of a FDD controller						ĺ.	Ì	l
	7	Field Demonstration with a Residential Split Unit								
	Milestone 4	Field installation and instrumentation								1
	8	Reporting of Automatic Charge Fault Detection Technology								
	Milestone 5	Final reporting								

Dr. Bo Shen (PI)

- Development of new charge FDD approach
- Team Coordination

Dr. Zhenning Li

- Pump-down simulation
- Laboratory investigation

Drew Welch Senior Lead HVAC Systems Engineer

 Leading the development of Emerson compressor technology